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INTRODUCTION 

What is an oversampling converter? 

An oversampling converter uses a noise-shaping modulator to reduce the in-band 

quantization noise to achieve a high degree of resolution. 

• What is the range of oversampling? 

 The oversampling ratio, called M, is a ratio of the sampling frequency to the Nyquist 

frequency of the input signal.  The Nyquist frequency is twice the bandwidth of the 

input signal.  This oversampling ratio can vary from 8 to 256.   

 -  The resolution of the oversampled converter is proportional to the oversampled ratio. 

 -  The bandwidth of the input signal is inversely proportional to the oversampled ratio. 

• What are the advantages of oversampling converters? 

 Very compatible with VLSI technology because most of the converter is digital 

 High resolution 

 Single-bit quantizers use a one-bit DAC which has no INL or DNL errors 

 Provide an excellent means of trading precision for speed (16-18 bits with a signal 

bandwidth of 50kHz to 8-10 bits with a signal bandwidth of 5-10MHz). 

• What are the disadvantages of oversampling converters? 

 Difficult to model and simulate 

 Limited in bandwidth to the clock frequency divided by the oversampling ratio 
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Nyquist Versus Oversampled ADCs 

Conventional Nyquist ADC Block Diagram: 

 

Oversampled ADC Block Diagram: 

 

Components: 

•  Filter - Prevents possible aliasing of the following sampling step. 

•  Sampling - Necessary for any analog-to-digital conversion. 

•  Quantization - Decides the nearest analog voltage to the sampled voltage (determines 

the resolution). 

•  Digital Coding - Converts the quantizer information into a digital output signal. 

Fig.10.9-01
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Frequency Spectrum of Nyquist and Oversampled Converters 

Definitions: 

 fB = analog signal bandwidth 

 fN = Nyquist frequency (two times fB) 

 fS = sampling or clock frequency 

 M = 
fS
fN

 = 
fS

2fB
  = oversampling ratio 

Frequency prespective: 
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Quantization Noise of a Conventional (Nyquist) ADC 

Multilevel Quantizer: 

 

 

 

 

 

 

The quantized signal y can be 

 represented as, 

   y = Gx + e 

where 

   G  = gain of the ADC, normally 1 

   e = quantization error 

The mean square value of the quantization error is   

  e 2
rms = SQ = 

1


 



-/2

/2

 e(x)2dx  = 
2

12
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Quantization Noise of a Conventional (Nyquist) ADC - Continued 

Spectral density of the sampled noise: 

 When a quantized signal is sampled at fS (= 1/), then all of its noise power folds into 

the frequency band from 0 to 0.5fS.  Assuming that the noise power is white, the spectral 

density of the sampled noise is, 

  E(f) = erms
2

fS
 = erms 2  

where  = 1/fS   and   fS = sampling frequency.  The inband noise energy no is 

  no2
 = 



0

fB

 E2(f)df  = e
2

rms  (2fB) = e
2

rms 





2fB

fS
  = 

e
2

rms 

M
     no = 

erms

M
  

What does all this mean? 

 • One way to increase the resolution of an ADC is to make the bandwidth of the signal, 

fB, less than the clock frequency, fS.  In otherwords, give up bandwidth for precision. 

 • However, it is seen from the above that a doubling of the oversampling ratio M, only 

gives a decrease of the inband noise, no, of 1/ 2 which corresponds to -3dB decrease 

or an increase of resolution of 0.5 bits. 

As a result, increasing the oversampling ratio of a Nyquist analog-digital converter is 

not a very good method of increasing the resolution. 
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Oversampled Analog-Digital Converters 

Classification of oversampled ADCs: 

1.) Straight-oversampling - The quantization noise is assumed to be equally distributed 

over the entire frequency range of dc to 0.5fS.  This type of converter is represented 

by the Nyquist ADC. 

 

2.)  Predictive oversampling - Uses noise shaping 

plus oversampling to reduce the inband noise to 

a much greater extent than the straight-

oversampling ADC.  Both the signal and noise 

quantization spectrums are shaped. 

 

 

3.)  Noise-shaping oversampling - Similar to the 

predictive oversampling except that only 

the noise quantization spectrum is shaped 

while the signal spectrum is preserved. 

 

The noise-shaping oversampling ADCs are also known as delta-sigma ADCs.  We will 

only consider the delta-sigma type oversampling ADCs. 
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DELTA-SIGMA MODULATORS 

General block diagram of an oversampled ADC 

Components of the Oversampled ADC: 

 

 

 

 

 

1.)  Modulator - Also called the noise shaper because it can shape the quantization 

noise and push the majority of the inband noise to higher frequencies.  It modulates the 

analog input signal to a simple digital code, normally a one-bit serial stream using a 

sampling rate much higher than the Nyquist rate. 

2.)  Decimator - Also called the down-sampler because it down samples the high 

frequency modulator output into a low frequency output and does some pre-filtering on 

the quantization noise. 

3.)  Digital Lowpass Filter - Used to remove the high frequency quantization noise and to 

preserve the input signal. 

Note:  Only the modulator is analog, the rest of the circuitry is digital. 
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First-Order, Delta-Sigma Modulator 

Block diagram of a first-order, delta-sigma 

modulator: 

 

Components: 

•  Integrator (continuous or discrete time) 

•  Coarse quantizer (typically two levels) 

  -  A/D which is a comparator for two levels 

  -  D/A  which is a switch for two levels 

First-order modulator output for a sinusoidal input: 

 

 Fig.10.9-08
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Sampled-Data Model of a First-Order   Modulator 

 

Writing the following relationships, 

  y[nTs] = q[nTs] +v[nTs] 

  v[nTs] = w[(n-1)Ts] + v[(n-1)Ts]  

  y[nTs] = q[nTs]+w[(n-1)Ts]+v[(n-1)Ts] = q[nTs]+{x[(n-1)Ts]-y[(n-1)Ts]}+v[(n-1)Ts] 

But the first equation can be written as 

  y[(n-1)Ts] = q[(n-1)Ts] +v[(n-1)Ts]      →  q[(n-1)Ts] = y[(n-1)Ts]} - v[(n-1)Ts] 

Substituting this relationship into the above gives, 

  y[nTs] = x[(n-1)Ts] + q[nTs] - q[(n-1)Ts] 

Converting this expression to the z-domain gives, 

  Y(z) = z-1X(z) + (1-z-1)Q(z) 

Definitions: 

 Signal Transfer Function = STF = 
Y(z)

 X(x)
  = z-1  

 Noise Transfer Function = NT F= 
Y(z)

 Q(x)
  = 1-z-1 

 

+

+

-

+
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+
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tizer
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Fig. 10.9-10
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Higher-Order  Modulators 

A second-order,  modulator: 

 

It can be shown that the z-domain output is, 

   Y(z) = z-1X(z) + (1-z-1)2Q(z) 

The general, L-th order  modulator has the following form, 

   Y(z) = z-KX(z) + (1-z-1)LQ(z) 

Note that noise transfer function, NTF, has L-zeros at the origin resulting in a high-pass 

transfer function.  K depends on the architecture where K≤L. 

This high-pass characteristic reduces the noise at low frequencies which is the key to 

extending the dynamic range within the bandwidth of the converter. 

070917-01
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+
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+

-
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Noise Transfer Function 

The noise transfer function can be written as, 

   NTFQ (z) = (1-z-1)L 

Evaluate (1-z-1) by replacing z  by ejTs to get  

  (1-z-1)= 



1 - e-jTs  









2j

2j
 
ejf/fs

ejf/fs
  = 







ejf/fs - e-jf/fs

2j
 2j e-jf/fs = sin(fTs) 2j e-jf/fs 

   |1-z-1| = (2sinfTs)  →      |NTFQ(f)| = (2sinfTs)L 

Magnitude of the noise 

transfer function, 

 

 

 

 

Note:  Single-loop modulators 

having noise shaping charac-

teristics of the form (1-z-1)L 

are unstable for L>2 unless an 

L-bit quantizer is used.  
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In-Band Rms Noise of Single-Loop  Modulator 

Assuming noise power is white, the power spectral density of the  modulator, SE(f), is  

  SE(f) = |NTFQ(f)|2 
|SQ(f)|

fs
  

Next, integrate SE(f) over the signal band to get the inband noise power using SQ = 
2

12
  

  SB = 
1

fs 



-fb

 fb

(2sinfTs)2L 
2

12
df   







2L

2L+1 





1

M2L+1 





2

12
    where sinfTs  fTs for M>>1. 

Therefore, the in-band, rms noise is given as 

  n0 = SB = 






L

2L+1 





1

ML+0.5 







12
 = 







L

2L+1 





1

ML+0.5
 erms 

Note that the  is a much more efficient way of achieving resolution by increasing M. 

  n0  
erms

ML+0.5
      Doubling of M leads to a 2L+0.5 decrease of in-band noise  

resulting in an extra L+0.5 bits of resolution! 

   The increase of the oversampling ratio is an excellent method of increasing the 

resolution of a  oversampling analog-digital converter. 
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Illustration of RMS Noise Versus Oversampling Ratio for Single Loop  

Modulators 

Plotting n0/erms gives, 

  
n0

 erms
 = 







L

2L+1 





1

ML+0.5
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Dynamic Range of  Analog-Digital Converters 

Oversampled  Converter: 

The dynamic range, DR, for a 1 bit-quantizer with level spacing  =VREF, is 

  DR2 = 
Maximum signal power

SB(f)
 = 









2 2

2

 






2L

2L+1 





1

M2L+1 





2

12

 = 
3

2
 
2L+1

2L
 M2L+1 

Nyquist Converter: 

The dynamic range of a N-bit Nyquist rate ADC is (now  becomes VREF  for large N), 

 DR2 = 
Maximum signal power

SQ
 = 

 (VREF/2 2)2

2/12
 = 

3

2
 22N  → DR = 1.5 2N 

Expressing DR in terms of dB (DRdB) and solving for N, gives 

 N = 
DRdB - 1.7609

6.0206
   or   DRdB = (6.0206N + 1.7609) dB 

Example:  A 16-bit  ADC requires about 98dB of dynamic range.  For a second-order 

modulator, M must be 153 or 256 since we must use powers of 2. 

Therefore, if the bandwidth is 20kHz, then the clock frequency must be 10.24MHz. 
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Multibit Quantizers 

A single-bit quantizer: 

   = VREF 

 Advantage is that the DAC is inherently linear. 

 

Multi-bit quantizer: 

 Consists of an ADC and DAC of B-bits. 

   = 
VREF

2B-1
  

Disadvantage is that the 

DAC is no longer perfectly 

linear.  To get large 

resolution delta-sigma 

ADCs requires highly 

precise DACs. 

 

Dynamic range of a multibit  ADC: 

  DR2 = 
3

2
 
2L+1

2L
 M2L+1 





2B-1 2 

 

 

 

Fig. 10.9-14
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Example 39-1 - Tradeoff Between Signal Bandwidth and Accuracy of  ADCs 

 Find the minimum oversampling ratio, M, for a 16-bit oversampled ADC which uses 

(a.) a 1-bit quantizer and third-order loop, (b.) a 2-bit quantizer and third-order loop, and 

(c.) a 3-bit quantizer and second-order loop.  For each case, find the bandwidth of the 

ADC if the clock frequency is 10MHz. 
 
Solution 
 
  We see that 16-bit ADC corresponds to a dynamic range of approximately 98dB.   

(a.) Solving for M gives 
 

  M = 








2

3
 
DR2

2L+1
 

2L

(2B-1)2

1/(2L+1)

 

 
Converting the dynamic range to 79,433 and substituting into the above equation gives a 

minimum oversampling ratio of M = 48.03 which would correspond to an oversampling 

rate of 64.  Using the definition of M as fc/2fB gives fB as 10MHz/2·64 = 78kHz.  
 

(b.) and (c.)  For part (b.) and (c.) we obtain a minimum oversampling rates of M = 32.53 

and 96.48, respectively.  These values correspond to oversampling rates of 32 and 128, 

respectively.  The bandwidth of the converters is 312kHz for (b.) and 78kHz for (c.). 
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Z-Domain Equivalent Circuits 

The modulator structures are much easier to analyze and interpret in the z-domain. 

 

  Y(z) = Q(z) + 






z-1

1-z-1
 [X(z) - Y(z)]  →  Y(z) 







1

1-z-1
 = Q(z) + 







z-1

1-z-1
 X(z) 

  Y(z) = (1-z-1)Q(z) + z-1X(z)   →  NTFQ (z) = (1-z-1)   for L = 1 

Fig.10.9-16
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Cascaded, Second-Order  Modulator 

Since the single-loop architecture with order higher than 2 are unstable, it is necessary to 

find alternative architectures that allow stable higher order modulators.   

A cascaded, second-order structure: 

 

 

  Y1(z) = (1-z-1)Q1(z) + z-1X(z) 

  X2(z) = 






z-1

1-z-1
 (X(z) -Y1(z)  

     = 






z-1

1-z-1
 X(z) - 







z-1

1-z-1
 [(1-z-1)Q1(z) + z-1X(z)] 

  Y2(z) = (1-z-1)Q2(z) + z-1X2(z) = (1-z-1)Q2(z) + 






z-2

1-z-1
 X(z) - z-2Q1(z) - 







z-2

1-z-1
 X(z) 

     = (1-z-1)Q2(z) - z-2Q1(z) 

  Y(z) = Y2(z) - z-1Y2(z) + z-2Y1(z) = (1-z-1)Y2(z) + z-2Y1(z) 

       = (1-z-1)2Q2(z)-(1-z-1)z-2Q1(z)+(1-z-1)z-2Q1(z)+z-3X(z) = (1-z-1)2Q2(z)+z-3X(z) 

   Y(z) = (1-z-1)2Q2(z) + z-3X(z) 

Fig.10.9-17
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Third-Order, MASH  Modulator 

It can be shown that  

  Y(z) = X(z) + (1-z-1)3Q3(z) 

This results in a 3rd-order noise shaping and no 

delay between the input and output. 

 

 

 

 

 

 

 

 

Comments: 

•  The above structures that eliminate the noise of all quantizers except the last are called 

MASH or multistage architectures.   

•  Digital error cancellation logic is used to remove the quantization noise of all stages, 

except that of the last one. 
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A Fourth-Order, MASH-type Modulator using Scaling of Error Signals† 

 

The signal is 

divided by 1/C as it 

passes from the first 

2nd-order modulator 

to the second 2nd-

order modulator.  

The digital output 

of the second 2nd-

order modulator is 

then multiplied by 

the inverse factor of 

C. 

The various transfer functions are (a1=1, a2=2, b1=1, b2=2, 1=2 and C = 4) : 

                              
†  U.S. Patent 5,061,928, Oct. 29, 1991. 

 061207-01

a1

-

+ z-1

1-z-1

a2

-

+z-1

1-z-1

-

+Xin(z)

Q1(z)

b1

-

+
z-1

1-z-1

b2

-

+z-1

1-z-1
+

Q2(z)

+

1/C

D1(z)

D2(z)

z-1

1-z-11-z-1

z-1
+

C

Dout(z)

+

+

+

l1

 D1(z) = Xin(z) + (1-z-1)2 Q1(z)    and     D2(z) = (1/C)(-Q1(z)) + (1-z-1)2 Q2(z) 

 Giving      Dout(z) = Xin(z) + (1-z-1)4 Q2(z) 
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Distributed Feedback  Modulator - Fourth-Order 

 
Amplitude of integrator outputs: 

 

Fig.10.9-20
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Distributed Feedback  Modulator - Fourth-Order – Continued 

 
Amplitude of integrator outputs (Integrator constants have been optimized to minimize 

the integrator outputs): 

 

Fig.10.9-20
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Cascaded of a Second-Order Modulator with a First-Order Modulator 

 

Comments: 

•  The stability is guaranteed for cascaded structures 

•  The maximum input range is almost equal to the reference voltage level for the 

cascaded structures 

•  All structures are sensitive to the circuit imperfection of the first stages 

•  The output of cascaded structures is multi-bit requiring a more complex digital 

decimator 
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Integrator Circuits for  Modulators  

Fundamental block of the  modulator: 

 
Fully-Differential, Switched  

Capacitor Implementation: 

 

It can be shown that (Chapter 9 of the second 

edition or Appendix E of the third edition) that, 

  
Vout(z)

Vin(z)
 = 







Cs

Ci
 






z-1

1-z-1
  

becomes, 

   
V

o

out(e jT)
 V

o

in( e jT)
 = 









C1

C2
 

e-jT

j2 sin(T/2)
 






T

T
 =  







C1

jTC2
 






T

sin(T/2)
  

e-jT    

or 

   
V

o

out(e jT)
 V

o

in( e jT)
 = (Ideal)x(Magnitude error)x(Phase error) where I = 

C1

TC2
    Ideal = 

I

j
  

Fig.10.9-22
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Power Dissipation versus Supply Voltage and Oversampling Ratio 

The following is based on the above switched-capacitor integrator: 

1.)  Dynamic range: 

 The noise in the band [-fs,fs] is kT/C while the noise in the band [-fs/2M,fs/2M] is 

kT/MC.  We must multiply this noise by 4; x2 for the sampling and integrating phases 

and x2 for differential operation.  The dynamic range is then VDD divided by this noise, 

 

   

2.)  Lower bound on the sampling capacitor, Cs, can be written as: 

3.)  Static power dissipation of the integrator:   Pint = IbVDD 

4.)  Settling time for a step input of Vo,max: 

  Ib  = Ci    
Vo,max

Tsettle
 =







Ci

Tsettle
 






Cs

Ci
VDD  = 

CsVDD

Tsettle
 = CsVDD(2fs) = 2MfNCsVDD 

  Pint = 2MfNCsVDD2  = 16kT·DR·fN 

Because of additional feedback to the 1st integrator, power is increased by a factor of 2. 

   P1st-int  = 32kT·DR·fN 

  DR = 
VDD2/2

4kT/MCs
  = 

V
2

DDMCs

8kT
  

Cs = 
8kT·DR

 V
2

DDM
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SUMMARY 

• Oversampled ADCs allow signal bandwidth to be efficiently traded for resolution 

• Noise shaping oversampled ADCs preserve the signal spectrum and shape the noise 

quantization spectrum  

• The modulator shapes the noise quantization spectrum with a high pass filter 

• The quantizer can be single or multiple bit 

 - Single bit quantizers do not require linear DACs because a 1 bit DAC cannot be  

nonlinear 

 - Multiple bit quantizers require ultra linear DACs 

• Modulators consist of combined integrators with the goal of high-pass shaping of the 

noise spectrum and cancellation of all quantizer noise but the last quantizer 

 

 

 

 

 


