Lecture 46
Bode Plots of Transfer Functions:II
A. Low Q Approximation for Two Poles

$$
\begin{array}{cc}
w_{0} \\
|\leftarrow-\cdots-\cdots-\cdots| \\
w_{L}=Q^{-1} w_{o} & 2 \pi f_{o} \\
w_{L} \sim \frac{1}{R C} & \\
w_{L} \neq f(L) & w_{h} \approx \frac{R}{L} \\
&
\end{array}
$$

B. Construction from $\mathrm{T}(\mathrm{s})$ Asymptotes the Actual T(s) Analytical Forms

1. Erickson'sProblems 8.2 and 8.3
2. Problem 8.5
C. Algebra on a Graph Graphically

Combining Asymptotes to Find Z(total)

1. Series impedance's
2. Parallel Impedance's
3. Series / Parallel
4. Voltage Dividers: Division of Asymptotes
D. Measuring T(s) and Impedance
5. Narrow Band Tracking Voltmeter
6. Methods for Measuring T(s)
a. Overview and Simple X_{C} Measurement
b. Choice of proper injection point for T(s) Measurements is artful
c. Measure $Z_{\text {out }}$ of a System
d. Grounding Issues In Measurement

Lecture 46 Bode Plots of Transfer Functions:II

A. Low Q Approximation for Two Pole T(s)

Often our two pole transfer functions have widely separated poles in frequency space allowing some nice approximate solutions
to $G(s)$.
Given a second-order denominator polynomial, of the form

$$
G(s)=\frac{1}{1+a_{1} s+a_{2} s^{2}} \quad \text { or } \quad G(s)=\frac{1}{1+\frac{s}{Q \omega_{0}}+\left(\frac{s}{\omega_{0}}\right)^{2}}
$$

When the roots are real, i.e., when $Q<0.5$, then we can factor the denominator, and construct the Bode diagram using the asymptotes for real poles. We would then use the following normalized form:

$$
G(s)=\frac{1}{\left(1+\frac{s}{\omega_{1}}\right)\left(1+\frac{s}{\omega_{2}}\right)}
$$

This is a particularly desirable approach when $Q \ll 0.5$, i.e., when the corner frequencies ω_{I} and ω_{2} are well separated.
The $\mathrm{T}(\mathrm{s})$ function,

$$
\frac{\mathrm{V}_{2}(\mathrm{~s})}{\mathrm{V}_{1}(\mathrm{~s})}=\frac{1}{1+\frac{\mathrm{S}}{\mathrm{Qw}_{\mathrm{o}}}+\left(\frac{\mathrm{S}}{\mathrm{w}_{\mathrm{o}}}\right)^{2}}
$$

, needs to be solved for the pole locations. From the pole locations we can sketch the Bode plot by inspection when the poles are far apart. When the poles are close a resonant response can be constructed from the asymptotic curves by employing a method called "Q peaking".

R-L-C network example:

$$
G(s)=\frac{v_{2}(s)}{v_{1}(s)}=\frac{1}{1+s \frac{L}{R}+s^{2} L C}
$$

Use quadratic formula to factor denominator. Corner frequencies are:

$$
\omega_{1}, \omega_{2}=\frac{L / R \pm \sqrt{(L / R)^{2}-4 L C}}{2 L C}
$$

We can solve for the two roots.

$$
\omega_{1}, \omega_{2}=\frac{L / R \pm \sqrt{(L / R)^{2}-4 L C}}{2 L C}
$$

This complicated expression yields little insight into how the corner frequencies ω_{l} and ω_{2} depend on R, L, and C.

When the corner frequencies are well separated in value, it can be shown that they are given by the much simpler (approximate) expressions

$$
\omega_{1} \approx \frac{R}{L}, \quad \omega_{2} \approx \frac{1}{R C}
$$

ω_{1}, is then independent of C, and ω_{2} is independent of L.
These simpler expressions can be derived via the Low-Q Approximation.

The roots can be put into the Q form as follows in order to better see how the poles change as Q of the circuit changes.

Given

$$
G(s)=\frac{1}{1+\frac{s}{Q \omega_{0}}+\left(\frac{s}{\omega_{0}}\right)^{2}}
$$

Use quadratic formula to express corner frequencies ω_{1} and ω_{2} in terms of Q and ω_{0} as:

$$
\omega_{1}=\frac{\omega_{0}}{Q} \frac{1-\sqrt{1-4 Q^{2}}}{2} \quad \omega_{2}=\frac{\omega_{0}}{Q} \frac{1+\sqrt{1-4 Q^{2}}}{2}
$$

Can you see what occurs for low Q ?

The high frequency pole of the two pole pair is.

$$
\omega_{2}=\frac{\omega_{01}}{Q} \frac{1+\sqrt{1-4 Q^{2}}}{2}
$$

can be written in the form

$$
\omega_{2}=\frac{\omega_{0}}{Q} F(Q)
$$

where

$$
F(Q)=\frac{1}{2}\left(1+\sqrt{1-4 Q^{2}}\right)
$$

For small $Q, F(Q)$ tends to 1 . We then obtain

$$
\omega_{2}=\frac{\omega_{0}}{Q} \quad \text { for } Q \ll \frac{1}{2}
$$

For $Q<0.3$, the approximation $F(Q)=1$ is within 10% of the exact value.

The low frequency pole can be shown to be Qf_{0}. Both poles appear in the low Q approximation Bode plot as follows:

Note above, by knowing that Q is low and the value of f_{0} we can rapidly draw the Bode plot of $\mathrm{T}(\mathrm{s})$. When the exact value of Q is specified so are the two pole locations. F_{0} is easily known from L and C values.

As Q reduces below $1 / 2$ the roots separate from their original position, both located at w_{0}, to widely separate and ultimately isolated.
For $Q \leq 1 / 2$ we find:
$\mathrm{w}_{\text {low }}=\frac{\mathrm{Q}_{\mathrm{w}_{\mathrm{o}}}}{F(Q)}$
$\mathrm{w}_{\text {high }}=\frac{\mathrm{w}_{\mathrm{o}}}{Q}$

Fig. 8.24 $F(Q)$ vs. Q, as given by Eq. (8.72). The approximation $F(Q) \approx 1$ is within 10% of the exact value for $Q<0.3$.

$$
\begin{array}{rlrl}
w_{L} & =Q w_{0} & w_{0} & \\
w_{H}=\frac{w_{0}}{Q}=\frac{R}{L} \\
& \approx 1 / R C & & w_{H} \neq f(c)
\end{array}
$$

w L $\neq \mathrm{f}(\mathrm{L})$
For very large C
$\mathrm{w}_{\mathrm{L}} \rightarrow 0$

Notice as $L \rightarrow 0$
this pole heads out
to high w

Future use of low \mathbf{Q} approximation in analyzing two-pole transfer functions will occur. Specifically, the DCM mode of operation of the boost circuit in Chapter 10 Figure 10.17b, is reproduced below on page 6. Looking ahead we will find an equivalent circuit as shown below whose transfer function, $\mathrm{V}_{\mathrm{o}} / \mathrm{d}$ we need to solve. The very low Q approximation we have been playing with will be employed. That is we will end up the discussion with a live example. It may be hard to see because the transfer function is from the input duty cycle to the output voltage. We are not yet familiar with this concept.

Find $\mathrm{G}_{\mathrm{vd}}(\mathrm{s})=\left.\frac{\mathrm{V}_{\mathrm{o}}(\mathrm{s})}{\mathrm{d}(\mathrm{s})}\right|_{\mathrm{V}_{\mathrm{e}}=0} \Rightarrow \mathrm{~L}$ shorts the input
We will find the output voltage to duty cycle transfer function:

$$
\mathrm{G}_{\mathrm{vd}}(\mathrm{~s})=\frac{\mathrm{G}_{\mathrm{vdo}}\left(\mathrm{~s}-\mathrm{w}_{\mathrm{z}_{\mathrm{t}}}\right)}{1+\mathrm{a}_{1} \mathrm{~s}+\mathrm{a}_{2} \mathrm{~s}^{2}} \text { with two poles and a RHP zero }
$$

For now forget about the right-half plane zero. In standard form the denominator will be: $1+\frac{\mathrm{s}}{\mathrm{Qw}_{\mathrm{o}}}+\left(\frac{\mathrm{s}}{\mathrm{w}_{\mathrm{o}}}\right)^{2}, \mathrm{w}_{\mathrm{o}}=\frac{1}{\sqrt{\mathrm{LC}}}$ We can rapidly sketch out the pole locations using the low Q

For the previous example:

$$
G(s)=\frac{v_{2}(s)}{r_{1}(s)}=\frac{1}{1+s \frac{L}{R}+s^{2} L C}
$$

$$
\begin{aligned}
& f_{0}=\frac{\omega_{0}}{2 \pi}=\frac{1}{2 \pi \sqrt{L \bar{C}}} \\
& Q=R \sqrt{\frac{C}{L}}
\end{aligned}
$$

Use of the Low-Q Approximation leads to

$$
\begin{aligned}
& \omega_{1} \approx Q \omega_{0}=R \sqrt{\frac{C}{L}} \frac{1}{\sqrt{L C}}=\frac{R}{L} \\
& \omega_{2} \approx \frac{\omega_{0}}{Q}=\frac{1}{\sqrt{L C}} \frac{1}{R \sqrt{\frac{C}{L}}}=\frac{1}{R C}
\end{aligned}
$$

approximation method.

$$
w_{\text {high }}=\frac{R}{L} \rightarrow \infty \text { or above the } f_{s w} \text { as } L \downarrow
$$

$\mathrm{w}_{\text {low }}=\frac{1}{\mathrm{RC}} \rightarrow 0$ for very high C
This allows us to see circuit conditions for which we go from two poles to a single pole. $\Rightarrow G_{v d}(s)$ has a single pole when L values are chosen very low, see Erickson Table 10.3 for other conditions.

From T(s) plots we can estimate system stability, via the Nyquist criteria. Explain the Nyquist criteria.

B. Construction from T(s) Asymptotes the Actual T(s) Analytical Forms

1. Given the three $\mathrm{T}(\mathrm{s})$ plots below

Problems 8.2 / 8.3 of Erickson. Find analytic expressions for the low f asymptote in terms of G_{∞} and the break frequencies.

Solutions to Erickson Problems 8.2 and 8.3 follow. Given the Bode plots on the left find analytical expressions for low f asymptotes. Also get $\mathrm{G}(\mathrm{s})$ in factored pole zero form. First find $\mathrm{T}(\mathrm{s})_{\mathrm{s} \rightarrow 0}$ then $\mathrm{T}(\mathrm{s}) \rightarrow$ low frequency asymptote.

$$
G(s)=\frac{G_{\infty} s}{s+w_{0}} \rightarrow \frac{G_{\infty}}{w_{0}} s \text { as } s \rightarrow 0
$$

(b)

$$
G(s)=G_{\infty} \frac{1+\frac{w_{2}}{Q_{2} s}+\left(\frac{w_{2}}{s}\right)^{2}}{1+\frac{w_{1}}{Q_{1} s}+\left(\frac{w_{1}}{s}\right)^{2}} \text { as } s \rightarrow 0 \rightarrow G_{\infty} \frac{w_{2}{ }^{2}}{s^{2}} \cdot \frac{s^{2}}{w_{1}{ }^{2}}=\frac{G_{\infty} w_{2}{ }^{2}}{w_{1}{ }^{2}} \mathrm{~s} \rightarrow 0
$$

(c)

$G(s)=G_{\infty} \frac{1+\frac{w_{3}}{Q_{3} s}+\left(\frac{w_{3}}{s}\right)^{2}}{\left(1+\frac{w_{1}}{s}\right)+\left(1+\frac{w_{2}}{s}\right)} \rightarrow G_{\infty} \frac{w_{3}{ }^{2}}{s^{2}} \cdot \frac{s}{w_{1}} \cdot \frac{s}{w_{2}}=\frac{G_{\infty} w_{3}{ }^{2}}{w_{1} w_{2}} s \rightarrow 0$

2. Erickson Problem 8.5

Given experimental data of Figure 8.56 find the proper asymptotes.

After some noodling,
Zero $\rightarrow f_{1}=180 \mathrm{~Hz}$
pole $\rightarrow \mathrm{f}_{2}=150 \mathrm{~Hz}$
pole $\rightarrow \mathrm{f}_{3}=4.4 \mathrm{KHz}$
RHP zero $\rightarrow \mathrm{f}_{4}=$ 150 KHz
(since $|\mathrm{A}| \uparrow$ and $\angle \mathrm{A} \downarrow$

So $F A(s)=\frac{K\left(s+w_{1}\right)\left(s-w_{4}\right)}{\left(s+w_{2}\right)\left(s+w_{3}\right)}$
\leftarrow Right Half Plane zero pushes
gain up vs. f, Phase down
From graph, $\mathrm{K}=35.3 \mathrm{~dB} \approx 58.3$
3. Given $\mathrm{T}(\mathrm{s})$ Plot, Find the analytical form in the standard format with poles and zeros. This is Erickson problem 8.1 for plot(c) found on page 315 of the text.

$$
G(s)=G_{\infty} \frac{\left(1+\frac{w_{2}}{s}\right)}{1+\frac{s}{Q_{1} w_{1}}+\left(\frac{s}{w_{1}}\right)^{2}}
$$

Inverted zero

C. Algebra on a Graph Graphically Adding Asymptotes to calculate Z(total)

1. Combining Series R-C Elements

Plot each $Z(\mathrm{f})$ part separately first

8.32 Impedance magnitudes of the individual elements in the network of Fig. 8.31.
$f_{\text {crossover }}=\frac{1}{2 \pi R C}$
"Algebra on a graph"
For Z (total) in series always "Take the bigger of the two"

Fig. 8.33 Construction of the composite asymptotes of $\|z\|$. The asymptotes of the series combination can b approximated by simply selecting the larger of the individual resistor and capacitor asymptotes.

2. Series R-L-C

Plot each, $X(f)$, individually. Then for a series connection always take the largest value for $Z($ total $)=Z(f)$.

Pig. 8.35 Graphical construction of $\|Z\|$ of the series $R-L-C$ network of Fig. 8.34, for the element values mecified by Eq . (8.139).

Plotted on the left is the case when the resistance, R, is larger than the value of $R_{0}=w L=1 / w C$. What if R lies below, R_{0}, the crossing of $w L$ and $1 / w c$? Then we take a "nose dive" from the reactive Z asymptotes to reach R and observe Q peaking in the impedance plot at ω_{0}. Clearly $Z_{\text {in }}$ at resonance is R because @ f_{o} $+j w L$ cancels $-j / w C$. Both are equal in magnitude.
$R_{o}=\left|\frac{1}{w C}\right|=|w L|$, which occurs only at ω_{0}
The relative value or R compared to R_{0} is then the key to determining whether or not we see Q peaking in the $Z(f)$ plots. The case of Q peaking for the series R-L-C is seen on page 12, while the non-peaking plots are shown above.

Fig. 8.36. Graphical construction of impedance asymptotes for the series $R-L-C$ network example, with R decreased to 10Ω.

Fig. 8.37. Actual impedance magnitude (solid line) for the series $R-L-C$ example. The inductor and capacitor impedances cancel out at $f=f_{0}$, and hence $Z\left(j \omega_{0}\right)=R$.

For Z (total) take the largest except just at resonance when R is less than $\mathrm{R}_{\mathrm{o}}=\mathrm{wL}=\frac{1}{\mathrm{wC}}$

Note: $|\mathrm{Q}|=\left|\mathrm{R}_{0} / \mathrm{R}\right|$ and is plotted symmetrically.

What if $R>R_{0}$? Return to top of page 11 and you are done.
If we combine series $X(f)$ plots using the largest value for the total impedance, what do you think would be the rule for combining parallel $\mathrm{X}(\mathrm{f})$ plots?

Fig. 8.39 Construction of the composite asymptotes of $\|Z\|$, for the parallel $R-L-C$ example. The asympttet of the parallel combination can be approximated by simply selecting the smallest of the individual resist inductor, and capacitor asymptotes.
"Take the smaller of the three" for Z(total) in parallel
What if $R>\left|1 / w_{c}\right|=\left|w_{L}\right|=R_{0}$

Fig. 8.40. Graphical construction of impedance asymptotes for the parallel $R-L-C$ example, with R increased to $1 \mathrm{k} \Omega$.

Fig. 8.41. Actual impedance magnitude (solid line) for the parallel $R-L-C$ example. The inductor and capacitor impedances cancel out at $f=f_{0}$, and hence $Z\left(j \omega_{0}\right)=R$.

4. Combining Series / Parallel Combinations

8.43 Impedance magnitudes of the individual elements in the network of Fig. 8.42.

First do $\frac{1}{{ }_{\mathrm{wC}}^{1}} \mathrm{I} \quad \| \mathrm{R}_{1}$ and for Z (total) in parallel "Take the smaller of the two"
Next do $\frac{1}{\mathrm{w}_{2}} \| \mathrm{R}_{2}$ and for Z (total) in parallel "Take the smaller of the two"

8.44 Graphical construction of asymptotes for parallel combinations (solid and shaded lines).
R_{1} to $\frac{1}{w^{C_{1}}}$ is one curve
R_{2} to $\frac{1}{\mathrm{wC}_{2}}$ is the 2nd curve Add these two curves in series

For series combinations Z (total) $=$ the higher of the two f_{1} is one curve f_{2} is 2nd curve "Take the higher of the two"

Fig. 8.45 Graphical construction of composite asymptotes for $\|Z\|$.

Note in the middle a new
frequency at the crossing

$$
\begin{aligned}
& \mathrm{f}_{3}=\frac{1}{2 \pi \mathrm{R}_{2} \mathrm{C}_{1}} \text { since its } \\
& \text { "R }_{2} " \| \frac{1}{\mathrm{wC}_{1}}
\end{aligned}
$$

5. Voltage Dividers : Division of Asymptotes

$\frac{\mathrm{V}_{\mathrm{o}}(\mathrm{s})}{\mathrm{V}_{\mathrm{in}}(\mathrm{s})}=\frac{\mathrm{z}_{2}}{\mathrm{z}_{1}+\mathrm{z}_{2}}+\frac{\mathrm{z}_{2}}{\mathrm{z}_{\text {in }}}$
$\mathrm{Z}_{\text {in }}$ the is series combo seen at $\mathrm{V}_{\text {in }}$
In some other cases we may already know $Z_{\text {out }}$ (looking in from
V_{o}) so we want to express the transfer function differently:
$\frac{\mathrm{V}_{\mathrm{O}}(\mathrm{s})}{\mathrm{V}_{\text {in }}(\mathrm{s})}=\frac{\mathrm{Z}_{2} \mathrm{Z}_{1}}{\mathrm{Z}_{1}+\mathrm{Z}_{2}} \frac{1}{\mathrm{Z}_{1}}=\frac{\mathrm{Z}_{\text {out }}}{\mathrm{Z}_{1}}$
Sometimes it's easier to do a Series Combo or a Parallel Combo Consider the two pole circuit model below where $L_{\text {effective }}=L /\left(D^{\prime}\right)^{2}$ as occurs in the boost or buck-boost circuit model. That is, the duty cycle choice effects the effective inductance see by the small signal model. For small values of duty cycle, D', to achieve DC operation goals L appears bigger in the dynamic model than its circuit value. By equations alone it is sometimes difficult to see these duty cycle ,"D", design choice effects" on ac models.

Algebra on the graph however provides a visualization aid. From the secondary of the transformer to the output.

$$
\frac{\mathrm{V}_{\mathrm{o}}(\mathrm{~s})}{\mathrm{V}_{e}(\mathrm{~s})}=\frac{\mathrm{z}_{2}}{\mathrm{z}_{1}+\mathrm{z}_{2}}=\frac{\mathrm{z}_{2}}{\mathrm{z}_{\text {in }}}=\frac{\mathrm{z}_{\text {out }}}{\mathrm{z}_{1}}
$$

Now lets plot versus frequency

\uparrow
$\begin{array}{c}\uparrow L\end{array}$
$\left(\mathrm{D}^{\prime}\right)^{2}$

$Z_{\text {out }}$ is the smallest of three asymptotes because it represents all three elements in parallel. Z_{1} is just an increasing positive slope but it is offset by the duty cycle, D^{\prime}, choice. For $\mathrm{D} \uparrow \mathrm{D}^{\prime} \downarrow$ just shift the $\mathrm{wL} /\left(\mathrm{D}^{\prime}\right)^{2}$ asymptote as shown upwards toward the left.
$Z_{\text {out }}$ ratio for $w<w_{0}$ is clearly unity but for $w>w_{0}$ what is this zl

ratio?

$\left.\frac{\mathrm{z}_{\text {out }}\left(\mathrm{w}<\mathrm{w}_{\mathrm{o}}\right)}{\mathrm{z}_{1}\left(\mathrm{w}>\mathrm{w}_{\mathrm{o}}\right)}=\frac{\frac{1}{\mathrm{w} C}}{\mathrm{w} \mathrm{L}_{\mathrm{c}}}=\frac{1}{\mathrm{w}^{2} \mathrm{~L}_{\mathrm{c}} \mathrm{C}} \quad\right\}$ Sharp $40 \mathrm{db} /$ decade slope

$Z_{\text {out }}$ and Z_{1} plotted together versus f

$Z_{\text {out }} / Z_{1}$ plotted versus f

Section C, I hope, illustrates the value of algebra on a graph to better visualize changes in transfer functions:

* Effects of varying quiescent point via duty cycle, D ,which in turn changes the dynamic model.
* Effect of changing element values like C, L, or R on the transfer functions

D. Measuring Transfer Functions and Impedance's

1. Narrow Band Tracking Voltmeter

Useful tool for PWM Converters where signals are typically complex with various frequency components present.

We will need to make $Z(s)$ and $T(s)$ measurements versus f.
Frequency Response Measurements

Why Measure?

- Models often overiook important effects
- Models are often missing for important technologies
- Component parasitics frequently dominate response
- Measurement and model almost always disagree first time

Why Teach?

- Most power electronics students are poorly prepared for real circuit design
- Many products are inadequately designed for control
- University models are often rendered unusable since they are
not confirmed by lab data, and are often contradicted.
- Conferences, industry do not fill this role.
- If time is short, measurement is far more critical than modeling

Frequency Response Measurements
Equipment needed
Control measurements
Signal Injection
Grounding
Technique
Impedance measurements
Examples

The required test equipment for $\mathrm{T}(\mathrm{s})$ and $\mathrm{Z}(\mathbf{s})$

 measurements includes:
Essential Laboratory Equipment

Network Analyzer
Outputs test signal, measures ratio (gain and phase) of 2 test signals at the same frequency as test signal.
0.1 Hz to 10 MHz operation

Narrowband receiver selectivity to 1 Hz
Good output signal (1 V or more)
Automatic sweep (save time)
Automatic averaging (better noise rejection)
HP4194A (\$30k)
HP4195 (\$35k +)
Used HP (\$15k +)
AP Instruments (\$7k)
Signal Generator and scope (\$500) (manual, low noise only)
Accessories

Injection devices (isolated)
Reference impedances
Inpedance accessories

The front panel of a network analyzer looks like:

The $\mathrm{Z}(\mathrm{s})$ or $\mathrm{T}(\mathrm{s})$ data is in db and angles. We also have a probe signal $\mathrm{V}_{\mathrm{z}}(\mathrm{f})$ available.

2. Measuring $T(s)$ Overview and Simple X_{C} Measurement

- Injection source produces sinusoid \hat{v}_{z} of controllable amplitude and frequency
- Signal inputs \hat{v}_{x} and \hat{v}_{y} perform function of narrowband tracking voltmeter:

Component of input at injection source frequency is measured
Narrowband function is essential: switching harmonics and other noise components are removed

- Network analyzer measures

$$
\left.\| \frac{\hat{v}_{y}}{\hat{v}_{x}} \right\rvert\, \quad \text { and } \quad \angle \frac{\hat{v}_{y}}{\hat{v}_{x}}
$$

Below we measure $\mathbf{X}(\mathrm{f})$ for a Capacitor.

For a tantalum capacitor we find $X_{C}(f)$:

C values and ESR values are both found.

a. Choice of proper injection point for $\mathbf{T}(\mathbf{s})$ Measurements is artful

We use the signal frequency to inject an input into a system to measure the transfer function, $\mathrm{T}(\mathrm{s})$. To avoid undesired loading when we break a feedback loop, $\mathrm{V}_{\mathrm{z}}(\mathrm{f})$ is injected and $\mathrm{V}_{\mathrm{x}} / \mathrm{V}_{\mathrm{y}}$ is measured versus $f($ applied) as shown below schematically.

V_{y} is the return signal from the unknown system. The above measurement scheme is for a feedback loop analysis where we need to inject a signal to measure the loop gain.

\Rightarrow Plots of $\mathrm{V}_{\mathrm{o}} / \mathrm{V}_{\text {in }}$ amplitude versus f and $\angle V_{0} / V_{\text {in }}$ phase versus f can both be measured

The DC bias shown should simulate actual operating conditions before we broke the loop for signal injection, so it will have no effect on the measurement $\mathrm{V}_{0}(\mathrm{~s}) / \mathrm{V}_{\mathrm{in}}(\mathrm{s})$

c. Measure $Z_{\text {out }}$

- Treat output impedance as transfer function from output current to output voltage:

$$
Z(s)=\frac{\hat{\hat{V}}(s)}{\hat{i}(s)} \quad Z_{\text {out }}(s)=\left.\frac{\hat{v}_{\hat{p}}(s)}{\hat{i}_{\text {own }}(s)}\right|_{\substack{\text { amplifierer } \\ \text { ar } w \text { iput }}}
$$

- Potentiometer at device input port establishes correct quiescent operating point
- Current probe produces voltage proportional to current; this voltage is connected to network analyzer channel \hat{v}.
- Network analyzer result must be multiplied by appropriate factor, to account for scale factors of current and voltage probes

$$
\mathrm{Z}_{\mathrm{o}}(\mathrm{~s})=\frac{\mathrm{V}_{\mathrm{o}}(\mathrm{~s})}{\mathrm{i}_{\mathrm{o}}(\mathrm{~s})}
$$

V_{x} from i_{0}, V_{y} from $V_{o} \quad Z_{o}(s)=\frac{V_{0}(s)}{i_{0}(s)}=\frac{V_{y}(s)}{V_{x}(s)}$

The test set-up requires us to simulate the input impedance that normally drives the circuit to accurately measure $Z_{\text {out }}$.

The $D C$ bias simulates V_{0} of prior stage into input. Injection of V_{z} via Z_{s}, composed of $R_{s} \& 1 / w C$, creates a current into Z_{0}. AC input to the device must be zero.
Value of $Z_{s}=\left(R+\frac{1}{j w C}\right)$ and amplitude of V_{Z} do not effect $Z_{\text {out }}$ measurement

d. Grounding Issues

1. Statement of the problem $i_{\text {out }}$ above the injected into Z_{0} at the top terminal in the figure above comes back towards $-\mathrm{V}_{\mathrm{z}}$ along the bottom return path. The current return can choose either the $-\mathrm{V}_{\mathrm{y}}$ path or the $-\mathrm{V}_{\mathrm{z}}$ path when it exits the $\mathrm{G}(\mathrm{s})$ at the bottom terminal.
$\mathrm{i}_{\text {out }}$ splits $<k \mathrm{i}_{0}$ to $-\mathrm{V}_{\mathrm{z}}$ ground

$$
<(1-k) i_{o} \text { to }-V_{y} \text { ground }
$$

But the sum of both paths is I_{0}.

K depends on the relative impedance's of the two paths
$Z_{\text {probe }}$ into $-V_{y}$ gnd $Z_{r z}$ into $-V_{z}$ gnd
Z is actual impedance of the sample
Z_{0} measured is: $Z_{o}=Z+Z_{\text {probe }}\left(\right.$ into $\left.-V_{y}\right) \| Z_{r c}$. This situation
sets a lower limit on the smallest Z you can accurately measure.
$Z \gg Z_{\text {probe }} \| Z_{\text {rc }}$
Easy solution for low Z : Buffer V_{z} with a transformer

Finally, For HW\#3 Due in 1 week:

1. Answer any Questions asked throughout lectures 45-46.
2. Chapter 8 of Erickson do Problems 6 and 10.
3. Explain the measurement below in as much detail as possible.

Measuring a Power Supply Loop Gain

Put Channel B at 2, and Channel A at 1 to measure loop gain
Put Channel B at 2, and Channel A at 3 to measure power stage control-to-output gain
Put Channel B at 3, and Channel A at 1 to measure compensator gain

