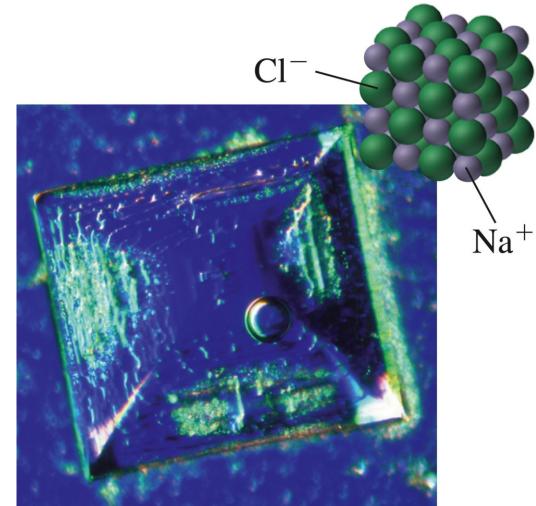


Nivaldo J. Tro

Chapter 4 Molecules, Compounds, and Chemical Reactions

Mark Erickson • Hartwick College

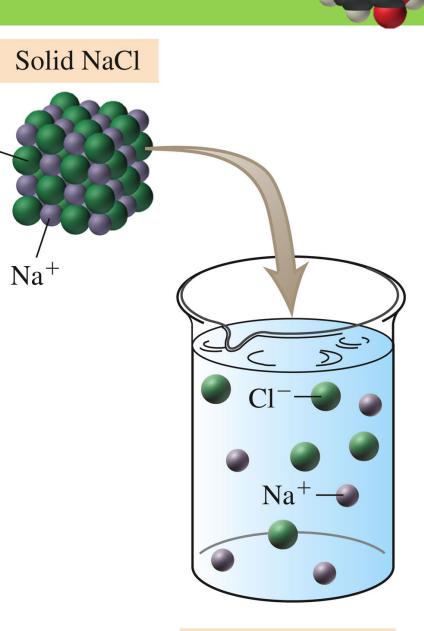
Why Do Compounds Form?


- Most elements have unstable electron configurations
- They form compounds with other elements to become more stable.
- This can be accomplished by the transfer of electrons (ionic compounds) or by the sharing of electrons (molecular compounds).

Types of Compounds

- We will study two major types of compounds in this class.
- <u>lonic compounds</u> are formed when electrons are transferred from a metal to a non-metal.
- <u>Molecular compounds</u> are formed when atoms from two or more elements share electrons.

Ionic Compounds


- Ionic compounds contain ions made from a metal and a non-metal.
- Metals prefer to lose electrons to become more stable.
- Nonmetals prefer to gain electrons to become more stable.

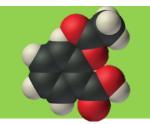
Sodium Chloride: An Ionic Compound

C1

- Sodium chloride is an ionic compound.
- Ionic compounds are made up of ions.
- Some ionic compounds can dissolve in water.
- Aqueous solutions containing dissolved ions conduct electricity.
- Solutions that conduct electricity are called *electrolytes*.

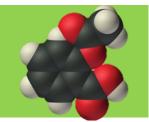
Naming Ionic Compounds

- The first word in the name is the cation.
- The cation has the name of the metal unchanged.
- The second word is the name of the anion.
- The anion has the name of the non-metal, with a slight modification:
 - bromine becomes bromide
 - oxygen becomes oxide
 - chlorine becomes chloride


Examples of Ionic Compounds

- NaBr
- MgBr₂
- NaCl
- CaO
- Na₂O
- Bel₂
- Li₃N
- Al₂O₃

- sodium bromide
 - magnesium bromide
- sodium chloride
- calcium oxide
- sodium oxide
- beryllium iodide
- lithium nitride
- aluminium oxide


nonmetal ion metal ion

Name the following ionic compounds: a) Li₂O b) CaBr₂ c) KI

Practice

a) Li_2O : lithium + ox(ide) = lithium oxide

b) CaBr₂: calcium + brom(ide) = calcium bromide

c) KI: potassium + iod(ide) = potassium iodide

Anions Containing More Than One Atom

- Some anions that are composed of two or more atoms bonded together.
- The bonded atoms behave as a single ion.
- These are called *polyatomic* ions.
- Each polyatomic ion has a unique name.

TABLE 4-2

Some Common Polyatomic Ions

Name	Formula
Carbonate	CO_{3}^{2-}
Bicarbonate	HCO ₃ ⁻
Hydroxide	OH ⁻
Nitrate	NO ₃ ⁻
Phosphate	PO ₄ ^{3-}
Sulfate	SO ₄ ^{2-}

Examples of Ionic Compounds

- Na_2CO_3 sodium carbonate
- Li₃PO₄ lithium phosphate
- $AI(OH)_3$ aluminium oxide
- Mg(OH)₂ magnesium hydroxide
- Na_2SO_4 sodium sulfate

Naming Anions for Ionic Compounds

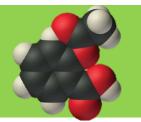
TABLE 4-1

Some Common Anions

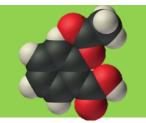
Nonmetal	Symbol for Ion	Base Name	Anion Name
Fluorine	F^-	Fluor	Fluoride
Chlorine	CI [–]	Chlor	Chloride
Bromine	Br [–]	Brom	Bromide
lodine	Ι ⁻	lod	lodide
Oxygen	Ο ²⁻	Ox	Oxide
Sulfur	S ²⁻	Sulf	Sulfide
Nitrogen	N ³⁻	Nitr	Nitride

Tables from the Textbook

TABLE 4-1


Some Common Anions

Nonmetal	Symbol for lon	Base Name	Anion Name
Fluorine	F^-	Fluor	Fluoride
Chlorine	CI^-	Chlor	Chloride
Bromine	Br^-	Brom	Bromide
lodine	⁻	lod	lodide
Oxygen	O ²⁻	Ox	Oxide
Sulfur	S^{2-}	Sulf	Sulfide
Nitrogen	N^{3-}	Nitr	Nitride


TABLE 4-2

Some Common Polyatomic Ions

Name	Formula
Carbonate	CO_{3}^{2-}
Bicarbonate	HCO ₃ ⁻
Hydroxide	OH ⁻
Nitrate	NO ₃ ⁻
Phosphate	PO ₄ ³⁻
Sulfate	SO ₄ ²⁻

Practice

Name the following ionic compounds


Mg(OH)₂
 Na₂SO₄

TABLE 4-2

Some Common Polyatomic Ions

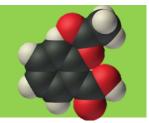
Name	Formula
Carbonate	CO_{3}^{2-}
Bicarbonate	HCO ₃ ⁻
Hydroxide	OH ⁻
Nitrate	NO ₃ ⁻
Phosphate	PO ₄ ³⁻
Sulfate	SO ₄ ²⁻

Practice

Simply combine the name of the metal and the polyatomic ion to form the name.

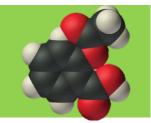
1) Mg(OH)₂: magnesium, hydroxide \rightarrow magnesium hydroxide

2) Na₂SO₄: sodium, sulfate \rightarrow sodium sulfate


Molecular Compounds

- Made up of nonmetals
- Formed when atoms share electrons
- Chemical bonds are formed between the atoms

Examples of Molecular Compounds


- CO₂ carbon dioxide
- CH₄ methane
- C_3H_8 propane
- C_4H_{10} butane
- C_8H_{18} octane
- $C_{12}H_{22}O_{11}$ sucrose
- H₂O water
- H_2O_2 hydrogen peroxide
- SO₂ sulfur dioxide
- NO₂ nitrogen dioxide

Practice

- Classify each compound as ionic or molecular.
 - a) NaBr
 - b) CO₂
 - c) MgF_2
 - d) CH₄

Practice

Compounds formed between a metal and at least one nonmetal are **ionic**. Compounds formed between nonmetals have a **covalent bond** and considered **molecular**.

a) NaBr: ionic

Na (metal) and Br (nonmetal)

b) SO₂: molecular

S and O (nonmetals)

c) MgF₂

Mg (metal) and F (nonmetal)

- d) CH₄
 - C and H (nonmetals)

Chemical Reactions

- Compounds are created as the result of chemical reactions.
- Compounds can also undergo chemical reactions
- Chemical reactions are represented by chemical equations.
- Reactants are written on the left side of the equation.
- Products are written on the right side of the equation.
- The number/types of atoms must be balanced.

$CH_4(g) + 2O_2(g) \rightarrow CO_2(g) + 2H_2O(g)$

Types of Chemical Reactions

Classified according to how atoms are rearranging

- combination
- decomposition
- displacement

Classified according to what types of substances are reacting/forming

- precipitation
- combustion
- acid-base
- oxidation-reduction

Combination Reaction

Two or more reactants <u>combine</u> to form one product

$$2Na(s) + Cl_{2}(g) \rightarrow 2NaCl(s)$$

$$C(s) + O_{2}(g) \rightarrow CO_{2}(g)$$

$$N_{2}(g) + 3H_{2}(g) \rightarrow 2NH_{3}(g)$$

$$CO_{2}(g) + CaO(s) \rightarrow CaCO_{3}(s)$$

Decomposition Reaction

One reactant forms more than one product

$CaCO_{3}(s) \rightarrow CaO(s) + CO_{2}(g)$ $2NH_{3}(g) \rightarrow N_{2}(g) + 3H_{2}(g)$

Displacement Reaction

- The cations and anions switch places
- $CuCl_2(aq) + Zn(s) \rightarrow ZnCl_2(aq) + Cu(s)$ single
 - $\begin{array}{rl} \mathsf{AgNO}_3\left(\mathsf{aq}\right) \ + \ \mathsf{KCl}\left(\mathsf{aq}\right) \ \rightarrow \ \mathsf{AgCl}\left(\mathsf{s}\right) \ + \ \mathsf{KNO}_3\left(\mathsf{aq}\right) \\ & \mathsf{double} \end{array}$
 - $\begin{array}{rl} Na_2SO_4 \ (aq) \ + \ Pb(NO_3)_2 \ (aq) \\ & \longrightarrow PbSO_4 \ (s) \ + \ 2NaNO_3 \ (aq) \ double \end{array}$

This reaction also sort of looks like displacement, but there's a better name for it: combustion.

 $CH_4(g) + 2O_2(g) \rightarrow CO_2(g) + 2H_2O(g)$

Precipitation Reaction

- A better name than "double displacement"
- Reactants are in aqueous (aq) solutions.
- A solid (s) product is formed.

 $AgNO_3$ (aq) + KCI (aq) \rightarrow AgCI (s) + KNO₃ (aq)

 $Na_{2}SO_{4} (aq) + Pb(NO_{3})_{2} (aq)$ $\rightarrow PbSO_{4} (s) + 2NaNO_{3} (aq)$

- Fuel and oxygen react
- Water and carbon dioxide are formed

 $\begin{array}{l} \mathsf{CH}_4 \left(g \right) + 2\mathsf{O}_2 \left(g \right) \to \mathsf{CO}_2 \left(g \right) + 2\mathsf{H}_2\mathsf{O} \left(g \right) \\ \\ \mathsf{C}_3\mathsf{H}_8 \left(g \right) + 5\mathsf{O}_2 \left(g \right) \to 3\mathsf{CO}_2 \left(g \right) + 4\mathsf{H}_2\mathsf{O} \left(g \right) \\ \\ 2\mathsf{C}_8\mathsf{H}_{18} \left(g \right) + 25\,\mathsf{O}_2 \left(g \right) \to 16\,\mathsf{CO}_2 \left(g \right) + 18\,\mathsf{H}_2\mathsf{O} \left(g \right) \end{array}$

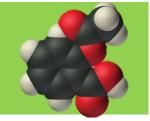
Acids-Base (Neutralization) Reaction

- Involves an acid and a base
- Reaction form water and a salt
- This type called *neutralization reactions*

acid + base \rightarrow water + salt HCI + KOH \rightarrow H₂O + KCI

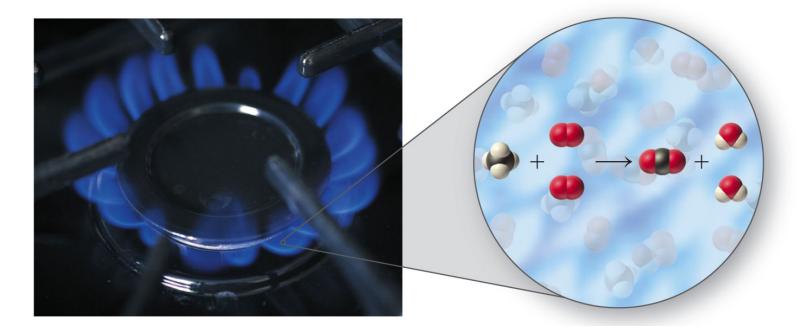
Oxidation-Reduction Reactions

- The charge of an element on the reactant side is different than that on the product side.
- The element has gained or lost electrons during the reaction.
- Pure elements have a charge of zero.

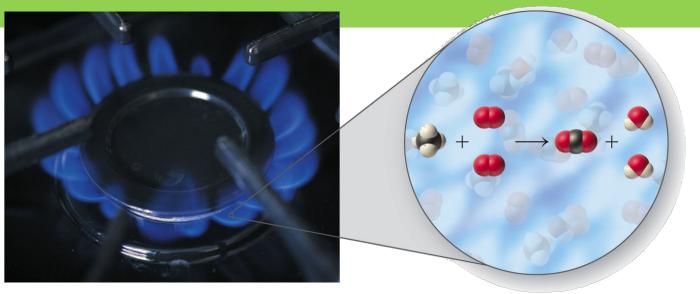

2Na (s) + CI_2 (g) \rightarrow 2NaCl (g)

 $2Cu(s) + O_2(g) \rightarrow 2CuO(g)$

Combination Reaction, or...


 Combination reactions can be <u>combustion</u> or <u>oxidation-reduction</u>

 $\begin{aligned} &2\text{Na}(s) + \text{Cl}_{2}(g) \to 2\text{NaCl}(g) \text{ oxidation-reduction} \\ &C(s) + \text{O}_{2}(g) \to C\text{O}_{2}(g) \text{ combustion} \\ &N_{2}(g) + 3\text{H}_{2}(g) \to 2\text{NH}_{3}(g) \text{ oxidation-reduction} \\ &C\text{O}_{2}(g) + \text{CaO}(s) \to \text{CaCO}_{3}(s) \text{ oxidation-reduction} \end{aligned}$

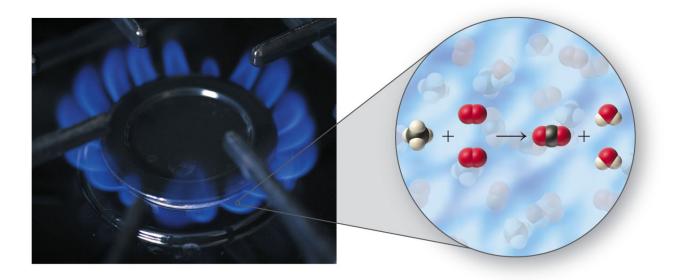


Chemical Reactions

- Compounds exist as the result of chemical reactions.
- Compounds can also undergo chemical reactions
- Chemical reactions are represented by chemical equations.
- For example, *methane gas burns*.

Writing Chemical Equations

When oxygen gas is present, methane gas burns to produce carbon dioxide gas and water vapor.


methane (g) + oxygen (g) \rightarrow carbon dioxide (g) + water (g)

 $CH_4(g) + 2O_2(g) \rightarrow CO_2(g) + 2H_2O(g)$

Writing Chemical Equations

- Reactants are written on the left side of the equation.
- Products are written on the right side of the equation.
- The number and types of each atom must be the same on both sides (balanced) because matter is conserved.

$CH_4(g) + 2O_2(g) \rightarrow CO_2(g) + 2H_2O(g)$

Chemical Equations Must Be Balanced

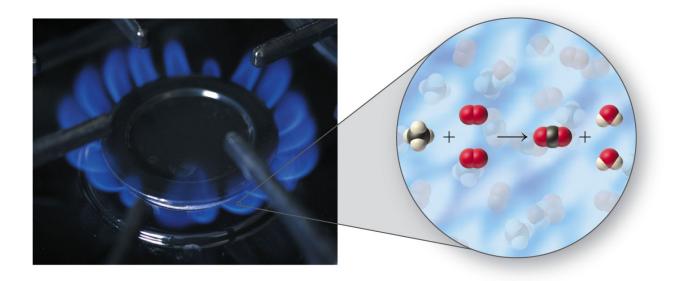
• Unbalanced:

$$-\operatorname{CH}_4 + \operatorname{O}_2 \to \operatorname{CO}_2 + \operatorname{H}_2\operatorname{O}$$

- Add <u>coefficients</u> to the reactants, and products make the number of atoms of each type of element on both sides of the equation equal.
- This changes the *number* of atoms and molecules involved in the reaction, but not the *types* of atoms and molecules.
- Balanced:

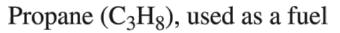
 $-\operatorname{CH}_4 + \operatorname{2O}_2 \rightarrow \operatorname{CO}_2 + \operatorname{2H}_2\operatorname{O}$

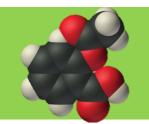
Balancing Guidelines


- If an element occurs in only one compound, balance that element first.
- If an element occurs as a free element, balance that element last.
- Change only coefficients, never subscripts.
- Eliminate fractions; use the lowest whole number ratio of coefficients.

- A forest fire is a chemical reaction that's out of control.
 - Oxygen is needed.
 - Fuel is a reactant.
 - What are the products?

• The reaction of methane and oxygen is a combustion reaction.


$CH_{4}\left(g\right)+2O_{2}\left(g\right)\rightarrow CO_{2}\left(g\right)+2H_{2}O\left(g\right)$



- Propane, C₃H₈, is often used as a fuel for home heating and cooking.
- Propane burns in oxygen to produce carbon dioxide (CO₂) and water (H₂O).

 $C_{3}H_{8}(g) + 5O_{2}(g) \rightarrow 3CO_{2}(g) + 4H_{2}O(g)$

Practice

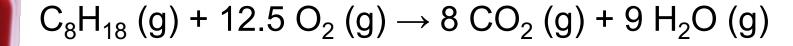
• The unbalanced equation:

 $C_3H_8 \ + \ O_2 \ \rightarrow \ CO_2 \ + \ H_2O$

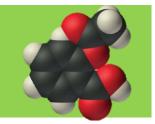
• First, balance the elements present in only one compound on each side of the equation.

$$\begin{array}{rcl} \mathbf{C_3H_8} + \mathbf{O_2} \rightarrow & \underline{\mathbf{3CO}_2} + \mathbf{H_2O} & \mathbf{3C's \ on \ each \ side} \\ \mathbf{C_3H_8} + \mathbf{O_2} \rightarrow & \mathbf{3CO_2} + \underline{\mathbf{4H_2O}} & \mathbf{8H's \ on \ each \ side} \end{array}$$

• Balance the element present as a free element last.


 $C_3H_8 + 5O_2 \rightarrow 3CO_2 + 4H_2O$ 10 O's on each side

• Final balanced equation:


 $C_3H_8 + 5O_2 \rightarrow 3CO_2 + 4H_2O$

Note: The absence of coefficient in front of a reactant or product implies a "1".

- Octane, C_8H_{18} , is called *gasoline* and is often used as a fuel for automobiles.
- Octane burns in oxygen to produce carbon dioxide (CO₂) and water (H₂O).

Octane (C₈H₁₈), a major component of gasoline

$\begin{array}{l} \mathsf{CH}_4 \left(g \right) + 2\mathsf{O}_2 \left(g \right) \to \mathsf{CO}_2 \left(g \right) + 2\mathsf{H}_2\mathsf{O} \left(g \right) \\ \\ \mathsf{C}_3\mathsf{H}_8 \left(g \right) + 5\mathsf{O}_2 \left(g \right) \to 3\mathsf{CO}_2 \left(g \right) + 4\mathsf{H}_2\mathsf{O} \left(g \right) \\ \\ \\ \mathsf{C}_8\mathsf{H}_{18} \left(g \right) + 12.5 \ \mathsf{O}_2 \left(g \right) \to 8 \ \mathsf{CO}_2 \left(g \right) + 9 \ \mathsf{H}_2\mathsf{O} \left(g \right) \end{array}$

It is acceptable to convert fractions to whole numbers.

 $C_8 H_{18} (g) + 12.5 O_2 (g) → 8 CO_2 (g) + 9 H_2 O (g)$ 2 x ($C_8 H_{18} (g) + 12.5 O_2 (g) → 8 CO_2 (g) + 9 H_2 O (g)$) $2C_8 H_{18} (g) + 25 O_2 (g) → 16 CO_2 (g) + 18 H_2 O (g)$

Summary

- Chemical compounds
- Ionic and covalent compounds
- Chemical reactions
- Chemical equations
- Reactants and products