
EE595

Part V
Behavioral Modeling in VHDL

EE 595 EDA / ASIC Design Lab

Behavioral Modeling in VHDL

VHDL behavior
Sequential Statements
Concurrent Statements

EE 595 EDA / ASIC Design Lab

VHDL Behavior

EE 595 EDA / ASIC Design Lab

statement

statement

statement

begin

end

statement

begin

statement

end

statement

VHDL Behavior (cont’d)
In this section, some of the most commonly used concurrent and
sequential statements will be introduced.
VHDL provides concurrent statements for parallel operations or
abstract models for a circuit in a behavioral manner. These
statements can be executed by a simulator at the same
simulation time.
The process statement is the primary concurrent statement in
VHDL.
Within the process, sequential statements define the step-by-
step behavior of the process.

EE 595 EDA / ASIC Design Lab

VHDL Behavior (cont’d)
The process contains sequential statements that describe the
behavior of an architecture.
Sequential statements, define algorithms for the execution
within a process or
a subprogram.

Familiar Notations of
sequential flow
Control
Conditionals
Iterations

Executed in order in which they appear in the process (like in a
programming language.)

EE 595 EDA / ASIC Design Lab

Sequential Statements
Sequential Statements

Variable Assignment Statement
PROCESS Statement (Concurrent and Sequential)
IF Statement
CASE Statement
LOOP Statement
NEXT Statement
EXIT Statement
WAIT Statement
Subprograms

Functions
Procedures

ASSERT Statement

EE 595 EDA / ASIC Design Lab

Concurrent Statements
Concurrent Statements

Concurrent Signal Assignments
Conditional Signal Assignment
Selected Signal Assignment
Concurrent Procedure Call
BLOCK Statements

Guarded Blocks

EE 595 EDA / ASIC Design Lab

Sequential Statements

EE 595 EDA / ASIC Design Lab

Variables
Variable assignment statement
replaces the current value of a variable with a new value which is
Specified by an expression.

Target_variable is a variable previously declared.
Expression is a statement using variables, signals, and literals.

IMPORTANT :
The named variable and the result of the expression must be same type
Statement executes in zero simulation time
Assignments can be made to a scalar or to an array
Variables declared within a process cannot pass values outside of a
process.

EE 595 EDA / ASIC Design Lab

target_variable := expression; target_variable := expression;

Variables
Example

Note: Recall that signal assignments use the operator “<=“

EE 595 EDA / ASIC Design Lab

character := ‘A’ -- Character Assignment

x := 1.0 -- Real value Assignment

character := ‘A’ -- Character Assignment

x := 1.0 -- Real value Assignment

X := 1; -- Integer Value Assignment
Y := 4; -- Integer Value Assignment

Z := X + Y; -- Variable Assignment specified
-- by an expression

X := 1; -- Integer Value Assignment
Y := 4; -- Integer Value Assignment

Z := X + Y; -- Variable Assignment specified
-- by an expression

Processes
Basic unit of Behavioral Description, found in architectures and
occasionally entities. Entities can only contain passive process
(processes that do not make assignment to signals)

Process statements as a whole are concurrent statements.
Concurrent signal assignment statements are an allowed
shorthand method of writing processes.

Processes have a declaration and statement section. The
statement section contains only sequential statements.
Sequential signal assignments have special considerations.

EE 595 EDA / ASIC Design Lab

Processes (cont’d)
Variables, constants, data types, and subprograms may be
declared in processes, but not signals.
Anything declared in the entity (e.g.. generics and ports) and the
architectures are visible to processes.
Processes must contain either a wait statement or sensitivity list
(or would never quit running)
During initialization the simulator executes each process up to
its first statement
All processes begin execution during simulator initialization.
Variables are initialized once and thereafter retain their relative
values.

EE 595 EDA / ASIC Design Lab

Parallel Process Execution

VHDL permits concurrent process operation to be simulated.
Each process starts at begin, executes statements in sequence until a wait statement suspends
the process. This allows other processes to run.
When process hits end process; it continues from beginning.
The process label (e.g: A:) helps during simulation and debugging

EE 595 EDA / ASIC Design Lab

X: process begin Y:process begin

if true then ... -- Sequential Statements

wait... wait ...

case expression --More statements

........ end process;

end process;

Process Model

EE 595 EDA / ASIC Design Lab

Local VariableLocal Variable

Local VariableLocal Variable

Signal

Process

Process

Wait for an event (change)
on incoming signals.
then
starts executing all other
sequential statements
in the process

Signal

Signal
Signal

Architecture

Process Model (cont’d)

EE 595 EDA / ASIC Design Lab

ArchitectureArchitecture

Local VariableLocal Variable

Local VariableLocal Variable

First: Process Next: Process

Signal

Done_First

All other sequential, and concurrent
statements

1. Signals must be used to communicate between processes.
2. Variables are local to the process in which they are declared.
3. Signals can be used to synchronize processes.

Communication Between
Processes via Signals

EE 595 EDA / ASIC Design Lab

architecture EXAMPLE of COMMUNICATE is
signal DONE_FIRST : Bit := ‘0’;

begin
FIRST: process
begin

...... -- do first steps......
DONE_FIRST <= ‘1’;
wait for 10 ns;

end process;
NEXT: process
begin

wait until DONE_FIRST = ‘1’;
....... -- do the other steps

end process;
end EXAMPLE;

architecture EXAMPLE of COMMUNICATE is
signal DONE_FIRST : Bit := ‘0’;

begin
FIRST: process
begin

...... -- do first steps......
DONE_FIRST <= ‘1’;
wait for 10 ns;

end process;
NEXT: process
begin

wait until DONE_FIRST = ‘1’;
....... -- do the other steps

end process;
end EXAMPLE;

Declaration of
the signal

Assignment

Other process waits
until ‘1’ is assigned
to the signal

Signals Communicate in
Between the Processes

EE 595 EDA / ASIC Design Lab

Concurrent Statements are
evaluated first until to a “wait”
Concurrent Statements are

evaluated first until to a “wait”

When all the processes are waiting,
all the signals propagate.

When all the processes are waiting,
all the signals propagate.

Signals Assigned After
Processes Run

Uses old values
of signals

Uses old values
of signals

Uses old values
of signals

Signal
assignments with

Zero delay

Signal
assignments with

Zero delay

Signal
assignments with

Zero delay

All processes run
until a “wait”

executed

All processes run
until a “wait”

executed
All processes are

“waiting
All processes are

“waiting
Some other

processes woken up
Some other

processes woken up

EE 595 EDA / ASIC Design Lab

Process 1

Process 2

Process 3

Process 1

Process 2

Process 3

Process 4

Process 5

Process
Example

EE 595 EDA / ASIC Design Lab

A
B

C

entity NAND2 is
Port (A, B: in Bit;

C: out Bit)
end NAND2;

architecture BEHAVE of NAND2 is

PDQ : process

variable TEMP : Bit;

begin

wait on A, B;

TEMP := A nand B;

if (TEMP = ‘1’) then

.......

sequential statements

........

end process;

end BEHAVE;

Process will suspend here

Process with Signals
Contains only sequential statements
Can access signals defined in architecture and entity
Must contain either an explicit sensitivity list, or a wait
statement(s)
Can have variable assignment and signal assignment
statements.

EE 595 EDA / ASIC Design Lab

Sensitivity List
PROCESS (sig1, sig2,...sigN)
Events (changes) on any signal in sensitivity list will cause process execution to
resume, after BEGIN statement
Process execution continues until END process statement is reached
For synthesis, all signals which are read, typically must be included in the sensitivity
list.

EE 595 EDA / ASIC Design Lab

process (a,b) -- the process is only sensitive to a, b any
-- changes on c does not initiates execution of
-- process

begin
y <= a AND b AND c;

end process;

process (a,b) -- the process is only sensitive to a, b any
-- changes on c does not initiates execution of
-- process

begin
y <= a AND b AND c;

end process;

Sensitivity List

Process with Sensitivity List
Example

EE 595 EDA / ASIC Design Lab

library IEEE;
use IEEE.STD_LOGIC_1164.all;
entity NAND2 is

port(A,B : in std_logic;
C: out std_logic);

end NAND2;
architecture NAND2 of NAND2 is
begin

process (a,b) -- signals a, b are the sensitivity list
variable TEMP : std_logic;

begin
TEMP := not (A and B);
if (TEMP = ‘1’) then c <= TEMP after 6 ns; -- sequential signal assignment

elsif (TEMP = ‘0’) then C <= TEMP after 5 ns;
else C <= TEMP after 6 ns;

end if;
end process;

end NAND2;

library IEEE;
use IEEE.STD_LOGIC_1164.all;
entity NAND2 is

port(A,B : in std_logic;
C: out std_logic);

end NAND2;
architecture NAND2 of NAND2 is
begin

process (a,b) -- signals a, b are the sensitivity list
variable TEMP : std_logic;

begin
TEMP := not (A and B);
if (TEMP = ‘1’) then c <= TEMP after 6 ns; -- sequential signal assignment

elsif (TEMP = ‘0’) then C <= TEMP after 5 ns;
else C <= TEMP after 6 ns;

end if;
end process;

end NAND2;

A
B

CTEMP

IF statement
IF statements

Represent hardware decoders in both abstract and detailed hardware models
Select for execution one or more of the enclosed sequential statements
(if more than one sequential statement, use ‘;’ at the end of each statement).
Can be nested.

EE 595 EDA / ASIC Design Lab

if CONDITION1 then Sequential_Statement(s);
{elsif CONDITION2 then Sequential_Statement(s);}
{elsif CONDITION3 then Sequential_Statement(s);}
{elsif CONDITION4 then Sequential_Statement(s);}
{......
}

[else Sequential_Statement(s);]
end if;

if CONDITION1 then Sequential_Statement(s);
{elsif CONDITION2 then Sequential_Statement(s);}
{elsif CONDITION3 then Sequential_Statement(s);}
{elsif CONDITION4 then Sequential_Statement(s);}
{......
}

[else Sequential_Statement(s);]
end if;

IF statement (cont’d)

EE 595 EDA / ASIC Design Lab

if CONDITION then
..... -- Sequential_Statement(s)

end if;

if CONDITION then
..... -- Sequential_Statement(s)

end if;

if CONDITION then
..... -- Sequential_Statement(s)
else
..... -- Sequential_Statement(s)

end if;

if CONDITION then
..... -- Sequential_Statement(s)
else
..... -- Sequential_Statement(s)

end if;

if CONDITION1 then
..... -- Sequential_Statements
elsif CONDITION2 then

..... -- Sequential_Statement(s)
elsif CONDITION3 then

..... -- Sequential_Statement(s)
else

..... -- Sequential_Statement(s)
end if;

if CONDITION1 then
..... -- Sequential_Statements
elsif CONDITION2 then

..... -- Sequential_Statement(s)
elsif CONDITION3 then

..... -- Sequential_Statement(s)
else

..... -- Sequential_Statement(s)
end if;

IF statement
Example

EE 595 EDA / ASIC Design Lab

library IEEE;
use IEEE.Std_uLogic_1164.all;

entity IF_STATEMENT is
port (U, W, X, Y: in std_ulogic_vector (1 downto 0);

Z : out std_ulogic_vector (1 downto 0));
end IF_STATEMENT;
architecture IF_ARC of IF_STATEMENT is
begin

process (U, W, X, Y)
begin

if (Y = “00”) then
Z <= U;

elsif (Y = “01”) then
Z <= W;

else
Z <= X;

end if;
end process;

end IF_ARC;

library IEEE;
use IEEE.Std_uLogic_1164.all;

entity IF_STATEMENT is
port (U, W, X, Y: in std_ulogic_vector (1 downto 0);

Z : out std_ulogic_vector (1 downto 0));
end IF_STATEMENT;
architecture IF_ARC of IF_STATEMENT is
begin

process (U, W, X, Y)
begin

if (Y = “00”) then
Z <= U;

elsif (Y = “01”) then
Z <= W;

else
Z <= X;

end if;
end process;

end IF_ARC;

IF statement
Example (cont’d)

EE 595 EDA / ASIC Design Lab

--
library IEEE;
use IEEE.STD_LOGIC_1164.all;
use IEEE.NUMERIC_STD.all;

entity COUNT16 Is
port (CLK,RST,LOAD: in std_ulogic;

DATA: in unsigned (3 downto 0);
COUNT: out unsigned (3 downto 0)

);
end COUNT16;

--
library IEEE;
use IEEE.STD_LOGIC_1164.all;
use IEEE.NUMERIC_STD.all;

entity COUNT16 Is
port (CLK,RST,LOAD: in std_ulogic;

DATA: in unsigned (3 downto 0);
COUNT: out unsigned (3 downto 0)

);
end COUNT16;

architecture COUNT16_A of COUNT16 Is
begin

process(RST,CLK)
variable Q: unsigned (3 downto 0);

begin
if Rst = '1' then

Q := "0000";
elsif rising_edge(CLK) then

if LOAD = '1' then
Q := DATA;

elsif Q = 15 then
Q := "0000";

else
Q := Q + "0001";

end if;
end if;
COUNT <= Q;

end process;
end COUNT16_A;

architecture COUNT16_A of COUNT16 Is
begin

process(RST,CLK)
variable Q: unsigned (3 downto 0);

begin
if Rst = '1' then

Q := "0000";
elsif rising_edge(CLK) then

if LOAD = '1' then
Q := DATA;

elsif Q = 15 then
Q := "0000";

else
Q := Q + "0001";

end if;
end if;
COUNT <= Q;

end process;
end COUNT16_A;

Note:
Rising Edge is recognized by simulation tool only,
not by synthesis tool.

IF statement
Example (cont’d)

EE 595 EDA / ASIC Design Lab

if (U) then Z <= VALUE_1;
elsif (W) then Z <= VALUE_2;

elsif (X) then Z <= VALUE_3;
end if;

if (U) then Z <= VALUE_1;
elsif (W) then Z <= VALUE_2;

elsif (X) then Z <= VALUE_3;
end if;

if (X) then Z <= VALUE_3;
end if;
if (W) then Z <= VALUE_2;
end if;
if (U) then Z <= VALUE_1;
end if;

if (X) then Z <= VALUE_3;
end if;
if (W) then Z <= VALUE_2;
end if;
if (U) then Z <= VALUE_1;
end if;

if (U) then Z <= VALUE_1;
end if;
if (W) then Z <= VALUE_2;
end if;
if (X) then Z <= VALUE_3;
end if;

if (U) then Z <= VALUE_1;
end if;
if (W) then Z <= VALUE_2;
end if;
if (X) then Z <= VALUE_3;
end if;

(ALWAYS) EQUAL(ALWAYS) EQUALEQUAL NOT (ALWAYS) EQUALNOT NOT (ALWAYS) EQUALEQUAL

CASE statement
CASE statements

useful to describe decoding of busses and other codes
Select for execution one of a number of alternative sequential statements
(if more than one sequential statement, use ‘;’ at the end of each
statement).

EE 595 EDA / ASIC Design Lab

case (EXPRESSION) is
when CHOISE1 => Sequential_Statement(s);
when CHOISE2 | CHOISE3 | CHOISE4 => Sequential_Statement(s);
when value1 to value2 => Sequential_Statement(s);
when others => Sequential_Statement(s);

end case;

case (EXPRESSION) is
when CHOISE1 => Sequential_Statement(s);
when CHOISE2 | CHOISE3 | CHOISE4 => Sequential_Statement(s);
when value1 to value2 => Sequential_Statement(s);
when others => Sequential_Statement(s);

end case;

CASE statement
Example

EE 595 EDA / ASIC Design Lab

library IEEE;
use IEEE.Std_Logic_1164.all;

entity CASE_STATEMENT is
port (U, W, X, Y: in integer range 0 to 15;

Z : out integer range 0 to 15);
end CASE_STATEMENT;
architecture CASE_ARC of CASE_STATEMENT is
begin

process (U, W, X, Y)
begin

case Y is
when 0 to 9 => Z <= X;
when 13 => Z <= W;
when 11 | 15=> Z <= U;
when others => Z <= 0;

end case;
end process;

end IF_ARC;

library IEEE;
use IEEE.Std_Logic_1164.all;

entity CASE_STATEMENT is
port (U, W, X, Y: in integer range 0 to 15;

Z : out integer range 0 to 15);
end CASE_STATEMENT;
architecture CASE_ARC of CASE_STATEMENT is
begin

process (U, W, X, Y)
begin

case Y is
when 0 to 9 => Z <= X;
when 13 => Z <= W;
when 11 | 15=> Z <= U;
when others => Z <= 0;

end case;
end process;

end IF_ARC;

CASE statement (cont’d)
Rules

Use the CASE statement, when you have a complex decoding situation
(It is more readable than nested if statements.)
CASE statement must enumerate all possible values of the expression or
to have an OTHERS clause as a last choice of all of the choices.
None of the choices may overlap.

EE 595 EDA / ASIC Design Lab

case BCD_DECODER is
when “0000” => SEGMENTS := “1111110”; -- zero
when “0001” => SEGMENTS := “1100000”; -- one
when “0010” => SEGMENTS := “1011011”; -- two
when “0011” => SEGMENTS := “1110011”; -- three
when “0100” => SEGMENTS := “1100101”; -- four
when “0101” => SEGMENTS := “0110111”; -- five
when “0110” => SEGMENTS := “0111111”; -- six
when “0111” => SEGMENTS := “1100010”; -- seven
when “1000” => SEGMENTS := “1111111”; -- eight
when “1001” => SEGMENTS := “1110111”; -- nine
when OTHERS => SEGMENTS := “- - - - - - -”; -- don’t care

end case;

case BCD_DECODER is
when “0000” => SEGMENTS := “1111110”; -- zero
when “0001” => SEGMENTS := “1100000”; -- one
when “0010” => SEGMENTS := “1011011”; -- two
when “0011” => SEGMENTS := “1110011”; -- three
when “0100” => SEGMENTS := “1100101”; -- four
when “0101” => SEGMENTS := “0110111”; -- five
when “0110” => SEGMENTS := “0111111”; -- six
when “0111” => SEGMENTS := “1100010”; -- seven
when “1000” => SEGMENTS := “1111111”; -- eight
when “1001” => SEGMENTS := “1110111”; -- nine
when OTHERS => SEGMENTS := “- - - - - - -”; -- don’t care

end case;

1

2

3

6

5

4

7

LOOP statement
LOOP Statements

Provide a convenient way to describe bit-sliced logic or iterative circuit
behavior.
Include sequential statements to execute repeatedly, zero or more times.
Can be nested.

EE 595 EDA / ASIC Design Lab

[LOOP_LABEL]: while CONDITION1 loop
..... -- Sequential_Statement(s)

end loop[LOOP_LABEL];
OR

[LOOP_LABEL]: for IDENTIFIER in DISCRETE_RANGE loop
..... -- Sequential_Statement(s)

end loop[LOOP_LABEL];

[LOOP_LABEL]: while CONDITION1 loop
..... -- Sequential_Statement(s)

end loop[LOOP_LABEL];
OR

[LOOP_LABEL]: for IDENTIFIER in DISCRETE_RANGE loop
..... -- Sequential_Statement(s)

end loop[LOOP_LABEL];

LOOP statements
Example

EE 595 EDA / ASIC Design Lab

LABEL_ONE: for I in 1 to 20 loop
Sequential_Statement(s);

end loop LABEL_ONE

LABEL_ONE: for I in 1 to 20 loop
Sequential_Statement(s);

end loop LABEL_ONE

INITIAL := 0;
LABEL_TWO: while (INITIAL < 10) loop

Sequential_Statement(s);
INITIAL := INITIAL + 1;

end loop LABEL_TWO

INITIAL := 0;
LABEL_TWO: while (INITIAL < 10) loop

Sequential_Statement(s);
INITIAL := INITIAL + 1;

end loop LABEL_TWO

FOR LOOP

WHILE LOOP

LOOP statements
Example (cont’d)

EE 595 EDA / ASIC Design Lab

LABEL_THREE: for I in 1 to 10 loop
VALUE := I * 2;
SQUARE_I(I) := I * I;

end loop LABEL_THREE;

LABEL_THREE: for I in 1 to 10 loop
VALUE := I * 2;
SQUARE_I(I) := I * I;

end loop LABEL_THREE;

LABEL_FOUR: while (TODAY <= 5) loop
-- weekday Sequential_Statements
TODAY := TODAY + 1;

end loop LABEL_FOUR;

LABEL_FOUR: while (TODAY <= 5) loop
-- weekday Sequential_Statements
TODAY := TODAY + 1;

end loop LABEL_FOUR;

Loop index “I”
• is not a variable
• Hides any other “I” not in the loop
• cannot be seen outside the loop
• must be a discrete type (not REAL)
• can be used as array reference

NEXT statement
The NEXT statement

skip the execution to the next iteration of an enclosing LOOP statement.
is convenient to use when you want to skip an iteration of a LOOP.

EE 595 EDA / ASIC Design Lab

next [LABEL] [when CONDITION];next [LABEL] [when CONDITION];

NEXT statement
Example

EE 595 EDA / ASIC Design Lab

for I in 1 to 30 loop
if (VALUE(I) = 0) then next;
end if;

OUTPUT_VALUE(I) := VALUE(I);
end loop;

for I in 1 to 30 loop
if (VALUE(I) = 0) then next;
end if;

OUTPUT_VALUE(I) := VALUE(I);
end loop;

LABEL1: while I < 20 loop
LABEL2: while J < 20 loop
.....
..... -- Sequential_Statement(s);
.....

next LABEL2 when I = J;
.....
..... -- Sequential_Statement(s);
.....
end loop LABEL2;
end loop LABEL1;

LABEL1: while I < 20 loop
LABEL2: while J < 20 loop
.....
..... -- Sequential_Statement(s);
.....

next LABEL2 when I = J;
.....
..... -- Sequential_Statement(s);
.....
end loop LABEL2;
end loop LABEL1;

The loop statement has a range bounded by the end loop. Execution of the next statement
causes iteration to skip to the next loop index value (e.g. for I.)

Nested loops should
be given unique labels.

EXIT statement
The EXIT statement completes the execution of an enclosing LOOP
statement.
The LOOP label in the EXIT statement identifies the particular loop to be
exited.

EE 595 EDA / ASIC Design Lab

exit [LABEL] [when CONDITION];exit [LABEL] [when CONDITION];

EXIT statement
Example

EE 595 EDA / ASIC Design Lab

for I in 1 to 30 loop
if (VALUE(I) = 0) then exit;
end if;

OUTPUT_VALUE(I) := VALUE(I);
end loop;

for I in 1 to 30 loop
if (VALUE(I) = 0) then exit;
end if;

OUTPUT_VALUE(I) := VALUE(I);
end loop;

The for statement has a range for loop. When the I indexed
variable has a value of zero, exit causes execution to exit the loop
entirely.

WAIT statement
The WAIT statement

provides for modeling signal-dependent activation
can be used to model a logic block that is activated by one or more signals.
causes a simulator to suspend execution of a process statement or a procedure,
until some conditions are met, then execution resumes.
forces simulator signal propagation.

EE 595 EDA / ASIC Design Lab

wait
wait on SIGNAL_NAME;
wait until TRUE_CONDITION;
wait for TIME_EXPRESSION;

wait
wait on SIGNAL_NAME;
wait until TRUE_CONDITION;
wait for TIME_EXPRESSION;

Processes with no sensitivity list, no wait statement will loop forever at the initialization

WAIT statement
Example

EE 595 EDA / ASIC Design Lab

wait on A,B;wait on A,B; suspends execution until a change occur on
either signal A or B. Same as Process (A,B)

wait until T > 10;wait until T > 10;
suspends execution until condition T > 10 becomes
satisfied. It requires an event on T to evaluate the
expression.

wait for 20 ns;wait for 20 ns; suspends execution of process for 20 ns.

ASSERT statement

Assert statement allows for testing a condition or error message. It checks to
determine if a specified condition is true, and displays a message if a condition
is false.

EE 595 EDA / ASIC Design Lab

assert CONDITION [report MESSAGE_STRING] [severity MESSAGE_STRING];assert CONDITION [report MESSAGE_STRING] [severity MESSAGE_STRING];

Severity Levels are
Note, Warning, Error, Failure

ASSERT statement (cont’d)
Assert statement

Cannot be formatted
Can be used as either concurrent or sequential statements
Prints out

simulation time
user written string
instance name
severity level (Defaults to ERROR)

Useful for timing checks, range checks, debugging.

EE 595 EDA / ASIC Design Lab

ASSERT statement
Example

EE 595 EDA / ASIC Design Lab

library IEEE;
use IEEE.std_logic_1164.all;
entity SETUP_CHECK is

port (D, CLK: in std_logic;
Q: out std_logic);

begin
SETUP_CHECK_PROCESS: process (CLK)
begin

if (CLK=‘1’) and (CLK’LAST_VALUE =‘0’) then
assert (D’LAST_EVENT >= 3 ns)

report “Setup Error”
severity WARNING;

end if;
end process;

end SETUP_CHECK;

library IEEE;
use IEEE.std_logic_1164.all;
entity SETUP_CHECK is

port (D, CLK: in std_logic;
Q: out std_logic);

begin
SETUP_CHECK_PROCESS: process (CLK)
begin

if (CLK=‘1’) and (CLK’LAST_VALUE =‘0’) then
assert (D’LAST_EVENT >= 3 ns)

report “Setup Error”
severity WARNING;

end if;
end process;

end SETUP_CHECK;

Passive Process

Aliases
Alternate designation for an object (signal, variable, constant)
Assignments to the alias are assignments to the object. Assignments to the
object are assignments to the alias.
Example:

EE 595 EDA / ASIC Design Lab

signal instruction : std_logic_vector (15 DOWNTO 0);
alias inst : std_logic_vector (15 DOWNTO 0) is instruction;
alias reverse_inst : std_logic_vector (0 TO 15) is instruction;
alias opcode : std_logic_vector (3 DOWNTO 0) is instruction

(15 DOWNTO 12); --slice
alias opbit : std_logic is opcode(0); --alias of an alias

signal instruction : std_logic_vector (15 DOWNTO 0);
alias inst : std_logic_vector (15 DOWNTO 0) is instruction;
alias reverse_inst : std_logic_vector (0 TO 15) is instruction;
alias opcode : std_logic_vector (3 DOWNTO 0) is instruction

(15 DOWNTO 12); --slice
alias opbit : std_logic is opcode(0); --alias of an alias

Aliases (cont’d)

EE 595 EDA / ASIC Design Lab

signal INST_FIELD : Bit_vector(31 downto 0);
alias OP_FIELD:Bit_vector(3 downto 0) is

INST_FIELD(31 downto 28);

signal INST_FIELD : Bit_vector(31 downto 0);
alias OP_FIELD:Bit_vector(3 downto 0) is

INST_FIELD(31 downto 28);

INST_FIELD<=010001010110011110001001101010110

OP_FIELD <= 0100

Subprograms
A subprogram has sequential statements contained inside, and is
called from a process. Subprograms provide a convenient way of
documenting frequently used operations.

There are two different types of subprograms
A procedure (Return Multiple Values)
A function (Return a Single Value)

Typical usage areas
Conversion Functions
Resolution Functions

Subprograms are either built-in or user-designed.

EE 595 EDA / ASIC Design Lab

Subprograms (cont’d)
Contain sequential statements similar to processes
May declare local variables, constants
Executed when called from a sequential statement.
Local Variables are re-initialized every time a subprogram is called.
Parameters of calling routine are known as actuals, while the parameters of
the declared subprogram are known as formals.
Up level referencing to higher level variables and signals is allowed.
Recursive calls by functions and procedures are allowed
Attributes of signals cannot be accessed within subprograms

EE 595 EDA / ASIC Design Lab

Functions

EE 595 EDA / ASIC Design Lab

A user defined function needs to be declared if it is called. When a function is called,
values are passed in through parameters just prior to its execution.

process
function C_TO_F (C: real) return real is
variable F: real;
begin

F := C * 9.0 / 5.0 + 32.0;
return (F);

end C_TO_F;

process
function C_TO_F (C: real) return real is
variable F: real;
begin

F := C * 9.0 / 5.0 + 32.0;
return (F);

end C_TO_F;

variable NEW_TEMP: real;
begin

NEW_TEMP := C_TO_F (5.0) + 20.0;
..... -- Sequantial_Statement(s);

end process;

variable NEW_TEMP: real;
begin

NEW_TEMP := C_TO_F (5.0) + 20.0;
..... -- Sequantial_Statement(s);

end process;

Function
Declaration

Function
Declaration

Functions (cont’d)

Function contains sequential statements
Converts one type to another
Some built-in functions
Some user supplies and reuse.
No side effects

EE 595 EDA / ASIC Design Lab

function NAME (PARAMETER) return TYPE is
..... -- variable declarations
begin
.....
..... --Sequential_ Statements
.....
return ();
end NAME;

function NAME (PARAMETER) return TYPE is
..... -- variable declarations
begin
.....
..... --Sequential_ Statements
.....
return ();
end NAME;

Functions (cont’d)

EE 595 EDA / ASIC Design Lab

type FOURVAL is (‘X’, ‘L’, ‘H’, ‘Z’); -- Incoming values
type VALUE4 is (‘X’, ‘0’, ‘1’, ‘Z’); -- Outgoing values
function CONVER4VAL (S: FOURVAL) return VALUE4 is
begin

case S is
when ‘X’ => return ‘X’;
when ‘L’ => return ‘0’;
when ‘H’ => return ‘1’;
when ‘Z’ => return ‘Z’;

end case;
end CONVER4VAL; TYPE CONVERSION

type FOURVAL is (‘X’, ‘L’, ‘H’, ‘Z’); -- Incoming values
type VALUE4 is (‘X’, ‘0’, ‘1’, ‘Z’); -- Outgoing values
function CONVER4VAL (S: FOURVAL) return VALUE4 is
begin

case S is
when ‘X’ => return ‘X’;
when ‘L’ => return ‘0’;
when ‘H’ => return ‘1’;
when ‘Z’ => return ‘Z’;

end case;
end CONVER4VAL; TYPE CONVERSION

process
variable PDQ: FOURVAL;
variable XYZ: VALUE4;

begin
XYZ := CONVER4VAL (PDQ) -- function call

end process;

process
variable PDQ: FOURVAL;
variable XYZ: VALUE4;

begin
XYZ := CONVER4VAL (PDQ) -- function call

end process;

Functions (cont’d)
Called by expressions
Produce a single return value
Can not modify the parameters passed to it
Requires a RETURN statement

EE 595 EDA / ASIC Design Lab

function ADD_BITS (A, B : in bit) return Bit is
begin -- functions can NOT return multiple values

return (A XOR B);
end ADD_BITS;

function ADD_BITS (A, B : in bit) return Bit is
begin -- functions can NOT return multiple values

return (A XOR B);
end ADD_BITS;

function ADD_BITS2 (A, B : in Bit) return Bit is
variable RESULT : bit; -- variable is local to function

begin
RESULT := (A XOR B);
return RESULT; -- the two functions are equivalent

end ADD_BIT2;

function ADD_BITS2 (A, B : in Bit) return Bit is
variable RESULT : bit; -- variable is local to function

begin
RESULT := (A XOR B);
return RESULT; -- the two functions are equivalent

end ADD_BIT2;

Functions (cont’d)

Functions must be called by other statements
Parameters use positional association

EE 595 EDA / ASIC Design Lab

function ADD_BITS

(A, B : in Bit)

function ADD_BITS

(A, B : in Bit)

architecture BEHAVIOR of ADDER is
begin

process (ENABLE, X, Y)
begin
if (ENABLE = '1') then

RESULT <= ADD_BITS(X, Y);
CARRY <= X and Y;

else
CARRY, RESULT <= '0';

end process;
end BEHAVIOR;

Functions
Example

EE 595 EDA / ASIC Design Lab

-- Convert a std_ulogic_vector to an unsigned integer
--
function TO_UNSIGNED (A: std_ulogic_vector) return integer is

alias AV: std_ ulogic_vector (1 to A'LENGTH) is A;
variable RET,D: integer;

begin
D := 1;
RET := 0;

for I in A'LENGTH downto 1 loop
if (AV(I) = '1') then

RET := RET + D;
end if;
D := D * 2;

end loop;
return RET;

END TO_UNSIGNED;

-- Convert a std_ulogic_vector to an unsigned integer
--
function TO_UNSIGNED (A: std_ulogic_vector) return integer is

alias AV: std_ ulogic_vector (1 to A'LENGTH) is A;
variable RET,D: integer;

begin
D := 1;
RET := 0;

for I in A'LENGTH downto 1 loop
if (AV(I) = '1') then

RET := RET + D;
end if;
D := D * 2;

end loop;
return RET;

END TO_UNSIGNED;

Functions
Example (cont’d)

EE 595 EDA / ASIC Design Lab

-- Convert an integer to a std_ulogic_vector
--
function TO_VECTOR (SIZE: integer; NUM: integer) return std_ulogic_vector is

variable RET: std_ulogic_vector (1 to SIZE);
variable A: integer;

begin
A := NUM;
for I in SIZE downto 1 loop

if ((A mod 2) = 1) then
RET(I) := '1';

else
RET(I) := '0';

end if;
A := A / 2;

end loop;
return RET;

end TO_VECTOR;

-- Convert an integer to a std_ulogic_vector
--
function TO_VECTOR (SIZE: integer; NUM: integer) return std_ulogic_vector is

variable RET: std_ulogic_vector (1 to SIZE);
variable A: integer;

begin
A := NUM;
for I in SIZE downto 1 loop

if ((A mod 2) = 1) then
RET(I) := '1';

else
RET(I) := '0';

end if;
A := A / 2;

end loop;
return RET;

end TO_VECTOR;

Procedures
Assignments can be made to as many as desired - assignments are
made to parameters of modes OUT or INOUT

Side effects - assignments can be made to signals which are not in the
parameter, but only if the procedure is declared inside of the process
that calls it.

Static Up Level referencing - reference variable(s) from the process or
other procedures that called them. If the variable(s) are not include in
parameter list they may not be assigned to.

Concurrent procedures calls are execute once at initialization and then
execute only when the parameters of mode IN or INOUT have events
on them.

Invocation is a statement.

EE 595 EDA / ASIC Design Lab

Procedures (cont’d)

PARAMETERS
variable NAMES [in | out | inout] type [:= EXPRESSION];
or
signal NAMES [in | out | inout] TYPE;

EE 595 EDA / ASIC Design Lab

function NAME (PARAMETERS) is
..... -- [variable]
..... -- [constants]
..... -- [types]
..... -- [declarations]
begin
.....
..... --Sequential_Statements
.....
return ();
end NAME;

function NAME (PARAMETERS) is
..... -- [variable]
..... -- [constants]
..... -- [types]
..... -- [declarations]
begin
.....
..... --Sequential_Statements
.....
return ();
end NAME;

Procedures (cont’d)
Procedure Declaration

Procedure Body

EE 595 EDA / ASIC Design Lab

procedure P;
procedure XOR2 (signal IN1, IN2 : in Bit;

signal OUT1 : out Bit);
-- use word ‘signal’ is optional for parameters of mode in, but
-- required if out parameter is a signal

procedure P;
procedure XOR2 (signal IN1, IN2 : in Bit;

signal OUT1 : out Bit);
-- use word ‘signal’ is optional for parameters of mode in, but
-- required if out parameter is a signal

procedure DIV_16 (A : inout integer) is
begin

A := A/16;
end DIV_16;

procedure DIV_16 (A : inout integer) is
begin

A := A/16;
end DIV_16;

Procedures
Example

EE 595 EDA / ASIC Design Lab

architecture BEHAVIOR of ADDER is
begin

process (ENABLE, X, Y)
begin
ADD_BITS3(X, Y, ENABLE,

RESULT, CARRY);
end process;

end BEHAVIOR;

architecture BEHAVIOR of ADDER is
begin

process (ENABLE, X, Y)
begin
ADD_BITS3(X, Y, ENABLE,

RESULT, CARRY);
end process;

end BEHAVIOR;

procedure ADD_BITS3

(signal A, B, EN : in Bit;
signal TEMP_RESULT,

TEMP_CARRY : out Bit);

procedure ADD_BITS3

(signal A, B, EN : in Bit;
signal TEMP_RESULT,

TEMP_CARRY : out Bit);

The parameters must be compatible
in terms of data flow and data type

With parameter passing, it is
possible to further simplify the
architecture

Actuals in Call

Formals in
Declaration

Procedures
Example (cont’d)

Procedure for 8 bit parity generator

EE 595 EDA / ASIC Design Lab

procedure PARITY (A : in Bit_vector (0 to 7);
RESULT, RESULT_INV: out Bit) is

variable TEMP: Bit;
begin

TEMP := ‘0’;
for I in 0 to 7 loop
TEMP := TEMP xor A(I);
end loop;
RESULT := TEMP;
RESULT_INV := not TEMP;

end PARITY;

procedure PARITY (A : in Bit_vector (0 to 7);
RESULT, RESULT_INV: out Bit) is

variable TEMP: Bit;
begin

TEMP := ‘0’;
for I in 0 to 7 loop
TEMP := TEMP xor A(I);
end loop;
RESULT := TEMP;
RESULT_INV := not TEMP;

end PARITY;

Summary
A process defines regions in architectures where sequential statements
are executed (components are not permitted.)

Process statements provide concurrent processing capability using
local variables and global signals.

VHDL Contains sequential statements, including IF THEN ELSE, CASE
LOOP, etc.

WAIT statements dynamically control process suspension/execution.
In simulation, all processes are started and executed up to a WAIT.

A process can call functions (that return a single value) and procedure
(that return more than one value.)

EE 595 EDA / ASIC Design Lab

Concurrent Statements

EE 595 EDA / ASIC Design Lab

Concurrent Statement
Exists outside of a process but in an architecture

The process is itself a concurrent statement all
processes scheduled to run concurrently

Concurrent signal assignment is a short hand form
for a single statement process -- equivalent to
process containing one statement, sensitive to
changes on the right hand side.

Used frequently in DATAFLOW style descriptions.

EE 595 EDA / ASIC Design Lab

The Process
A Process

Runs concurrently with other processes
Contains only sequential statements
Defines regions in architectures where statements execute sequentially
Must contain either an explicit sensitivity list or a WAIT statement
Can access signals defined in architecture and entity.

EE 595 EDA / ASIC Design Lab

C
o
n
c
u
r
r
e

n

t

-- Sequential
-- Statements

wait...
end;

ONE: Process
-- Sequential
-- Statements

wait...
end;

TWO: Process

Concurrent Signal Assignment
Execute asynchronously, with no defined relative order
Used for dataflow style descriptions
Syntax:

EXPRESSION is logical, comparative, or arithmetic operation

VHDL offers other forms of Concurrent Signal Assignment:
Conditional - similar to if statements
Selected - similar to case statement

EE 595 EDA / ASIC Design Lab

TARGET <= EXPRESSION;TARGET <= EXPRESSION;

Concurrent Assignment
Statements

EE 595 EDA / ASIC Design Lab

• Builds combinational circuitry
• Note that if B or C change then Statement _one is evaluated

if X or Y change then Statement_two is evaluated

architecture EXAMPLE
begin

A <= B + C; -- Statement_one
Z <= X + Y; -- Statement_two

end;

architecture EXAMPLE
begin

A <= B + C; -- Statement_one
Z <= X + Y; -- Statement_two

end;

C

B
X

Y

A

Z

+

+

Concurrent Signal Sensitivity
Concurrent Statements are sensitive to all signals on
the input side
If a signal appears on both sides, the statement is
sensitive to changes in its own output.

A <= A+B; will be evaluated when B changes. This
will change A and the statement will be evaluated
again.
Time will not be able to advance because the
statement keeps executing.

EE 595 EDA / ASIC Design Lab

Conditional Signal Statement

EE 595 EDA / ASIC Design Lab

A conditional signal assignment is an concurrent statement and has one target,
but can have more than one expression. Only one of the expressions can be
used at a time.

TARGET <= {EXPRESSION when CONDITION else} EXPRESSION;TARGET <= {EXPRESSION when CONDITION else} EXPRESSION;

Example

Z <= A when (X > 3) else
B when (X < 3) else
C;

Z <= A when (X > 3) else
B when (X < 3) else
C;

Note: You cannot use conditional signal assignment in a process.

Conditional Signal Statement
Example

EE 595 EDA / ASIC Design Lab

entity EXAMPLE is

port (A,B, C, SEL : in integer range 0 to 7;

Z : out integer range 0 to 7);

end EXAMPLE;

entity EXAMPLE is

port (A,B, C, SEL : in integer range 0 to 7;

Z : out integer range 0 to 7);

end EXAMPLE;

architecture IF_TYPE of EXAMPLE is
begin

process (A, B, C, SEL)
begin

if (SEL > 5) then
Z <= A;

elsif (SEL < 5) then
Z <= B;

else
Z <= C;

end if;
end process;

end IF_TYPE;

architecture IF_TYPE of EXAMPLE is
begin

process (A, B, C, SEL)
begin

if (SEL > 5) then
Z <= A;

elsif (SEL < 5) then
Z <= B;

else
Z <= C;

end if;
end process;

end IF_TYPE;

architecture COND_TYPE of EXAMPLE is
begin

Z < = A when SEL > 5 else
B when SEL < 5 else
C;

end COND_TYPE.

architecture COND_TYPE of EXAMPLE is
begin

Z < = A when SEL > 5 else
B when SEL < 5 else
C;

end COND_TYPE.

Selected Signal Statement

EE 595 EDA / ASIC Design Lab

A selected signal assignment statement can have only one target, and can have
only one WITH expressions. This value is tested for a match in a manner similar
to the CASE statement.

with EXPRESSION select
TARGET <= {EXPRESSION when CHOICES,};

with EXPRESSION select
TARGET <= {EXPRESSION when CHOICES,};

Example

with SIGNAL select
Z <= A when 15,

B when 22,
C when OTHERS;

with SIGNAL select
Z <= A when 15,

B when 22,
C when OTHERS;

Note: You cannot use Selected signal assignment in a process.

Selected Signal Assignment
Example

EE 595 EDA / ASIC Design Lab

entity EXAMPLE is

port (A,B, C, SEL : in integer range 0 to 7;

Z : out integer range 0 to 7);

end EXAMPLE;

entity EXAMPLE is

port (A,B, C, SEL : in integer range 0 to 7;

Z : out integer range 0 to 7);

end EXAMPLE;

architecture CASE_TYPE of EXAMPLE is
begin

process (A, B, C, SEL)
begin

case SEL is
when 0 to 4 =>

Z <= B;
when 5 =>

Z <= C;
when OTHERS =>

Z <= A;
end case;

end process;
end IF_TYPE;

architecture CASE_TYPE of EXAMPLE is
begin

process (A, B, C, SEL)
begin

case SEL is
when 0 to 4 =>

Z <= B;
when 5 =>

Z <= C;
when OTHERS =>

Z <= A;
end case;

end process;
end IF_TYPE;

architecture SEL_TYPE of EXAMPLE is
begin

with SEL select
Z <= B when 0 to 4,

C when 5,
A when OTHERS;

end SEL_TYPE.

architecture SEL_TYPE of EXAMPLE is
begin

with SEL select
Z <= B when 0 to 4,

C when 5,
A when OTHERS;

end SEL_TYPE.

Concurrent Procedure Call
IN, OUT and INOUT parameter modes

Allows return of more than 1 value (unlike function
call)

Considered a statement

Equivalent to a process containing the single
procedure call followed by a wait on parameters of
mode in or inout.

EE 595 EDA / ASIC Design Lab

Concurrent Procedure Call
Example

EE 595 EDA / ASIC Design Lab

architecture ...
begin

VECTOR_TO_INT(BITSTUFF, FLAG, NUMBER);
end;

architecture ...
begin

VECTOR_TO_INT(BITSTUFF, FLAG, NUMBER);
end;

architecture ...
begin
process

begin
VECTOR_TO_INT(BITSTUFF, FLAG, NUMBER);
wait on BITSTUFF, NUMBER;

end process;
end;

architecture ...
begin
process

begin
VECTOR_TO_INT(BITSTUFF, FLAG, NUMBER);
wait on BITSTUFF, NUMBER;

end process;
end;

NUMBER was inout, procedure changed NUMBER so procedure run again

Sequential vs. Concurrent
Statement in Simulation Cycle

EE 595 EDA / ASIC Design Lab

VHDL is inherently a concurrent language
All VHDL processes execute concurrently
Concurrent signal assignment statements are actually one-
line processes

VHDL statements execute sequentially within a
process
Concurrent processes with sequential execution
within a process offers maximum flexibility

Supports various levels of abstraction
Supports modeling of concurrent and sequential events as
observed in real systems

Blocks

EE 595 EDA / ASIC Design Lab

Blocks are concurrent statements and provide
a mechanism to partition an architecture
description

Items declared in declarative region of block are
visible only inside the block, e.g. :

signals, subprograms

Blocks may be nested to define a hierarchical
partitioning of the architectural description
Blocks may contain Guards for disabling
drives.

Blocks

EE 595 EDA / ASIC Design Lab

Declarations declare objects local to the block and can be any of following:

USE clause
Subprogram declaration and body
Type, constants, signal declarations
Component declaration

[LABEL:] block [(BOOLEAN EXPRESSION)]
{DECLARATIONS}

begin
..... -- Concurrent Statements

end block;

[LABEL:] block [(BOOLEAN EXPRESSION)]
{DECLARATIONS}

begin
..... -- Concurrent Statements

end block;

Blocks

Blocks can be nested
Objects declared in a BLOCK are visible to that block and all blocks nested
within.
When a child block inside a parent block declares an object with the same name
as one in the parent block, the child’s declaration overrides that of the parent.

EE 595 EDA / ASIC Design Lab

B2: block
begin

C1 : E <= C + D;
C2 : C <= A + B;

end block;

B2: block
begin

C1 : E <= C + D;
C2 : C <= A + B;

end block;

Must have
a label

May have
a label

Nested Blocks

EE 595 EDA / ASIC Design Lab

B1: block
signal S: Bit; -- -- Declaring first S in block B1

begin
S <= A and B; -- -- using S in B1
B2: block

signal S: Bit; -- -- Declaring second S in block B2
begin

S <= C and D; -- -- using S in B2
B3: block
begin

Z <= S; -- -- still using S in B2
end block; -- -- B3 -- --(Z <= C and D)

end block; -- -- B2
Y <= S; -- -- using S from B1

end block; -- -- B1 -- -- (Y <= A and B)

B1: block
signal S: Bit; -- -- Declaring first S in block B1

begin
S <= A and B; -- -- using S in B1
B2: block

signal S: Bit; -- -- Declaring second S in block B2
begin

S <= C and D; -- -- using S in B2
B3: block
begin

Z <= S; -- -- still using S in B2
end block; -- -- B3 -- --(Z <= C and D)

end block; -- -- B2
Y <= S; -- -- using S from B1

end block; -- -- B1 -- -- (Y <= A and B)

Guarded Blocks
Can be for modeling latches, clocked logic, bus controllers

The Guard is a boolean expression

Signal named “GUARD” is implicitly created in block and may be
referenced

Signal assignment statements with signal kind of BUS or REGISTER
can use Guard as enable.

When Guard is true, normal signal assignment activity may
occur

When Guard is false, drivers may be disconnected

EE 595 EDA / ASIC Design Lab

Guard Expression

EE 595 EDA / ASIC Design Lab

A block can have a Boolean “Guard expression”

Equivalent to GUARD <= (SELECT = ‘1’); (sensitive to SELECT)
The Boolean signal GUARD is created automatically when block
has a “guard expression”
As shown in the above example, you can test the signal GUARD
Guarded Signal assignment are built-in to the
language/simulator

B2: block (SELECT = ‘1’)
begin

Z <= IN_1 when GUARD else IN_0;
end block;

B2: block (SELECT = ‘1’)
begin

Z <= IN_1 when GUARD else IN_0;
end block;

Guarded Signal Assignments
execute when block guard expression is true

The signal assignment to Q only occurs when
GUARD is true

EE 595 EDA / ASIC Design Lab

architecture REG of LATCH is
signal Q: Std_Logic register := ‘U’;
begin
B2: block (ENABLE = ‘1’)

begin
Q <= guarded D;

end block;

architecture REG of LATCH is
signal Q: Std_Logic register := ‘U’;
begin
B2: block (ENABLE = ‘1’)

begin
Q <= guarded D;

end block;

Guarded Signal Kinds
guarded signals are of a signal kind; bus I register.

Q may be declared as kind register or bus
Q must be of a resolved type (none of the types in
Std.standard are resolved.)
Signal kind register or bus can be disconnected.

EE 595 EDA / ASIC Design Lab

signal Q: Std_Logic register := ‘U’;
begin
B2: block (ENABLE = ‘1’)

begin
Q <= guarded D;

end block;

signal Q: Std_Logic register := ‘U’;
begin
B2: block (ENABLE = ‘1’)

begin
Q <= guarded D;

end block;

Disconnects
When the Guard expression is false, signals assigned with
guarded assignments are said to be disconnected.

Signals of kind Register retain their value when disconnected.

Signals of kind Bus change to their default value when
disconnected. (the default value of std_logic is ‘U’)

Signals of kind bus and register can only be assigned with a
guarded signal assignment.

EE 595 EDA / ASIC Design Lab

Drivers
Drivers are created by signal assignment statements.

Drivers contain present and future values.

A driver is a contributor to a signal value.

Value of a signal is the resolution of all of the driver values

Multiple assignments in parallel may be error prone.

EE 595 EDA / ASIC Design Lab

Resolution Function
No Resolution Functions are built into VHDL

Vendor or User provided Functions

Resolution Functions are called automatically

Multiple Driver-values are passed in through
parameters.

EE 595 EDA / ASIC Design Lab

Resolution Function

EE 595 EDA / ASIC Design Lab

Resolves value of signal with multiple drivers
Required when signal has multiple drivers
Function called after any assignment to signal
Passed a variable length array of signal values to be
resolved
User definable: typically wired and, or 3-state
Associates the resolution function with subtype

(which becomes a resolved type)

Resolves value of signal with multiple drivers
Required when signal has multiple drivers
Function called after any assignment to signal
Passed a variable length array of signal values to be
resolved
User definable: typically wired and, or 3-state
Associates the resolution function with subtype

(which becomes a resolved type)

Three State Bus

EE 595 EDA / ASIC Design Lab

+5v

‘H’ ‘z’ ‘z’ ‘0’ ‘0’

‘H’ ‘Z’ ‘Z’ ‘0’
resolution

function
‘0’

Driver Resolution

EE 595 EDA / ASIC Design Lab

Z

Z Z

H

H

Initial Value Driver Values

Driver Resolution Conflict

EE 595 EDA / ASIC Design Lab

Z

1

1

X

1 Z 0

Initial Value Driver Values

Bus Resolution Function
Example

EE 595 EDA / ASIC Design Lab

package FOURPACK is
type FOURVAL is (X, L, H, Z);
type FOURVAL_VECTOR is array(natural range <>) of FOURVAL;
function RESOLVE (S: FOURVAL_VECTOR) return FOURVAL;

end FOURPACK;

package body FOURPACK is
function RESOLVE (S: FOURVAL_VECTOR) return is

variable RESOLVE (S: FOURVAL_VECTOR) return FOURVAL is
begin

for I in S’RANGE loop
case RESULT is

package FOURPACK is
type FOURVAL is (X, L, H, Z);
type FOURVAL_VECTOR is array(natural range <>) of FOURVAL;
function RESOLVE (S: FOURVAL_VECTOR) return FOURVAL;

end FOURPACK;

package body FOURPACK is
function RESOLVE (S: FOURVAL_VECTOR) return is

variable RESOLVE (S: FOURVAL_VECTOR) return FOURVAL is
begin

for I in S’RANGE loop
case RESULT is

Bus Resolution Function
Example (cont’d)

EE 595 EDA / ASIC Design Lab

when Z =>
case S(i) is

when H =>
RESULT := H;

when L =>
RESULT := L;

when X =>
RESULT := X;

when OTHERS =>
null;
end case;

when L => ;
case S(i) is
when H =>

RESULT := X;
when X => :

RESULT := X;
when OTHERS =>

NULL;

when Z =>
case S(i) is

when H =>
RESULT := H;

when L =>
RESULT := L;

when X =>
RESULT := X;

when OTHERS =>
null;
end case;

when L => ;
case S(i) is
when H =>

RESULT := X;
when X => :

RESULT := X;
when OTHERS =>

NULL;

Bus Resolution Function
Example (cont’d)

EE 595 EDA / ASIC Design Lab

end case;

when H =>
case S(i) is

when L =>
RESULT := X;

when X =>
RESULT := X;

when OTHERS =>
end case;

when X =>
RESULT := X;

end case;
end loop;
return RESULT;

end RESOLVE;
end FOURPACK;

end case;

when H =>
case S(i) is

when L =>
RESULT := X;

when X =>
RESULT := X;

when OTHERS =>
end case;

when X =>
RESULT := X;

end case;
end loop;
return RESULT;

end RESOLVE;
end FOURPACK;

Resolution Function for
Subtype

EE 595 EDA / ASIC Design Lab

package FOURPACK is
type FOURVAL is (X, L, H, Z);
type FOUR_VECTOR is array (Natural range <>)

of FOURVAL;

function RESOLVE (S: FOURVAL_VECTOR) return FOURVAL;

subtype RESFOUR is RESOLVE FOURVAL,
end FOURPACK;
use Work.FOURPACK.all;
entity ...
architecture ...
signal A, B : RESFOUR;.

package FOURPACK is
type FOURVAL is (X, L, H, Z);
type FOUR_VECTOR is array (Natural range <>)

of FOURVAL;

function RESOLVE (S: FOURVAL_VECTOR) return FOURVAL;

subtype RESFOUR is RESOLVE FOURVAL,
end FOURPACK;
use Work.FOURPACK.all;
entity ...
architecture ...
signal A, B : RESFOUR;.

Summary
Signals with Multiple Drivers require Resolution

Resolution Functions are associated with subtype

The resolved type and declaration and resolution
function are usually declared in a Package

EE 595 EDA / ASIC Design Lab

Predefined Attributes
Data obtained from Blocks, Signals, Types and Subtypes
Return values such as:

length of an array type
time since last signal change
range of values in a type

Predefined attributes are useful for performing certain type of
functions such as:

timing checks
bounds
clock edge detection
type conversion

EE 595 EDA / ASIC Design Lab

Array Type Bound Example
process (...)

type BIT_RANGE is array (31 DOWNTO 0) of Bit;
variable LEFT_RANGE, RIGHT_RANGE,

HIGH_RANGE, LOW_RANGE: integer;
begin

LEFT_RANGE := BIT_RANGE’left; -- returns 31
RIGHT_RANGE := BIT_RANGE’right; -- returns 0
HIGH_RANGE := BIT_RANGE’high -- returns 31
LOW_RANGE := BIT_RANGE’low; -- returns 0

end process;

EE 595 EDA / ASIC Design Lab

Array Bound
Example

EE 595 EDA / ASIC Design Lab

type T_RAM_DATA is array (0 TO 511) of integer;

variable RAM_DATA : T_RAM_DATA;
.
.

for i in RAM_DATA’low TO RAM_DATA’high loop
RAM_DATA(i) := 0;

end loop;

type T_RAM_DATA is array (0 TO 511) of integer;

variable RAM_DATA : T_RAM_DATA;
.
.

for i in RAM_DATA’low TO RAM_DATA’high loop
RAM_DATA(i) := 0;

end loop;

Multi-Range Array Attributes
‘left(N) -returns left bound of index range N
‘right(N) -returns right bound of index range N
‘high(N) -returns upper bound of index range N
‘low(N) - returns lower bound of index range N

EE 595 EDA / ASIC Design Lab

variable: MEMORY (0 to 5, 0 to 7) of MEM_DATA;
MEMORY ‘right(2);

variable: MEMORY (0 to 5, 0 to 7) of MEM_DATA;
MEMORY ‘right(2);

Example N= 1 2

Array Length Attributes
‘length return of an array or array type

EE 595 EDA / ASIC Design Lab

process (...)
type BIT4 is array (0 TO 3) of Bit;
type BIT_STRANGE is array(10 TO 20) of Bit;
variable LEN1, LEN2: integer;

begin
LEN1 := BIT4’length; -- return 4
LEN2 := BIT_STRANGE’length; -- returns 11

end process;

process (...)
type BIT4 is array (0 TO 3) of Bit;
type BIT_STRANGE is array(10 TO 20) of Bit;
variable LEN1, LEN2: integer;

begin
LEN1 := BIT4’length; -- return 4
LEN2 := BIT_STRANGE’length; -- returns 11

end process;

Range Attributes
NAME ‘range - returns the declared range of a particular type

NAME’reverse_range - returns the declared range of a particular type in
reverse order

EE 595 EDA / ASIC Design Lab

Example:

function VECTOR_TO_INT(STUFF: Bit_Vector) return integer is
variable RESULT: Integer := 0;

begin
for i in STUFF ‘range loop

....

Example:

function VECTOR_TO_INT(STUFF: Bit_Vector) return integer is
variable RESULT: Integer := 0;

begin
for i in STUFF ‘range loop

....

Type Attributes Position
Function
TYPENAME ‘succ(V) - returns next value in type after input value

TYPENAME ’pred(V) - returns previous value in type before input value

TYPENAME ‘leftof(V) - returns value immediately to left of input value

TYPENAME ‘rightof(V) - returns value immediately to right of input value

TYPENAME ‘pos(V) - returns type position number from type value

TYPENAME ‘val(P) - returns type value from type position number

‘base - returns base type of type or subtype

EE 595 EDA / ASIC Design Lab

Attributes Exercise

EE 595 EDA / ASIC Design Lab

type COLOR is (RED, BLUE, GREEN, YELLOW, BLACK);
subtype COLOR_GUN is COLOR range RED to GREEN;
variable A: COLOR;
begin

A:= COLOR‘low;

A:= COLOR ‘succ(RED);

A:= COLOR_GUN’base’right;

A:= COLOR’base’left;

A:= COLOR_GUN’base’succ(GREEN);

type COLOR is (RED, BLUE, GREEN, YELLOW, BLACK);
subtype COLOR_GUN is COLOR range RED to GREEN;
variable A: COLOR;
begin

A:= COLOR‘low;

A:= COLOR ‘succ(RED);

A:= COLOR_GUN’base’right;

A:= COLOR’base’left;

A:= COLOR_GUN’base’succ(GREEN);

Attribute
Example

EE 595 EDA / ASIC Design Lab

type CURRENT is range 0 TO 1000000
units uA:

mA = 1000 uA;
A = 1000 mA;

end units;
type VOLTAGE is range 0 TO 1000000
units uv

mV = 1000 uV;
V = 1000 mV;

end units;
type RESISTENCE is range 0 TO 1000000 ;
units Ohm;

KOhm = 1000 Ohm;
end units;

type CURRENT is range 0 TO 1000000
units uA:

mA = 1000 uA;
A = 1000 mA;

end units;
type VOLTAGE is range 0 TO 1000000
units uv

mV = 1000 uV;
V = 1000 mV;

end units;
type RESISTENCE is range 0 TO 1000000 ;
units Ohm;

KOhm = 1000 Ohm;
end units;

Attribute
Example (cont’d)

EE 595 EDA / ASIC Design Lab

entity CALC_RES is
port (I : in CURRENT; E : in VOLTAGE;

R : out RESISTANCE);
end CALC_RES;

architecture BEHAVE of CALC_RES is
begin

process (I,E) begin
R <= RESISTANCE’val(VOLTAGE’pos(I)/CURRENT’pos(E));

end process;
end BEHAVE;

entity CALC_RES is
port (I : in CURRENT; E : in VOLTAGE;

R : out RESISTANCE);
end CALC_RES;

architecture BEHAVE of CALC_RES is
begin

process (I,E) begin
R <= RESISTANCE’val(VOLTAGE’pos(I)/CURRENT’pos(E));

end process;
end BEHAVE;

Signal Attributes
SIGNAL’event - returns True if an event occurred on this signal
during this delta

SIGNAL’active - returns True if a transaction occurred this delta

SIGNAL’last_event - returns the elapsed time since previous
event

SIGNAL’last_value - returns previous value of signal before last
event

SIGNAL’last_active - returns time elapsed since previous
transaction

EE 595 EDA / ASIC Design Lab

Signal Attribute
Example

EE 595 EDA / ASIC Design Lab

library IEEE; use IEEE.std_logic_1164.all;
entity DFLOP is

port (D, CLK : in std_logic; Q : out std_logic);
end DFLOP;
architecture DFF of DFLOP is
begin

process (CLK)
begin

if (CLK = ‘1’) and (CLK’event) and (CLK’last_value = ‘0’) then
Q <= D;

end if;
end process;

end DFF;

library IEEE; use IEEE.std_logic_1164.all;
entity DFLOP is

port (D, CLK : in std_logic; Q : out std_logic);
end DFLOP;
architecture DFF of DFLOP is
begin

process (CLK)
begin

if (CLK = ‘1’) and (CLK’event) and (CLK’last_value = ‘0’) then
Q <= D;

end if;
end process;

end DFF;

Derived Signal Attribute
SIGNAL’delayed [(time)] - creates a signal that follows

reference signal, delayed by time value

SIGNAL’stable[(time)] - creates a signal that is True when the
reference signal has no events for time value.

SIGNAL’quiet[(time)] - creates a signal that is True when the
reference signal has no transactions for time value

SIGNAL ‘transaction - creates a signal of type Bit that toggles
(has a transition) for every transaction on reference signal

EE 595 EDA / ASIC Design Lab

Stable Attribute
Example

EE 595 EDA / ASIC Design Lab

architecture BEHAVE of PULSE_GEN is
begin

B <= A’stable(10 ns);
end PULSE_GEN;

A

B

0 10 20 30 40 50 60 70 80 90

User Defined Attributes
Attach data to objects

Data type user defined

Data is constant

Accessed with same syntax as predefined attributes

EE 595 EDA / ASIC Design Lab

User Defined Attributes
Example

EE 595 EDA / ASIC Design Lab

package BOARD_ATTRS is
type PACKAGE_TYPES is

(LEADLESS, PGA, DIP);
attribute PACKAGE_TYPE :

PACKAGE_TYPES;
attribute PACKAGE_LOC : Integer;
end BOARD_ATTRS;
use Work.BOARD_ATTRS.all;
entity BOARD is port(...); end BOARD;
architecture CPU_BOARD of BOARD is

package BOARD_ATTRS is
type PACKAGE_TYPES is

(LEADLESS, PGA, DIP);
attribute PACKAGE_TYPE :

PACKAGE_TYPES;
attribute PACKAGE_LOC : Integer;
end BOARD_ATTRS;
use Work.BOARD_ATTRS.all;
entity BOARD is port(...); end BOARD;
architecture CPU_BOARD of BOARD is

User Defined Attributes
Example (cont’d)

EE 595 EDA / ASIC Design Lab

component MC68040
generic (.......); port (........);
end component;
signal A: integer, B: PACKAGE_TYPE;

attribute PACKAGE_TYPE of MC68040 : component is PGA
attribute PACKAGE_LOC of MC68040 : component is 20;
begin

A <= MC68040’PACKAGE_LOC; -- returns 20
B <= MC68040’PACKAGE_TYPE -- returns PGA

end CPU_BOARD;

component MC68040
generic (.......); port (........);
end component;
signal A: integer, B: PACKAGE_TYPE;

attribute PACKAGE_TYPE of MC68040 : component is PGA
attribute PACKAGE_LOC of MC68040 : component is 20;
begin

A <= MC68040’PACKAGE_LOC; -- returns 20
B <= MC68040’PACKAGE_TYPE -- returns PGA

end CPU_BOARD;

Recall: Three-State Logic

EE 595 EDA / ASIC Design Lab

architecture …
begin

C<= A;
C<=B

...

architecture …
begin

C<= A;
C<=B

...

Type BIT3
‘0’
‘1’
‘Z’

How does a simulator resolve the logic values?

Three- State Multiple Drivers
Example

EE 595 EDA / ASIC Design Lab

architecture BEHAVE of STATE3 is
signal S, SIG_A, SIG_B : BIT3;

begin

A: process (SIG_A, ASEL)
begin

S <= ‘Z’;
if (ASEL) then

S <= SIG_A;
end if;
end process;
B: process (SIG_B, BSEL)

begin
S <= ‘Z’;

if (BSEL) then
S <= SIG_B;

end if;
end process;

end BEHAVE;

BSEL
S

SIG_B

ASEL

SIG_A

Resolution Required

Requires a resolution function for type BIT3

State Machines

EE 595 EDA / ASIC Design Lab

To design a state machine in VHDL, each state can be translated to a
case-when construct. The state transitions can then be specified in
if-then-else statements.

For, example, to translate the state flow diagram into VHDL, we begin
by defining an enumeration type, consisting of the state names, and
declaring two signals of that type:

type STATETYPE is (IDLE, DECISION, READ, WRITE);

signal PRESENT_STATE, NEXT_STATE : STATETYPE;

type STATETYPE is (IDLE, DECISION, READ, WRITE);

signal PRESENT_STATE, NEXT_STATE : STATETYPE;

State Machines (cont’d)
Next, we create a process. Next_state is determined by a function of the
present_state and the inputs (read and read_write.)

EE 595 EDA / ASIC Design Lab

Within the process we describe the state machine transitions.
We open a case-when statement and specify the first case
(when condition), which is for the idle state. For this case, we
specify the outputs defined by the idle state and transitions
from it :

STATE_COMB: process (PRESENT_STATE, READ_WRITE, READY)

begin
...

end process STATE_COMB;

STATE_COMB: process (PRESENT_STATE, READ_WRITE, READY)

begin
...

end process STATE_COMB;

State Machines (cont’d)

The above process indicates what the next_state assignment will be based
on present-state and present inputs, but it does not indicate when the next
state becomes the present state .This happens synchronously, on the
rising edge of a clock.

EE 595 EDA / ASIC Design Lab

STATE_COMB: process (PRESENT_STATE, READ_WRITE, READY)
begin

case PRESENT_STATE is
WHEN idle =>
OE <= ‘0’; WE <= ‘0’;
if READY = ‘1’ then

NEXT_STATE <= DECISION;
else -- else not necessary

NEXT_STATE => IDLE; -- included for readability
end if;

Two-Process FSM
Example

EE 595 EDA / ASIC Design Lab

entity EXAMPLE is
port(READ_WRITE, READY, CLK : in Bit;

OE, WE : out Bit);
end example;

architecture STATE_MACHINE of EXAMPLE is
type STATETYPE is (IDLE, DECISION, READ, WRITE);
signal PRESENT_STATE, NEXT_STATE : STATETYPE;

begin
STATE_COMB: PROCESS(PRESENT_STATE, READ_WRITE, READY)

case PRESENT_STATE is
when IDLE => OE <= ‘0’; WE <= ‘0’;

if READY = ‘1’ then
NEXT_STATE <= DECISION;

else
NEXT_STATE <= IDLE;

end if;
when DECISION => OE <= ‘0’; WE <= ‘0’;

if (READ_WRITE = ‘1’) then
NEXT_STATE <= READ;

else
NEXT_STATE <= WRITE;

end if;

entity EXAMPLE is
port(READ_WRITE, READY, CLK : in Bit;

OE, WE : out Bit);
end example;

architecture STATE_MACHINE of EXAMPLE is
type STATETYPE is (IDLE, DECISION, READ, WRITE);
signal PRESENT_STATE, NEXT_STATE : STATETYPE;

begin
STATE_COMB: PROCESS(PRESENT_STATE, READ_WRITE, READY)

case PRESENT_STATE is
when IDLE => OE <= ‘0’; WE <= ‘0’;

if READY = ‘1’ then
NEXT_STATE <= DECISION;

else
NEXT_STATE <= IDLE;

end if;
when DECISION => OE <= ‘0’; WE <= ‘0’;

if (READ_WRITE = ‘1’) then
NEXT_STATE <= READ;

else
NEXT_STATE <= WRITE;

end if;

ready

idle

decision

readwrite

ready ready

read_writeread_write

ready ready

ready

State

Idle
decision
write
read

Outputs
OE WE

0 0
0 0
0 1
1 0

Example- Two- Process FSM

EE 595 EDA / ASIC Design Lab

when READ => OE <= ‘1’; WE <= ‘0’;
(if READY = ‘1’) then

NEXT_STATE <= IDLE;
else

NEXT_STATE <= READ;
end if;

when WRITE => OE <= ‘0’; WE <= ‘1’;
if (READY = ‘1’) then

NEXT_STATE <= IDLE;
else

NEXT_STATE <= WRITE;
end if;

end case;
end process STATE_COMB;

when READ => OE <= ‘1’; WE <= ‘0’;
(if READY = ‘1’) then

NEXT_STATE <= IDLE;
else

NEXT_STATE <= READ;
end if;

when WRITE => OE <= ‘0’; WE <= ‘1’;
if (READY = ‘1’) then

NEXT_STATE <= IDLE;
else

NEXT_STATE <= WRITE;
end if;

end case;
end process STATE_COMB;

Two- Process FSM
Example

EE 595 EDA / ASIC Design Lab

STATE_CLOCKED : process(CLK)
begin

if (CLK’EVENT AND CLK = ‘1’) then
PRESENT_STATE <= NEXT_STATE;

end if;
end process STATE_CLOCKED;

end architecture STATE_MACHINE;
-- “architecture “ is optional; for clarity.

STATE_CLOCKED : process(CLK)
begin

if (CLK’EVENT AND CLK = ‘1’) then
PRESENT_STATE <= NEXT_STATE;

end if;
end process STATE_CLOCKED;

end architecture STATE_MACHINE;
-- “architecture “ is optional; for clarity.

Combinational/Sequential Combinational/Sequential
VHDL ExamplesVHDL Examples

EE 595 EDA / ASIC Design Lab

VHDL MUX

EE 595 EDA / ASIC Design Lab

process (SELECT, A, B)
begin

case SELECT is -- no priority given but
when ‘0’ => DATAOUT <= A; -- using if loop we
when ‘1’ => DATAOUT <= B; -- can prioritize
when others => null;

end case;

end process;

process (SELECT, A, B)
begin

case SELECT is -- no priority given but
when ‘0’ => DATAOUT <= A; -- using if loop we
when ‘1’ => DATAOUT <= B; -- can prioritize
when others => null;

end case;

end process;
A

B

SELECT

DATAOUT

Combinational Logic

EE 595 EDA / ASIC Design Lab

Combinational Logic

Models representing a combinational block described by the truth table
are given below:

y = C’b+db+cda+c’da’

AB
CD

“00” “01” “11” “10”

“00”

“01”

“11”

“10”

‘0’ ‘1’ ‘1’

‘1’ ‘1’ ‘1’

‘1’ ‘1’ ‘1’

‘0’

‘0’

‘0’ ‘0’ ‘0’

‘0’

‘0’

a
b
c
d

Comb_logic y

Combinational Logic

EE 595 EDA / ASIC Design Lab

entity COMB_LOGIC is -- y = c’d+db+cda+c’da’
generic (P_DELAY : time);
port (A, B, C, D : in Bit;

Y : out Bit);
end COMB_LOGIC; -- behavior from the truth table

-- process statement and sequential statements
architecture ARCH2 of COMB_LOGIC is
begin

process (A, B, C, D)
variable TEMP : Bit_Vector (3 DOWNTO 0);
begin

TEMP := A&B&C&D;
case TEMP is
when b”0000” | b”1000” | b”1001 | b”0011” |
b”0010” | b”0110” | b”1110” | b”1010” =>
y <= ‘0’;
when OTHERS => y <= ‘1’;

end case;
end process;

end ARCH2;

entity COMB_LOGIC is -- y = c’d+db+cda+c’da’
generic (P_DELAY : time);
port (A, B, C, D : in Bit;

Y : out Bit);
end COMB_LOGIC; -- behavior from the truth table

-- process statement and sequential statements
architecture ARCH2 of COMB_LOGIC is
begin

process (A, B, C, D)
variable TEMP : Bit_Vector (3 DOWNTO 0);
begin

TEMP := A&B&C&D;
case TEMP is
when b”0000” | b”1000” | b”1001 | b”0011” |
b”0010” | b”0110” | b”1110” | b”1010” =>
y <= ‘0’;
when OTHERS => y <= ‘1’;

end case;
end process;

end ARCH2;

Combinational Logic

EE 595 EDA / ASIC Design Lab

entity COMB_LOGIC is
generic (P_DELAY : TIME);
port (A, B, C, D: in Bit;

Y : out Bit);
end COMB_LOGIC;

-- simple signal assignment statement, RTL
architecture ARCH1 of COMB_LOGIC is
begin

Y <= ((NOT C) AND B) OR (D AND B) OR
(C AND D AND A) OR ((NOT C) AND D AND (NOT A));

end ARCH1;

entity COMB_LOGIC is
generic (P_DELAY : TIME);
port (A, B, C, D: in Bit;

Y : out Bit);
end COMB_LOGIC;

-- simple signal assignment statement, RTL
architecture ARCH1 of COMB_LOGIC is
begin

Y <= ((NOT C) AND B) OR (D AND B) OR
(C AND D AND A) OR ((NOT C) AND D AND (NOT A));

end ARCH1;

----- y = c’b+db+cda+c’da’

VHDL Latch

EE 595 EDA / ASIC Design Lab

process (DATAIN, ENABLE)
begin

if ENABLE = ‘1’ -- it does not explicitly
DATAOUT <= DATAIN; -- defines other

-- conditional values
end if;
end process;

datain d q dataout

enable en

VHDL Tri-State Bus

EE 595 EDA / ASIC Design Lab

process (DATA1, ENABLE1)
begin

if ENABLE = ‘0’ then
DATA <= DATA1; -- drive DATAOUT

else
DATAOUT <= “ZZ”;

end if;
end process;

process (DATA1, ENABLE1)
begin

if ENABLE = ‘0’ then
DATA <= DATA1; -- drive DATAOUT

else
DATAOUT <= “ZZ”;

end if;
end process;

data(0)

data2(0)

enable1

enable2

dataout(0)

VHDL Tri-State Bus(cont)

EE 595 EDA / ASIC Design Lab

process (DATA2, ENABLE2)
begin

if ENABLE = ‘0’ then
DATAOUT <= DATA2 -- also drive’s

else
DATAOUT <= “ZZ”;

end if;
end process;

process (DATA2, ENABLE2)
begin

if ENABLE = ‘0’ then
DATAOUT <= DATA2 -- also drive’s

else
DATAOUT <= “ZZ”;

end if;
end process;

data(1)

data(2)

enable1

enable2

dataout(1)

VHDL Register

EE 595 EDA / ASIC Design Lab

asynchronous reset

dataout(0)

dataout(1)

dataout(2)

dataout(3)

data(0)

clk

reset

datain(1)

datain(2)

datain(3)

VHDL Register

EE 595 EDA / ASIC Design Lab

process (RESET, CLK)
begin

if RESET = ‘0’ then
DATAOUT <= “0000”;

elsif CLK’event and CLK = ‘1’ then -- rising edge
DATAOUT <= DATAIN; -- of clock

end if;
end process;

process (RESET, CLK)
begin

if RESET = ‘0’ then
DATAOUT <= “0000”;

elsif CLK’event and CLK = ‘1’ then -- rising edge
DATAOUT <= DATAIN; -- of clock

end if;
end process;

Asynchronous reset does not depend on clock.

Interface Description of 74LS161
4-bit Synchronous Counter

EE 595 EDA / ASIC Design Lab

4

4

clock

load

clear

enable_p

enable_t

data

ripple_out

q

Interface Description of 74LS161
4-bit Synchronous Counter

EE 595 EDA / ASIC Design Lab

Function Table of 74LS161 4 - bit synchronous counter

* X means Don’t Care
* ripple_out = 1 when count = decimal 15 and enable_t = ‘1’

Clock load clear enable_p enable_t Operation

X X low X X asynchronous clear

rising low high X X load input data

rising high high high high increment court

