

Lecture 4 Power System Protection

- Control vs Protection
- Protection Principles
- Protection requirements
- Protection Schemes

Why do we need to control?

- Control actions needed
- Automatic
 - Equipment Protection
 - Disonnection at fault
 - Voltage control
 - Move a tapchanger in a transformer
- Human intervention
 - Frequency control
 - Increase output in hydro plant
 - Voltage control
 - Connect capacitor bank

5

What can we control?

- KTH VETENSKAP OCH KONST
- Breakers
- Valves
- Tap changers
- Switches
- Drives
-

All done using Relays

Basic Relay concepts

Digital

"Numerical"

Pre 1970s 1970s 1980s Present ->

The numerical relay

- Current state of the practice
 - A/D & D/A converters
 - Dedicated CPU for Digital Signal Processing
 - Programmable
 - Real-time operating system

Application examples

9

Numerical relays - issues

- Software Version Control
 - Same problem as for all software systems
- Relay Data Management
 - Large amounts of parameters
 - Vendors specific vs. standardisation
- Testing & Comissioning
 - Complex equipment needed for testing
 - Too complex for field repairs

- Control vs Protection
- Protection Principles
- Protection requirements
- Protection Schemes

11

Purpose of the Protection System Protect Equipment Protect People & Property Separate Faulty section from power system Restore normal operation

Different Types of Protection By object By principle · Line protection · Distance protection - Impedance protection Feeder protection · Differential protection · Transformer protection - Pilot wire protection · Generator protection Overcurrent protection Busbar protection Residual current protection Directional earth fault · Motor protection • etc · Over/under frequency protection Over/under voltage protection • etc

Fault Statistics • Transmission lines Transmission systems Busbars 12 % · Generators / transformers · Single phase to ground 80 % Transmission lines Type of fault 10 % Two phases to ground · Two phase 5 % 5 % Three phase Hydro turbineHydro generatorTransformer 6.2 Faults per 100 units/year 14.6 2-3 Breaker • CT & VT 0.2 18

- Control vs Protection
- Protection Principles
- Protection requirements
- Protection Schemes

Protection requirements

- The protection system must be
 - Reliable
 - Stable
 - Sensitive
 - Selective
 - Timely

2

Reliability

- The protection system must provide its function when required to avoid damage to equipment, people or property
- Reliability problems stem from
 - Incorrect design
 - Incorrect installation/testing
 - Deterioration
- The study of the reliability of a protection system is critical

Stability

 The protection system must not react to faults in neighboring zones or high load currents.

23

Sensitivity

 Sensitivity refers to the minimal changes in measured parameter that the system can react to.

- For electromagnetic relays, this was a main design characteristic.
- Presently, the sensitivity is determined by the CT/VT and design of the system

Selectivity

• Only the effected parts of the power system shall be disconnected.

- Is achieved by two main methods
 - Time-grading/Current Grading
 - Relays are set to operate depending on the time and current characteristics
 - Unit systems
 - Current is measured at several points and compared.

25

Timeliness - Speed

- Speed is necessary for two main reasons
 - Maintain stability of the overall power system

Reduction of damage to equipment & property

- Control vs Protection
- Protection Principles
- Protection requirements
- Protection Schemes

31

Different Types of Protection

By object

- Line protection
- Feeder protection
- · Transformer protection
- · Generator protection
- · Busbar protection
- Motor protection
- etc

By principle

- Distance protection
 - Impedance protection
- Differential protection
 - Pilot wire protection
- · Overcurrent protection
- Residual current protection
 Directional earth fault
- Over/under frequency protection
- · Over/under voltage protection
- etc

Fundamentals of Protection

- Protection System
 - A complete arrangement of equipment that fulfills the protection requirements
- Protection Equipment
 - A collection of devices excluding CT, CB etc
- Protection Scheme
 - A collection of protection equipment providing a defined function.

33

Zones of Protection

 By dividing the power system into protection zones the extent of disconnections can be limited

Over-Current Protection • Simplest form next to the fuse • Use extensively in Distribution networks

Time grading

• Example from Strauss 4.4.2.

Distance Protection • Dual input V & I • Based on ratio Z Z<

Benefits of Distance Protection

- Local current and voltage: No need for communication
- Fault on protected line: Reach independent of fault current level
- · Enables remote back-up protection.

Diffferent Protection schemes

51

Protection Summary

- The Power System must be protected
 - To avoid damage to equipment, people & property
- Protection systems are created using CT/VTs, relays and circuit breakers
- Key characteristics are:
 - Selectivity
 - Speed
 - Reliability
 - Stability
 - Sensitivity
- Numerical Relays are essentially small computers -The Intelligent Electronic Device