Lecture 3a:

Specific-factor Model

Thibault FALLY
C181 – International Trade
Spring 2018

CHAPTER 2: Ricardian model:

- Only one factor of production: labor
- Labor is mobile across sectors
- → Everyone gains from trade

The next model relaxes these assumptions:

CHAPTER 3: But what if:

- We have more than one factor of production?
- What if these factors are NOT mobile across sectors?
- → Then there may be losers and winners! (unequal effects of globalization)

CHAPTER 3: Road map:

- Setting up the specific factor model
- Change in production and employment
- Aggregate gains from trade
- Effect on labor wages
- Effect on returns to K and Land

Setup

- Two countries: Home and Foreign.
- Two sectors: Manufacturing and Agriculture
- Manufacturing uses labor and capital
- Agriculture uses labor and land.

Setup

- Two countries: Home and Foreign.
- Two sectors: Manufacturing and Agriculture
- Manufacturing uses labor and capital
- Agriculture uses labor and land.
- Diminishing returns for labor in each industry:
 The marginal product of labor declines if the amount of labor used in the industry increases.

Alternative interpretation

NOTE:

We can also use the same model and interpret "capital" and "land" as fixed labor:

Capital: equivalent to Labor that is stuck in manufacturing

Land: equivalent to Labor that is stuck in Agriculture

Labor: Labor that is mobile across industries

→ Three types of labor depending on its mobility

(for the lecture, we'll keep talking about capital and land as it's easier to follow)

Production function with Constant Returns to Scale:

• Manufacturing output: Y = F(K, L)

such that: $F(\lambda K, \lambda L) = \lambda F(K, L)$

Production function with Constant Returns to Scale:

• Manufacturing output: Y = F(K, L)

such that: $F(\lambda K, \lambda L) = \lambda F(K, L)$

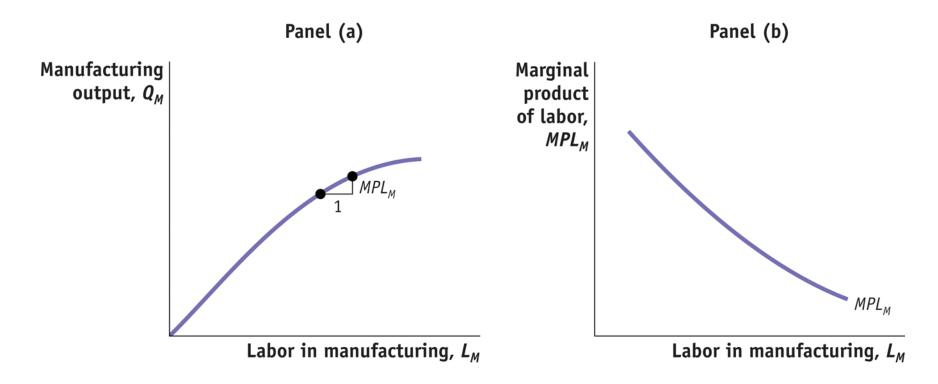
 This implies decreasing returns to scale if we focus on one input:

$$F(K, \lambda L) < F(\lambda K, \lambda L)$$

$$\rightarrow F(K, \lambda L) < \lambda F(K, L)$$

• In each industry: $\frac{\partial MPL}{\partial L} < 0$

Diminishing returns for labor in each industry:



(same for Agriculture: MPL decreases with production)

- Manufactures: $Y_M = a_M K^{1/3} L_M^{2/3}$
- Agriculture: $Y_A = a_A T^{1/3} L_A^{2/3}$

Example of production function:

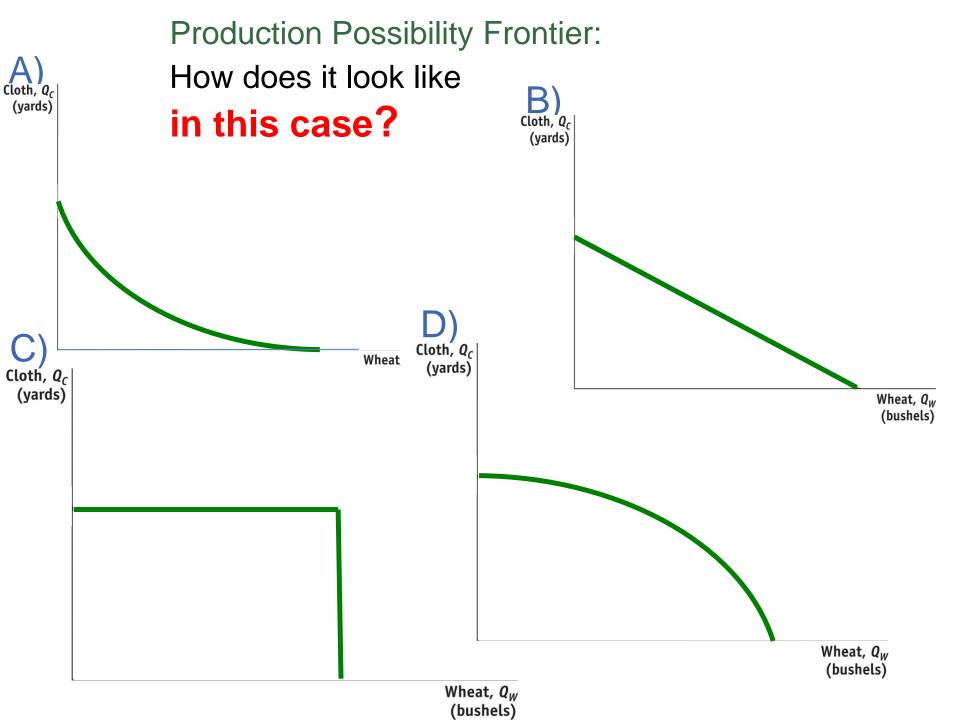
- Manufactures: $Y_M = a_M K^{1/3} L_M^{2/3}$
- Agriculture: $Y_A = a_A T^{1/3} L_A^{2/3}$
- → Marginal product of Labor:
 - MPL in Manufactures: $MPL_M = \frac{2}{3} a_M (K/L_M)^{1/3}$

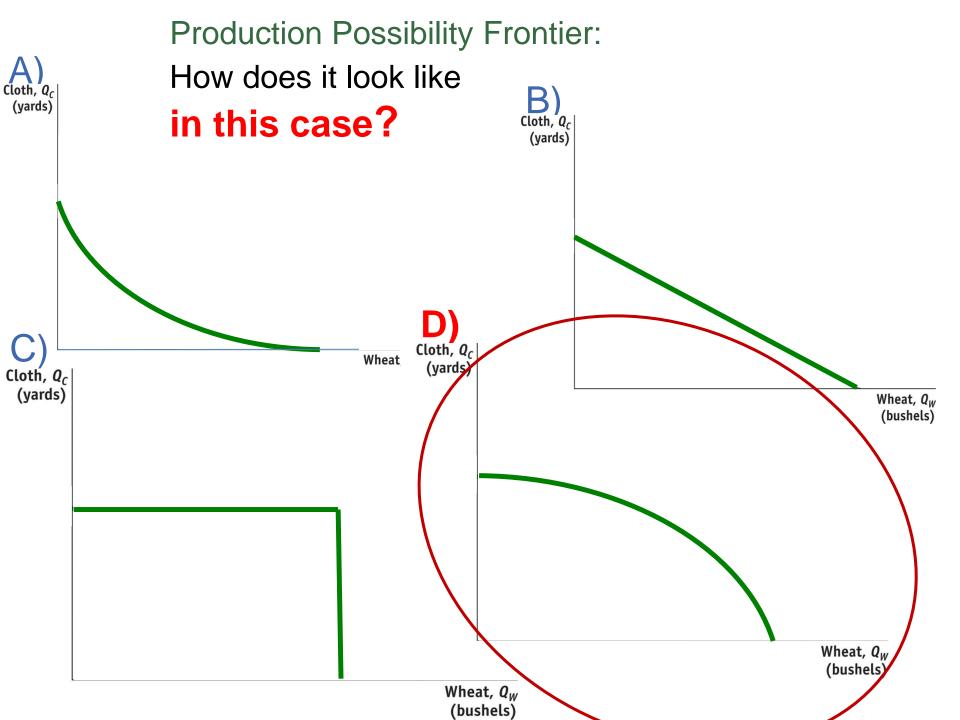
• MPL in Agriculture: $MPL_A = \frac{2}{3}a_A (T/L_A)^{1/3}$

- Manufactures: $Y_M = a_M K^{1/3} L_M^{2/3}$
- Agriculture: $Y_A = a_A T^{1/3} L_A^{2/3}$
- → Marginal product of Labor:
 - MPL in Manufactures: $MPL_M = \frac{2}{3} a_M \left(K/L_M \right)^{1/3}$ Increases with K/L_M
 - MPL in Agriculture: $MPL_A = \frac{2}{3}a_A \left(T/L_A\right)^{1/3}$ Increases with T/L_A

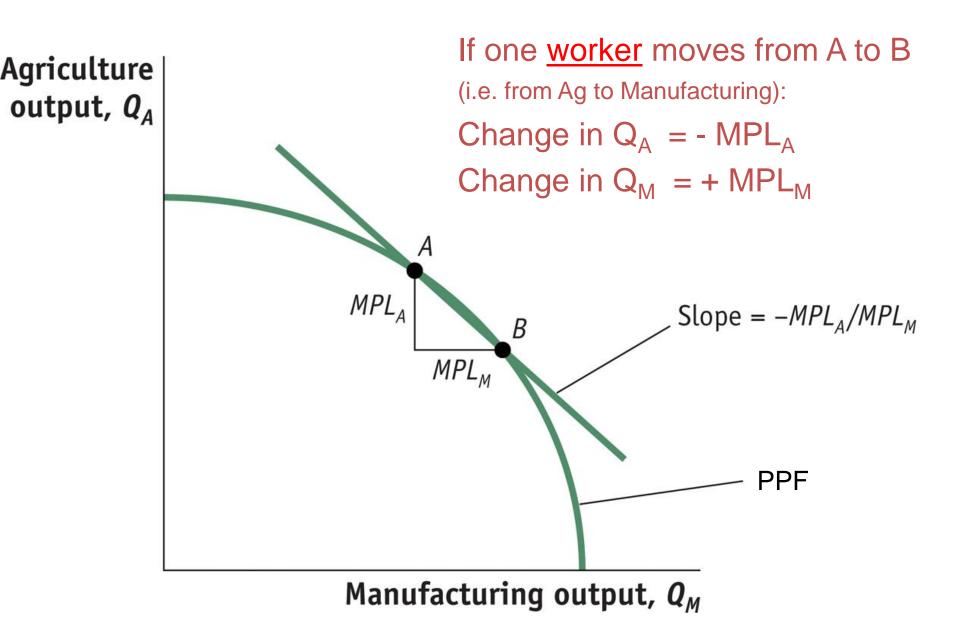
- Manufactures: $Y_M = a_M K^{1/3} L_M^{2/3}$
- Agriculture: $Y_A = a_A T^{1/3} L_A^{2/3}$
- → Marginal product of Capital and Land:
 - MPK in Manufactures: $MPK = \frac{1}{3}a_M (L_M/K)^{2/3}$
 - MPT in Agriculture: $MPT = \frac{1}{3}a_A (L_A/T)^{2/3}$

- Manufactures: $Y_M = a_M K^{1/3} L_M^{2/3}$
- Agriculture: $Y_A = a_A T^{1/3} L_A^{2/3}$
- → Marginal product of Capital and Land:
 - MPK in Manufactures: $MPK = \frac{1}{3}a_M \left(L_M/K\right)^{2/3}$ Decreases with K/L_M
 - MPT in Agriculture: $MPT = \frac{1}{3}a_A \left(L_A/T\right)^{2/3}$ Decreases with T/L_A

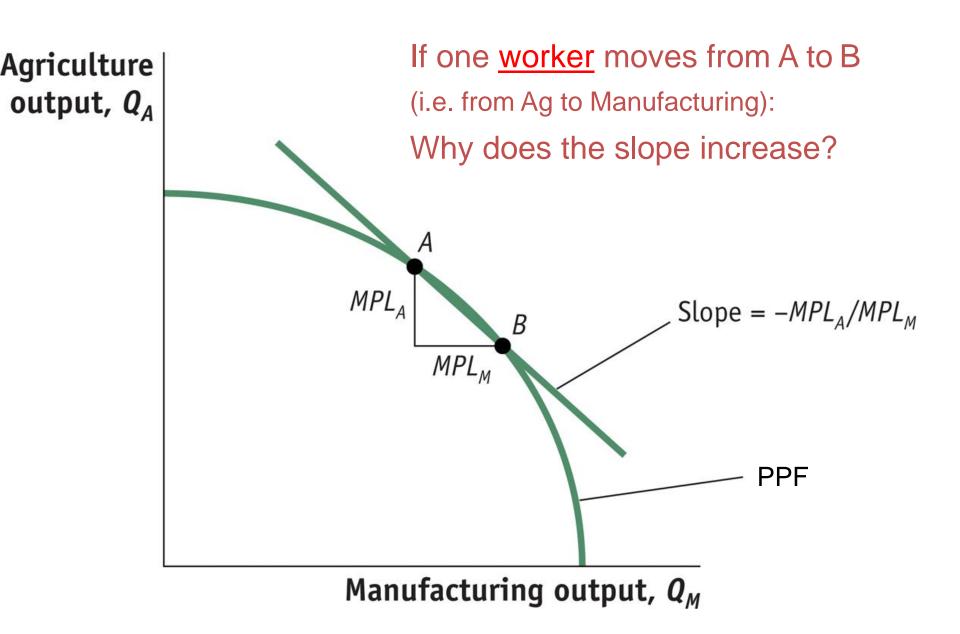




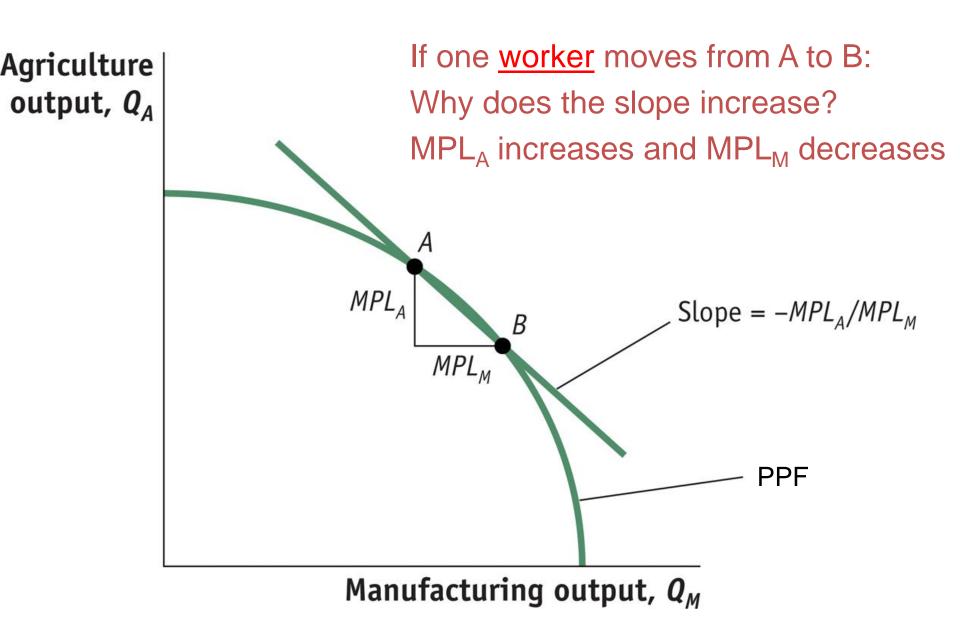
Slope of PPF reflects the opportunity cost of manuf. output:



Slope of PPF reflects the opportunity cost of manuf. output:



Slope of PPF reflects the opportunity cost of manuf. output:



Slope of PPF

Why does the slope increase from point A to B?

- Slope equals MPL_A/MPL_M
- As L_A decreases, MPL_A increases
- As L_M increases, MPL_M decreases
- → Hence the ratio increases!

Labor market and relative prices

- Labor is mobile across sectors
- Hence wages are equalized:

$$W = P_M \cdot MPL_M$$

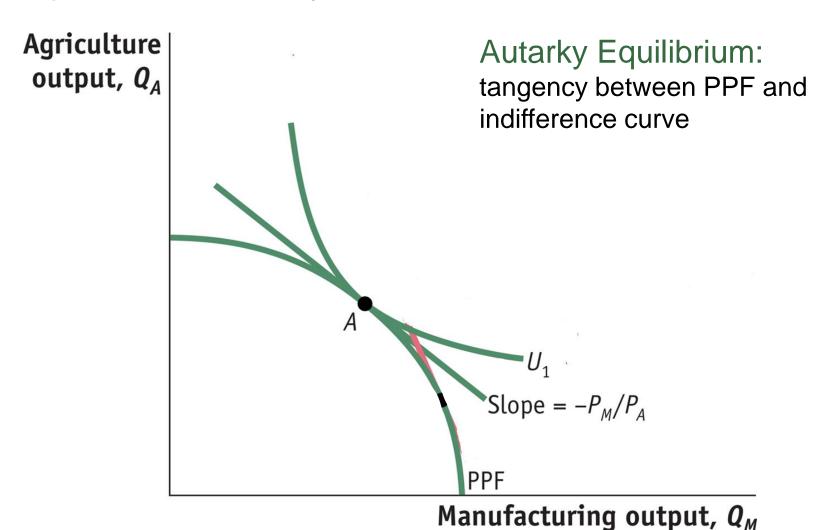
 $W = P_A \cdot MPL_A$

And should be the same across sectors. Hence:

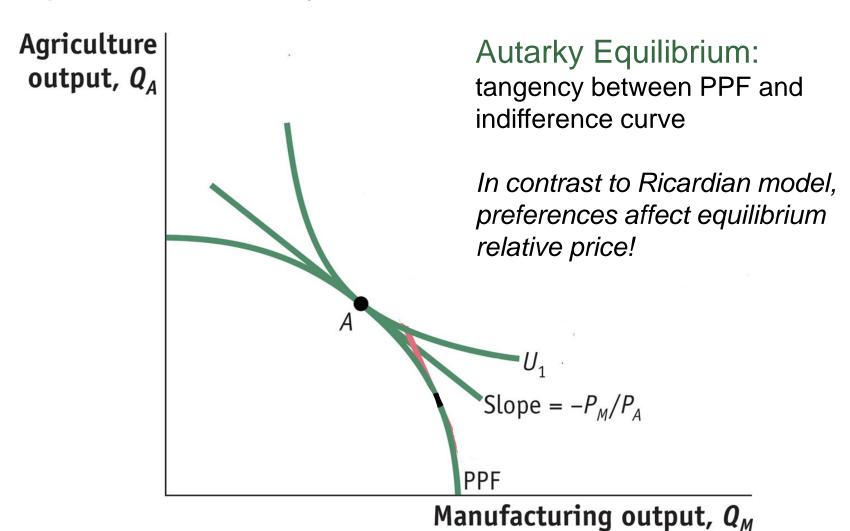
$$P_{M}/P_{A} = MPL_{A}/MPL_{M}$$

= Slope of the PPF

Equilibrium in Autarky:



Equilibrium in Autarky:



- CHAPTER 3: Road map:
 - Setting up the specific factor model
 - → Change in production and employment
 - Aggregate gains from trade
 - Effect on labor wages
 - Effect on returns to K and Land

The Foreign Country

- Let us assume that Home has a comparative advantage in manufacturing
- ⇔ Equivalent to assuming that the Home no-trade relative price of manufacturing is lower than Foreign rel. price:

$$(P_M/P_A) < (P_M^*/P_A^*).$$

New world price?

The Foreign Country

Let us assume that Home has a comparative advantage in manufacturing

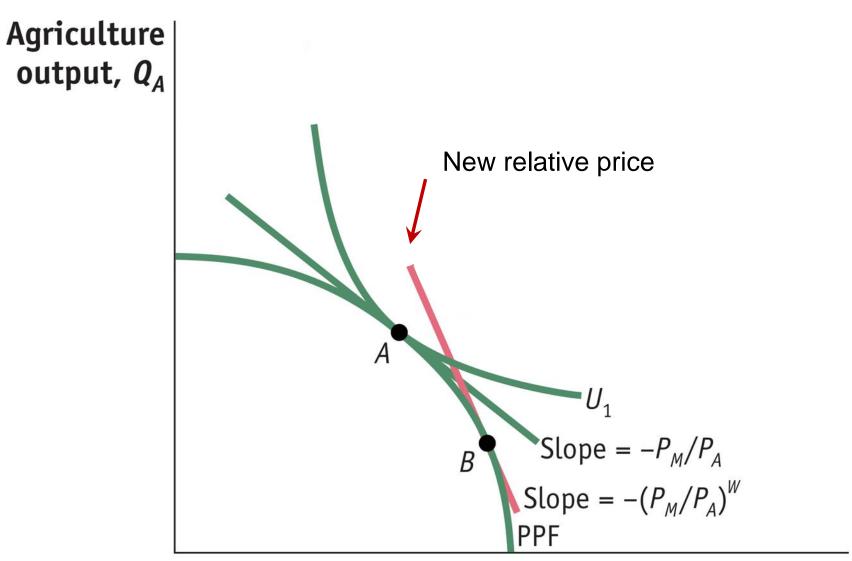
⇔ Equivalent to assuming that the Home no-trade relative price of manufacturing is lower than Foreign rel. price:

$$(P_M/P_A) < (P_M^*/P_A^*).$$

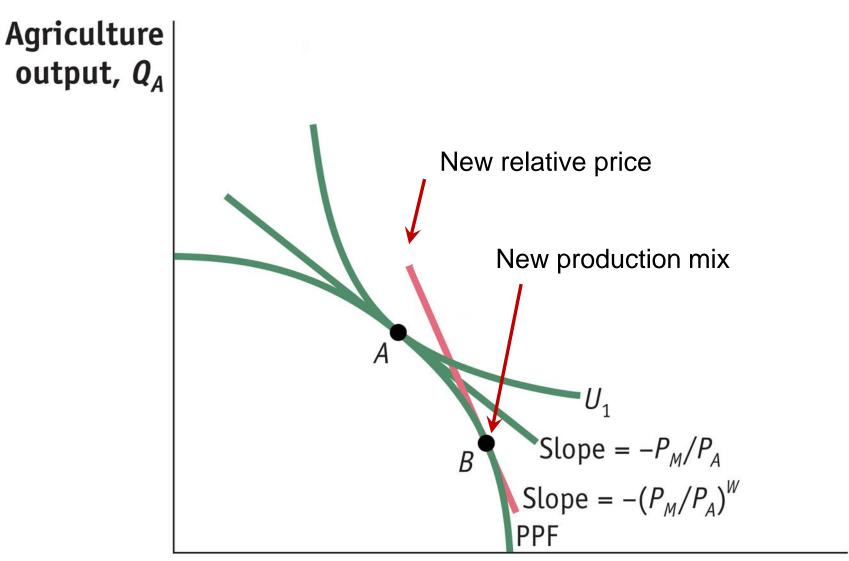
New world price:

$$(P_M/P_A) < (P_M/P_A)^W < (P_M^*/P_A^*).$$

Effect on production?



Manufacturing output, Q_M



Manufacturing output, Q_M

Quantitative example:

In the next example with Cobb-Douglas production, I would like to show you:

- How to link ratio of MPL to employment
- How to link ratio of MPL to prices
- → How to link employment to prices

Quantitative example:

- Manufactures: $Y_M = a_M K^{1/3} L_M^{2/3}$
- Agriculture: $Y_A = a_A T^{1/3} L_A^{2/3}$

Marginal product of Labor:

- MPL in Manufactures: $MPL_M = \frac{2}{3}a_M (K/L_M)^{1/3}$
- MPL in Agriculture: $MPL_A = \frac{2}{3}a_A (T/L_A)^{1/3}$

Quantitative example:

- Manufactures: $Y_M = a_M K^{1/3} L_M^{2/3}$
- Agriculture: $Y_A = a_A T^{1/3} L_A^{2/3}$

Marginal product of Labor:

- MPL in Manufactures: $MPL_M = \frac{2}{3}a_M (K/L_M)^{1/3}$
- MPL in Agriculture: $MPL_A = \frac{2}{3}a_A (T/L_A)^{1/3}$

⇒ Slope of PPF:
$$Slope = \frac{MPL_A}{MPL_M} = \frac{a_A T^{1/3}}{a_M K^{1/3}} \left(\frac{L_M}{L_A}\right)^{1/3}$$

Quantitative example:

• Slope of PPF:
$$Slope = \frac{MPL_A}{MPL_M} = \frac{a_A T^{1/3}}{a_M K^{1/3}} \left(\frac{L_M}{L_A}\right)^{1/3}$$

Constant term x Employment ratio

Quantitative example:

• Slope of PPF:
$$Slope = \frac{MPL_A}{MPL_M} = \frac{a_A T^{1/3}}{a_M K^{1/3}} \left(\frac{L_M}{L_A}\right)^{1/3}$$

• At equilibrium:
$$Slope = \frac{P_M}{P_A}$$

• How does a change in prices affects L_A/L_M ?

Quantitative example:

• Slope of PPF:
$$Slope = \frac{MPL_A}{MPL_M} = \frac{a_A T^{1/3}}{a_M K^{1/3}} \left(\frac{L_M}{L_A}\right)^{1/3}$$

• At equilibrium:
$$Slope = \frac{P_M}{P_A}$$

• How does a change in prices affects L_A/L_M ?

$$\frac{P_M}{P_A} = \frac{a_A T^{1/3}}{a_M K^{1/3}} \left(\frac{L_M}{L_A}\right)^{1/3} \Rightarrow \frac{L_A}{L_M} = \frac{a_A^3 T}{a_M^3 K} \left(\frac{P_A}{P_M}\right)^3$$

Clicker question:

If the relative price of manufacturing goods increases by 1%, relative employment in manufacturing $L_{\!\scriptscriptstyle M}/L_{\!\scriptscriptstyle A}$ increases by:

- a) A negative percentage, i.e. decreases!!
- b) Increases by 1%
- c) Increases by 0.33%
- d) Increases by 3%

Answer:

Answer:

If the relative price of manufacturing goods increases by 1%, relative employment in manufacturing $L_{\!\scriptscriptstyle M}/L_{\!\scriptscriptstyle A}$ increases by:

Some useful algebra...

Quantifying changes with exponents, etc.:

- Suppose $Z = a X^{\beta}$
- If X increases by 1% then Z increases by β%.
- If Z increases by 1% then X increases by 1/β %.

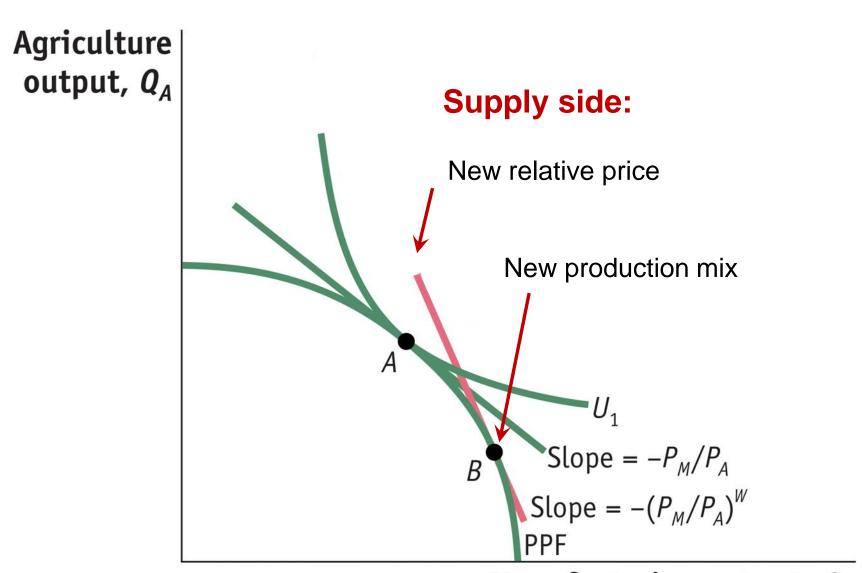
- Suppose $Z = X \cdot Y$
- If X increases by x %
- If Y increases by y %
- → Then Z increases by: x+y %.

CHAPTER 3: Road map:

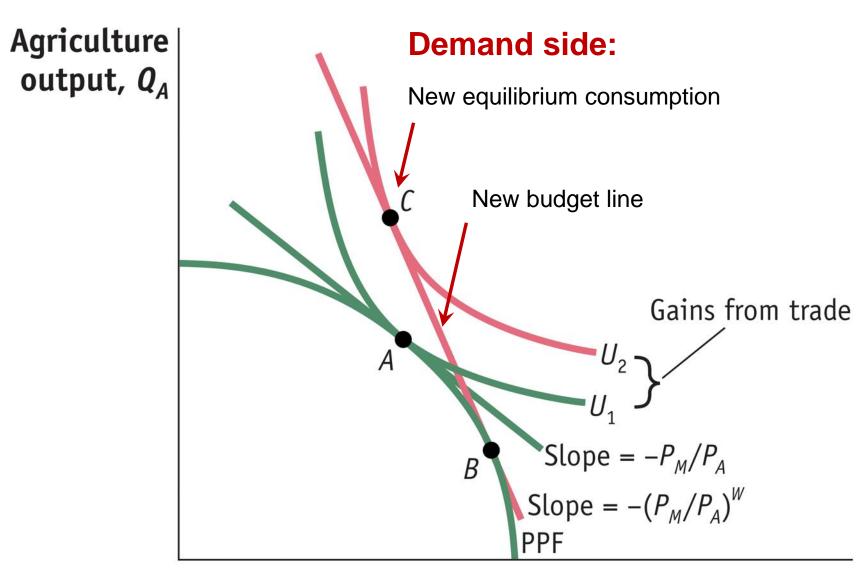
- Setting up the specific factor model
- Change in production and employment
- → Aggregate gains from trade
- Effect on labor wages
- Effect on returns to K and Land

Overall Gains from Trade?

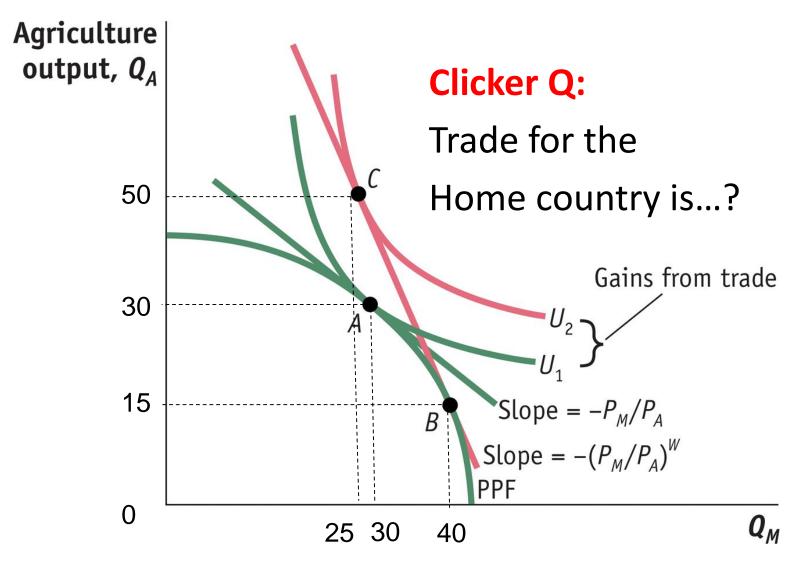
We start by looking at the average consumer



Manufacturing output, Q_M



Manufacturing output, Q_M



a)
$$X_M = 5$$
, $M_A = 20$; b) $X_M = 20$, $M_A = 20$;

c)
$$X_M = 15$$
, $M_A = 35$; d) $X_M = 20$, $M_A = 15$;

Overall Gains from Trade

So far, things are not very different from Ricardo:

New world price:

$$(P_M/P_A) < (P_M/P_A)^W < (P_M^*/P_A^*).$$

- Manufacturing goods are exported,
- Agricultural goods are imported
- For an average consumer, Home is better off with trade.

Gains for everyone?

- When there are gains from trade on average, it does not imply that everyone gains from trade
- The interesting part of the model is to examine what happens to the return to each factor:
 - 1) Labor wage
 - 2) Rental rate of Capital and Land

Do workers gain? Do land and capital owner gain?

- CHAPTER 3 Next lecture (part 2):
 - Setting up the specific factor model
 - Change in production and employment
 - Aggregate gains from trade
 - → Effect on labor wages?
 - → Effect on returns to Capital and Land?