LECTURE 39 – OVERSAMPLING ADCS – PART I LECTURE ORGANIZATION

Outline

- Introduction
- Delta-sigma modulators
- Summary

CMOS Analog Circuit Design, 3rd Edition Reference

Pages 589-596

INTRODUCTION

What is an oversampling converter?

An oversampling converter uses a noise-shaping modulator to reduce the in-band quantization noise to achieve a high degree of resolution.

• What is the range of oversampling?

The oversampling ratio, called M, is a ratio of the sampling frequency to the Nyquist frequency of the input signal. The Nyquist frequency is twice the bandwidth of the input signal. This oversampling ratio can vary from 8 to 256.

- The resolution of the oversampled converter is proportional to the oversampled ratio.
- The bandwidth of the input signal is inversely proportional to the oversampled ratio.
- What are the advantages of oversampling converters? Very compatible with VLSI technology because most of the converter is digital High resolution

Single-bit quantizers use a one-bit DAC which has no INL or DNL errors Provide an excellent means of trading precision for speed (16-18 bits with a signal bandwidth of 50kHz to 8-10 bits with a signal bandwidth of 5-10MHz).

• What are the disadvantages of oversampling converters?

Difficult to model and simulate

Limited in bandwidth to the clock frequency divided by the oversampling ratio

Nyquist Versus Oversampled ADCs

Conventional Nyquist ADC Block Diagram:

Components:

- Filter Prevents possible aliasing of the following sampling step.
- Sampling Necessary for any analog-to-digital conversion.
- Quantization Decides the nearest analog voltage to the sampled voltage (determines the resolution).
- Digital Coding Converts the quantizer information into a digital output signal.

CMOS Analog Circuit Design

Frequency Spectrum of Nyquist and Oversampled Converters

Definitions:

Quantization Noise of a Conventional (Nyquist) ADC

Multilevel Quantizer:

Output, y 5 3 -6 -4 -2 -1 -1 -1 -2 -1 -2 -1 -2 -1 -3 -5Quantization error, e -1 -3 -5 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -3 -5 -1-1

The quantized signal y can be represented as,

$$y = Gx + e$$

where

G = gain of the ADC, normally 1

e = quantization error

The mean square value of the quantization error is

$$e_{rms}^{2} = S_{Q} = \frac{1}{\Delta} \int_{-\Delta/2}^{\Delta/2} e(x)^{2} dx = \frac{\Delta^{2}}{12}$$

Quantization Noise of a Conventional (Nyquist) ADC - Continued

Spectral density of the sampled noise:

When a quantized signal is sampled at $f_S (= 1/\tau)$, then all of its noise power folds into the frequency band from 0 to $0.5f_S$. Assuming that the noise power is white, the spectral density of the sampled noise is,

$$E(f) = e_{rms} \sqrt{\frac{2}{f_S}} = e_{rms} \sqrt{2\tau}$$

where $\tau = 1/f_S$ and $f_S =$ sampling frequency. The inband noise energy n_o is

$$n_{O}^{2} = \int_{0}^{f_{B}} E^{2}(f)df = e_{rms}^{2} (2f_{B}\tau) = e_{rms}^{2} \left(\frac{2f_{B}}{f_{S}}\right) = \frac{e_{rms}^{2}}{M} \implies n_{O} = \frac{e_{rms}}{\sqrt{M}}$$

What does all this mean?

- One way to increase the resolution of an ADC is to make the bandwidth of the signal, f_B , less than the clock frequency, f_S . In otherwords, give up bandwidth for precision.
- However, it is seen from the above that a doubling of the oversampling ratio M, only gives a decrease of the inband noise, n_o , of $1/\sqrt{2}$ which corresponds to -3dB decrease or an increase of resolution of 0.5 bits.

As a result, increasing the oversampling ratio of a Nyquist analog-digital converter is not a very good method of increasing the resolution.

Oversampled Analog-Digital Converters

Classification of oversampled ADCs:

- 1.) Straight-oversampling The quantization noise is assumed to be equally distributed over the entire frequency range of dc to $0.5f_S$. This type of converter is represented by the Nyquist ADC. f_{S_1} Noise
- 2.) Predictive oversampling Uses noise shaping plus oversampling to reduce the inband noise to a much greater extent than the straightoversampling ADC. Both the signal and noise quantization spectrums are shaped.
- 3.) Noise-shaping oversampling Similar to the predictive oversampling except that only the noise quantization spectrum is shaped while the signal spectrum is preserved.

The noise-shaping oversampling ADCs are also known as *delta-sigma* ADCs. We will only consider the delta-sigma type oversampling ADCs.

DELTA-SIGMA MODULATORS

General block diagram of an oversampled ADC

1.) $\Delta\Sigma$ Modulator - Also called the noise shaper because it can shape the quantization noise and push the majority of the inband noise to higher frequencies. It modulates the analog input signal to a simple digital code, normally a one-bit serial stream using a sampling rate much higher than the Nyquist rate.

2.) Decimator - Also called the down-sampler because it down samples the high frequency modulator output into a low frequency output and does some pre-filtering on the quantization noise.

3.) Digital Lowpass Filter - Used to remove the high frequency quantization noise and to preserve the input signal.

Note: Only the modulator is analog, the rest of the circuitry is digital.

First-Order, Delta-Sigma Modulator

Block diagram of a first-order, delta-sigma modulator:

Components:

- Integrator (continuous or discrete time)
- Coarse quantizer (typically two levels)
 - A/D which is a comparator for two levels
 - D/A which is a switch for two levels

First-order modulator output for a sinusoidal input:

x + Integrator v A/D v A/D

Sampled-Data Model of a First-Order $\Delta\Sigma$ **Modulator**

 $\therefore \quad y[nT_s] = q[nT_s] + w[(n-1)T_s] + v[(n-1)T_s] = q[nT_s] + \{x[(n-1)T_s] - y[(n-1)T_s]\} + v[(n-1)T_s]$

But the first equation can be written as

$$y[(n-1)T_s] = q[(n-1)T_s] + v[(n-1)T_s] \rightarrow q[(n-1)T_s] = y[(n-1)T_s] + v[(n-1)T_s]$$

Substituting this relationship into the above gives,

$$y[nT_{s}] = x[(n-1)T_{s}] + q[nT_{s}] - q[(n-1)T_{s}]$$

Converting this expression to the z-domain gives,

$$Y(z) = z^{-1}X(z) + (1 - z^{-1})Q(z)$$

Definitions:

Signal Transfer Function =
$$STF = \frac{Y(z)}{X(x)} = z^{-1}$$

Noise Transfer Function = $NTF = \frac{Y(z)}{Q(x)} = 1 - z^{-1}$

CMOS Analog Circuit Design

<u>Higher-Order \Delta\Sigma Modulators</u>

A second-order, $\Delta\Sigma$ modulator:

It can be shown that the *z*-domain output is,

 $Y(z) = z^{-1}X(z) + (1 - z^{-1})^2 Q(z)$

The general, *L*-th order $\Delta\Sigma$ modulator has the following form,

 $Y(z) = z^{-K}X(z) + (1 - z^{-1})^{L}Q(z)$

Note that noise transfer function, *NTF*, has *L*-zeros at the origin resulting in a high-pass transfer function. *K* depends on the architecture where $K \leq L$.

This high-pass characteristic reduces the noise at low frequencies which is the key to extending the dynamic range within the bandwidth of the converter.

Noise Transfer Function

The noise transfer function can be written as,

$$NTF_Q(z) = (1-z^{-1})^L$$

Evaluate (1-z⁻¹) by replacing z by $e^{j\omega T_s}$ to get

$$(1-z^{-1}) = (1 - e^{-j\omega T_s}) \left(\frac{2j}{2j}\right) \frac{e^{j\pi f/f_s}}{e^{j\pi f/f_s}} = \left(\frac{e^{j\pi f/f_s} - e^{-j\pi f/f_s}}{2j}\right) 2j \ e^{-j\pi f/f_s} = \sin(\pi f T_s) \ 2j \ e^{-j\pi f/f_s}$$
$$|1-z^{-1}| = (2\sin\pi f T_s) \qquad \rightarrow \qquad |NTF_Q(f)| = (2\sin\pi f T_s)L$$

Magnitude of the noise transfer function,

Note: Single-loop modulators having noise shaping characteristics of the form $(1-z^{-1})L$ are unstable for L>2 unless an *L*-bit quantizer is used.

In-Band Rms Noise of Single-Loop $\Delta\Sigma$ **Modulator**

Assuming noise power is white, the power spectral density of the $\Delta\Sigma$ modulator, $S_E(f)$, is

$$S_E(f) = |NTF_Q(f)|^2 \frac{|S_Q(f)|}{f_s}$$

Next, integrate $S_E(f)$ over the signal band to get the inband noise power using $S_Q = \frac{\Delta^2}{12}$

$$\therefore S_B = \frac{1}{f_s} \int (2\sin\pi f_s)^{2L} \frac{\Delta^2}{12} df \approx \left(\frac{\pi^{2L}}{2L+1}\right) \left(\frac{1}{M^{2L+1}}\right) \left(\frac{\Delta^2}{12}\right) \text{ where } \sin\pi f_s \approx \pi f_s \text{ for } M >> 1.$$

Therefore, the in-band, rms noise is given as

$$n_0 = \sqrt{S_B} = \left(\frac{\pi L}{\sqrt{2L+1}}\right) \left(\frac{1}{ML+0.5}\right) \left(\frac{\Delta}{\sqrt{12}}\right) = \left(\frac{\pi L}{\sqrt{2L+1}}\right) \left(\frac{1}{ML+0.5}\right) e_{rms}$$

Note that the $\Delta\Sigma$ is a much more efficient way of achieving resolution by increasing *M*.

 $n_0 \propto \frac{e_{rms}}{M^{L+0.5}} \Rightarrow$ Doubling of *M* leads to a 2^{L+0.5} decrease of in-band noise resulting in an extra L+0.5 bits of resolution!

 \therefore The increase of the oversampling ratio is an excellent method of increasing the resolution of a $\Delta\Sigma$ oversampling analog-digital converter.

Illustration of RMS Noise Versus Oversampling Ratio for Single Loop $\Delta\Sigma$ Modulators

Dynamic Range of \Delta\Sigma Analog-Digital Converters

Oversampled $\Delta \Sigma$ Converter:

The dynamic range, *DR*, for a 1 bit-quantizer with level spacing $\Delta = V_{REF}$, is

$$DR^{2} = \frac{\text{Maximum signal power}}{S_{B}(f)} = \frac{\left(\frac{\Delta}{2\sqrt{2}}\right)^{2}}{\left(\frac{\pi^{2}L}{2L+1}\right)\left(\frac{1}{M^{2}L+1}\right)\left(\frac{\Delta^{2}}{12}\right)} = \frac{3}{2}\frac{2L+1}{\pi^{2}L}M^{2L+1}$$

Nyquist Converter:

The dynamic range of a *N*-bit Nyquist rate ADC is (now Δ becomes $\approx V_{REF}$ for large *N*),

$$DR^{2} = \frac{\text{Maximum signal power}}{SQ} = \frac{(V_{REF}/2\sqrt{2})^{2}}{\Delta^{2}/12} = \frac{3}{2} 2^{2N} \longrightarrow DR = \sqrt{1.5} 2^{N}$$

Expressing DR in terms of dB (DR_{dB}) and solving for N, gives

$$N = \frac{DR_{dB} - 1.7609}{6.0206} \quad \text{or} \quad DR_{dB} = (6.0206N + 1.7609) \text{ dB}$$

Example: A 16-bit $\Delta\Sigma$ ADC requires about 98dB of dynamic range. For a second-order modulator, *M* must be 153 or 256 since we must use powers of 2.

Therefore, if the bandwidth is 20kHz, then the clock frequency must be 10.24MHz.

Multibit Quantizers

A single-bit quantizer:

 $\varDelta = V_{REF}$

Advantage is that the DAC is inherently linear.

Multi-bit quantizer:

Consists of an ADC and DAC of B-bits.

 $\Delta = \frac{V_{REF}}{2^{B}-1}$

Disadvantage is that the DAC is no longer perfectly linear. To get large resolution delta-sigma ADCs requires highly precise DACs.

Dynamic range of a multibit $\Delta \Sigma$ ADC:

$$DR^2 = \frac{3}{2} \frac{2L+1}{\pi^{2L}} M^{2L+1} (2B-1)^2$$

Example 39-1 - Tradeoff Between Signal Bandwidth and Accuracy of ΔΣ ADCs

Find the minimum oversampling ratio, *M*, for a 16-bit oversampled ADC which uses (a.) a 1-bit quantizer and third-order loop, (b.) a 2-bit quantizer and third-order loop, and (c.) a 3-bit quantizer and second-order loop. For each case, find the bandwidth of the ADC if the clock frequency is 10MHz.

Solution

We see that 16-bit ADC corresponds to a dynamic range of approximately 98dB. (a.) Solving for *M* gives

$$M = \left(\frac{2}{3} \frac{DR^2}{2L+1} \frac{\pi^{2L}}{(2^{B-1})^2}\right)^{1/(2L+1)}$$

Converting the dynamic range to 79,433 and substituting into the above equation gives a minimum oversampling ratio of M = 48.03 which would correspond to an oversampling rate of 64. Using the definition of M as $f_c/2f_B$ gives f_B as 10MHz/2.64 = 78kHz.

(b.) and (c.) For part (b.) and (c.) we obtain a minimum oversampling rates of M = 32.53 and 96.48, respectively. These values correspond to oversampling rates of 32 and 128, respectively. The bandwidth of the converters is 312kHz for (b.) and 78kHz for (c.).

Z-Domain Equivalent Circuits

The modulator structures are much easier to analyze and interpret in the z-domain.

CMOS Analog Circuit Design

Cascaded, Second-Order $\Delta\Sigma$ Modulator

Since the single-loop architecture with order higher than 2 are unstable, it is necessary to find alternative architectures that allow stable higher order modulators.

 $X_2(z)$

 $Q_1(z)$

A cascaded, second-order structure:

 $Y_1(z) = (1-z^{-1})Q_1(z) + z^{-1}X(z)$

 $X_2(z) = \left(\frac{z^{-1}}{1 - z^{-1}}\right) (X(z) - Y_1(z))$ z^{-1} 1 - z - 1Fig.10.9-17 $= \left(\frac{z^{-1}}{1-z^{-1}}\right) X(z) - \left(\frac{z^{-1}}{1-z^{-1}}\right) \left[(1-z^{-1})Q_1(z) + z^{-1}X(z)\right]$ $Y_{2}(z) = (1-z^{-1})Q_{2}(z) + z^{-1}X_{2}(z) = (1-z^{-1})Q_{2}(z) + \left(\frac{z^{-2}}{1-z^{-1}}\right)X(z) - z^{-2}Q_{1}(z) - \left(\frac{z^{-2}}{1-z^{-1}}\right)X(z)$ $=(1-z^{-1})Q_2(z) - z^{-2}Q_1(z)$ $Y(z) = Y_2(z) - z^{-1}Y_2(z) + z^{-2}Y_1(z) = (1-z^{-1})Y_2(z) + z^{-2}Y_1(z)$ $= (1-z^{-1})^2 Q_2(z) - (1-z^{-1})z^{-2} Q_1(z) + (1-z^{-1})z^{-2} Q_1(z) + z^{-3} X(z) = (1-z^{-1})^2 Q_2(z) + z^{-3} X(z)$ $Y(z) = (1 - z^{-1})^2 Q_2(z) + z^{-3} X(z)$

Y(z)

 $O_2(z)$

1 - 7 - 1

 $Y_2(z)$

Third-Order, MASH ΔΣ Modulator

It can be shown that

 $Y(z) = X(z) + (1 - z^{-1})^3 Q_3(z)$

This results in a 3rd-order noise shaping and no delay between the input and output.

Comments:

- The above structures that eliminate the noise of all quantizers except the last are called *MASH* or multistage architectures.
- Digital error cancellation logic is used to remove the quantization noise of all stages, except that of the last one.

 $D_{out}(z)$ The signal is divided by 1/*C* as it passes from the first 2^{nd} -order modulator to the second 2^{nd} order modulator. The digital output of the second 2^{nd} order modulator is then multiplied by the inverse factor of *C*.

The various transfer functions are $(a_1=1, a_2=2, b_1=1, b_2=2, \lambda_1=2 \text{ and } C=4)$:

$$D_1(z) = X_{in}(z) + (1-z^{-1})^2 Q_1(z) \text{ and } D_2(z) = (1/C)(-Q_1(z)) + (1-z^{-1})^2 Q_2(z)$$

Giving $D_{out}(z) = X_{in}(z) + (1-z^{-1})^4 Q_2(z)$

[†] U.S. Patent 5,061,928, Oct. 29, 1991.

Distributed Feedback $\Delta\Sigma$ **Modulator - Fourth-Order**

Amplitude of integrator outputs:

Distributed Feedback $\Delta\Sigma$ **Modulator - Fourth-Order – Continued**

Amplitude of integrator outputs (Integrator constants have been optimized to minimize the integrator outputs):

Page 39-23

Cascaded of a Second-Order Modulator with a First-Order Modulator

Comments:

- The stability is guaranteed for cascaded structures
- The maximum input range is almost equal to the reference voltage level for the cascaded structures
- All structures are sensitive to the circuit imperfection of the first stages
- The output of cascaded structures is multi-bit requiring a more complex digital decimator

Integrator Circuits for $\Delta\Sigma$ **Modulators**

Fundamental block of the $\Delta\Sigma$ modulator:

Fully-Differential, Switched Capacitor Implementation:

It can be shown that (Chapter 9 of the second edition or Appendix E of the third edition) that,

$$\frac{V_{out}(z)}{V_{in}(z)} = \left(\frac{C_s}{C_i}\right) \left(\frac{z^{-1}}{1 - z^{-1}}\right)$$

becomes,

$$\frac{V_{out}^{o}(e^{j\omega T})}{V_{in}^{o}(e^{j\omega T})} = \left(\frac{C_{1}}{C_{2}}\right) \frac{e^{-j\omega T/2}}{j2 \sin(\omega T/2)} \left(\frac{\omega T}{\omega T}\right) = \left(\frac{C_{1}}{j\omega T C_{2}}\right) \left(\frac{\omega T/2}{\sin(\omega T/2)}\right) \left(e^{-j\omega T/2}\right)$$

or

$$\frac{V_{out}^{o}(e^{j\omega T})}{V_{in}^{o}(e^{j\omega T})} = (\text{Ideal}) \times (\text{Magnitude error}) \times (\text{Phase error}) \text{ where } \omega_{I} = \frac{C_{1}}{TC_{2}} \implies \text{Ideal} = \frac{\omega_{I}}{j\omega}$$

 $V_o(z)$

z-1

CMOS Analog Circuit Design

Power Dissipation versus Supply Voltage and Oversampling Ratio

The following is based on the above switched-capacitor integrator:

1.) Dynamic range:

...

. .

The noise in the band $[-f_s,f_s]$ is kT/C while the noise in the band $[-f_s/2M,f_s/2M]$ is kT/MC. We must multiply this noise by 4; x2 for the sampling and integrating phases and x2 for differential operation. The dynamic range is then V_{DD} divided by this noise,

$$DR = \frac{V_{DD}^{2/2}}{4kT/MC_s} = \frac{V_{DD}^{2}MC_s}{8kT}$$

2.) Lower bound on the sampling capacitor, C_s , can be written as: $C_s = \frac{8kT \cdot DR}{V_{DD}^2 M}$

3.) Static power dissipation of the integrator: $P_{int} = I_b V_{DD}$

4.) Settling time for a step input of $V_{o,max}$:

$$I_{b} = C_{i} \frac{V_{o,max}}{T_{settle}} = \left(\frac{C_{i}}{T_{settle}}\right) \left(\frac{C_{s}}{C_{i}} V_{DD}\right) = \frac{C_{s} V_{DD}}{T_{settle}} = C_{s} V_{DD} (2f_{s}) = 2M f_{N} C_{s} V_{DD}$$
$$P_{int} = 2M f_{N} C_{s} V_{DD}^{2} = 16 k T \cdot DR \cdot f_{N}$$

Because of additional feedback to the 1st integrator, power is increased by a factor of 2.

$$\therefore \qquad P_{1st-int} = 32kT \cdot DR \cdot f_N$$

CMOS Analog Circuit Design

SUMMARY

- Oversampled ADCs allow signal bandwidth to be efficiently traded for resolution
- Noise shaping oversampled ADCs preserve the signal spectrum and shape the noise quantization spectrum
- The modulator shapes the noise quantization spectrum with a high pass filter
- The quantizer can be single or multiple bit
 - Single bit quantizers do not require linear DACs because a 1 bit DAC cannot be nonlinear
 - Multiple bit quantizers require ultra linear DACs
- Modulators consist of combined integrators with the goal of high-pass shaping of the noise spectrum and cancellation of all quantizer noise but the last quantizer