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Introduction

Agents in financial markets operate in a world in which they make
choices under risk and uncertainty. Portfolio managers, for
example, make investment decisions in which they take risks and
expect rewards, based on their own expectations and preferences.

The theory of how choices under risk and uncertainty are made
was introduced by John von Neumann and Oskar Morgenstern in
1944 in their book Theory of Games and Economic Behavior.
They gave an explicit representation of investor’s perferences in
terms of an investor’s utility function.
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Introduction

If no uncertainty is present, the utility function can be interpreted
as a mapping between the available alternatives and real numbers
indicating the “relative happiness” the investor gains from a
particular alternative. If an individual prefers good “A” to good “B”,
then the utility of “A” is higher than the utility of “B”. Thus, the utility
function characterizes individual’s preferences.

Von Neumann and Morgenstern showed that if there is
uncertainty, then it is the expected utility which characterizes the
preferences. The expected utility of an uncertain prospect, often
called a lottery, is defined as the probability weighted average of
the utilities of the simple outcomes.
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Introduction

The expected utility theory defines the lotteries by means of the
elementary outcomes and their probability distribution.

In this sense, the lotteries can also be interpreted as random
variables which can be discrete, continuous, or mixed, and the
preference relation is defined on the probability distributions of the
random variables.

The probability distributions are regarded as objective; that is, the
theory is consistent with the classical view that, in some sense,
the randomness is inherent in Nature and all individuals observe
the same probability distribution of a given random variable.
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Introduction

In 1954, a new theory of decision making under uncertainty
appeared, developed by Leonard Savage in his book The
Foundations of Statistics.

He showed that individual’s preferences in the presence of
uncertainty can be characterized by an expected utility calculated
as a weighted average of the utilities of the simple outcomes and
the weights are the subjective probabilities of the outcomes.

The subjective probabilities and the utility function arise as a pair
from the individual’s preferences. Thus, it is possible to modify the
utility function and to obtain another subjective probability
measure so that the resulting expected utility also characterizes
the individual’s preferences.

⇒ In some aspects, Savage’s approach is considered to be more
general than the von Neumann-Morgenstern theory.
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Introduction

Another mainstream utility theory describing choices under
uncertainty is the state-preference approach of Kenneth Arrow
and Gérard Debreu.

The basic principle is that the choice under uncertainty is reduced
to a choice problem without uncertainty by considering
state-contingent bundles of commodities. The agent’s preferences
are defined over bundles in all states-of-the-world and the notion
of randomness is almost ignored.

This construction is quite different from the theories of von
Neumann-Morgenstern and Savage because preferences are not
defined over lotteries.

The Arrow-Debreu approach is applied in general equilibrium
theories where the payoffs are not measured in monetary
amounts but are actual bundles of goods.
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Introduction

In 1992, a new version of the expected utility theory was advanced
by Amos Tversky and Daniel Kahneman — the cumulative
prospect theory. Instead of utility function, they introduce a value
function which measures the payoff relative to a reference point.

They also introduce a weighting function which changes the
cumulative probabilities of the prospect.

The cumulative prospect theory is a positive theory, explaining
individual’s behavior, in contrast to the expected utility theory
which is a normative theory prescribing the rational behavior of
agents.
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Introduction

It is possible to characterize classes of investors by the shape of
their utility function, such as non-satiable investors, risk-averse
investors, and so on.

If all investors of a given class prefer one prospect from another,
we say that this prospect dominates the other. In this fashion, the
first-, second-, and the third-order stochastic dominance relations
arise.

The stochastic dominance rules characterize the efficient set of a
given class of investors.
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Expected utility theory
St. Petersburg Paradox

We start with the well-known St. Petersburg Paradox which is
historically the first application of the concept of the expected
utility function. As a next step, we describe the essential result of
von Neumann-Morgenstern characterization of the preferences of
individuals.

St. Petersburg Paradox is a lottery game presented to Daniel
Bernoulli by his cousin Nicolas Bernoulli in 1713. Daniel Bernoulli
published the solution in 1734 but another Swiss mathematician,
Gabriel Cramer, had already discovered parts of the solution in
1728.
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Expected utility theory
St. Petersburg Paradox

The lottery goes as follows. A fair coin is tossed until a head appears.

If the head appears on the first toss, the payoff is $1.

If it appears on the second toss, then the payoff is $2. After that,
the payoff increases sharply.

If the head appears on the third toss, the payoff is $4, on the
fourth toss it is $8, etc.

Generally, if the head appears on the n-th toss, the payoff is 2n−1

dollars.
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Expected utility theory
St. Petersburg Paradox

At that time, it was commonly accepted that the fair value of a
lottery should be computed as the expected value of the payoff.
Since a fair coin is tossed, the probability of having a head on the
n-th toss equals 1/2n,

P(“First head on trialn”) = P(“Tail on trial 1”) · P(“Tail on trial 2”)

· . . . · P(“Tail on trial n-1”) · P(“Head on trialn”) =
1
2n

Therefore, the expected payoff is calculated as

Expected Payoff= 1 ·
1
2

+ 2 ·
1
4

+ . . . + 2n−1 ·
1
2n + . . .

=
1
2

+
1
2

+ . . . +
1
2

+ . . .

= ∞.
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Expected utility theory
St. Petersburg Paradox

Because the expected payoff is infinite, people should be willing to
participate in the game no matter how large the price of the ticket.
Nevertheless, in reality very few people would be ready to pay as
much as $100 for a ticket.
In order to explain the paradox, Daniel Bernoulli suggested that
instead of the actual payoff, the utility of the payoff should be
considered. Thus, the fair value is calculated by

Fair Value= u(1) ·
1
2

+ u(2) ·
1
4

+ . . . + u(2n−1) ·
1
2n + . . .

=
∞
∑

k=1

u(2k−1)

2n

where the function u(x) is the utility function. The value is
determined by the utility an individual gains.
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Expected utility theory
St. Petersburg Paradox

Daniel Bernoulli considered utility functions with diminishing
marginal utility; that is, the utility gained from one extra dollar
diminishes with the sum of money one has.

In the solution of the paradox, Bernoulli considered logarithmic
utility function, u(x) = log x , and showed that the fair value of the
lottery equals approximately $2.

The solutions of Bernoulli and Cramer are not completely
satisfactory because the lottery can be changed in such a way
that the fair value becomes infinite even with their choice of utility
functions.
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The von Neumann-Morgenstern expected utility theory

The St. Petersburg Paradox shows that the naive approach to
calculate the fair value of a lottery can lead to counter-intuitive
results.

A deeper analysis shows that it is the utility gained by an
individual which should be considered and not the monetary value
of the outcomes.

The theory of von Neumann-Morgenstern gives a numerical
representation of individual’s preferences over lotteries.

The numerical representation is obtained through the expected
utility and it turns out that this is the only possible way of obtaining
a numerical representation.

Probability 1/2 1/4 1/8 . . . 1/2n . . .
Payoff 1 2 4 . . . 2n−1 . . .

Table 1. The lottery in the St. Petersburg Paradox.
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The von Neumann-Morgenstern expected utility theory

Technically, a lottery is a probability distribution defined on the set
of payoffs. In fact, the lottery in the St. Petersburg Paradox is
given in Table 15.

Generally, lotteries can be discrete, continuous and mixed. Table
15 provides an example of a discrete lottery.

In the continuous case, the lottery is described by the cumulative
distribution function (c.d.f.) of the random payoff. Any portfolio of
common stocks, for example, can be regarded as a continuous
lottery defined by the c.d.f. of the portfolio payoff.

We use the notation PX to denote the lottery (or the probability
distribution), the payoff of which is the random variable X . The
particular values of the random payoff (the outcomes) we denote
by lower-case letters, x , and the probability that the payoff is
below x is denoted by P(X ≤ x) = FX (x), which is in fact the c.d.f.

Prof. Dr. Svetlozar Rachev (University of Karlsruhe)Lecture 5: Choice under uncertainty 2008 16 / 70



The von Neumann-Morgenstern expected utility theory

Denote by X the set of all lotteries. Any element of X is considered a
possible choice of an economic agent. If PX ∈ X and PY ∈ X , then
there are the following possible cases:

The economic agent may prefer PX to PY or be indifferent
between them, denoted by PX � PY .

The economic agent may prefer PY to PX or be indifferent
between them, denoted by PY � PX .

If both relations hold, PY � PX and PX � PY , then we say that the
economic agent is indifferent between the two choices, PX ∼ PY .

Sometimes, for notational convenience, we will use X � Y instead of
PX � PY without changing the assumption that we are comparing the
probability distributions.
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The von Neumann-Morgenstern expected utility theory

A preference relation or a preference order of an economic agent
on the set of all lotteries X is a relation concerning the ordering of
the elements of X , which satisfies certain axioms called the
axioms of choice1.

A numerical representation of a preference order is a real-valued
function U defined on the set of lotteries, U : X → R, such that
PX � PY if and only if U(PX ) ≥ U(PY ),

PX � PY ⇐⇒ U(PX ) ≥ U(PY ).

Thus, the numerical representation characterizes the preference
order and allows to compare real numbers.

1A detailed description of the axioms of choice is provided in the appendix to this
lecture.
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The von Neumann-Morgenstern expected utility theory

The von Neumann-Morgenstern theory states that if the
preference order satisfies certain technical continuity conditions,
then the numerical representation U has the form

U(PX ) =

∫

R

u(x)dFX (x) (1)

where u(x) is the utility function of the economic agent defined
over the elementary outcomes of the random variable X , the
probability distribution function of which is FX (x).

Equation (1) is actually the mathematical expectation of the
random variable u(X ),

U(PX ) = Eu(X ),

and for this reason the numerical representation of the preference
order is, in fact, the expected utility.
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The von Neumann-Morgenstern expected utility theory

In the equivalent numerical representation, it is the utility function
u(x) which characterizes U and, therefore, determines the
preference order.

In effect, the utility function can be regarded as the fundamental
building block which describes the agent’s preferences.
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The von Neumann-Morgenstern expected utility theory

As we explained, lotteries may be discrete, continuous or mixed.
If the lottery is discrete, then the the payoff is a discrete random
variable and equation (1) becomes

U(PX ) =
n
∑

j=1

u(xj)pj (2)

where xj are the outcomes and pj is the probability that the j-th
outcome occurs, pj = P(X = xj).

The formula for the fair value in the St. Petersburg Paradox given
by Daniel Bernoulli has the form of equation (2).

If the lottery is such that it has only one possible outcome (i.e., the
profit is equal to x with certainty), then the expected utility
coincides with the utility of the corresponding payoff, u(x).
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Types of utility functions

Some properties of the utility function are derived from common
arguments valid for investors belonging to a certain category.

If there are two prospects, one with a certain payoff of $100 and
another, with a certain payoff of $200, a non-satiable investor
would never prefer the first opportunity.

Therefore, the utility function indicates that u(200) ≥ u(100).

We can generalize that the utility functions of non-satiable
investors should be non-decreasing,

Non-decreasing property u(x) ≤ u(y), if x ≤ y for any
x , y ∈ R.

Both outcomes x and y occur with probability one. If the utility
function is differentiable, then the non-decreasing property
translates as a non-negative first derivative, u′(x) ≥ 0, x ∈ R.
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Types of utility functions

Other characteristics of investor’s preferences can also be described
by the shape of the utility function.

The investor gains a lower utility from a venture with some
expected payoff and a prospect with a certain payoff, equal to the
expected payoff of the venture; that is, the investor is risk averse.

Assume that the venture has two possible outcomes — x1 with
probability p and x2 with probability 1 − p, p ∈ [0, 1].

Thus, the expected payoff of the venture equals px1 + (1 − p)x2.
In terms of the utility function, the risk-aversion property is
expressed as

u(px1+(1−p)x2) ≥ pu(x1)+(1−p)u(x2), ∀x1, x2 andp ∈ [0, 1] (3)

where the left-hand side corresponds to the utility of the certain
prospect and the right-hand side is the expected utility of the
venture.
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Types of utility functions

By definition, if a utility function satisfies (3), then it is called
concave and, therefore, the utility functions of risk-averse
investors should be concave,

Concavity u(x) with support on a set S is said
to be a concave function if S is a
convex set and if u(x) satisfies (3)
for all x1, x2 ∈ S and p ∈ [0, 1].

If the utility function is twice differentiable, the concavity property
translates as a negative second derivative, u′′(x) ≤ 0, ∀x ∈ S.
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Types of utility functions

A formal measure of absolute risk aversion is the coefficient of
absolute risk aversion defined by

rA(x) = −
u′′(x)

u′(x)
, (4)

which indicates that the more curved the utility function is, the
higher the risk-aversion level of the investor (the more pronounced
the inequality in (3) becomes).
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Types of utility functions

Some common examples of utility functions:
1. Linear utility function

u(x) = a + bx

It always satisfies (3) with equality and represents a risk-neutral
investor. If b > 0, then it represents a non-satiable investor.

2. Quadratic utility function

u(x) = a + bx + cx2

If c < 0, then the quadratic utility function is concave and
represents a risk-averse investor.

3. Logarithmic utility function

u(x) = log x , x > 0

The logarithmic utility represents a non-satiable, risk averse
investor. It exhibits a decreasing absolute risk aversion since
rA(x) = 1/x and the coefficient of absolute risk aversion
decreases with x .
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Types of utility functions

4. Exponential utility function

u(x) = −e−ax , a > 0

The exponential utility represents a non-satiable, risk averse
investor. It exhibits a constant absolute risk aversion since
rA(x) = a and the coefficient of absolute risk aversion does not
depend on x .

5. Power utility function

u(x) =
−x−a

a
, x > 0, a > 0

The power utility represents a non-satiable, risk averse investor. It
exhibits a decreasing absolute risk aversion since rA(x) = a/x and
the coefficient of absolute risk aversion decreases with x .
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Stochastic dominance

We noted that different classes of investors can be defined
through the general unifying properties of their utility functions.

Suppose that there are two portfolios X and Y , such that all
investors from a given class do not prefer Y to X .

This means that the probability distributions of the two portfolios
differ in a special way that, no matter the particular expression of
the utility function, if an investor belongs to the given class, then Y
is not preferred by that investor.

In this case, we say that portfolio X dominates portfolio Y with
respect to the class of investors. Such a relation is often called a
stochastic dominance relation or a stochastic ordering.

Prof. Dr. Svetlozar Rachev (University of Karlsruhe)Lecture 5: Choice under uncertainty 2008 28 / 70



Stochastic dominance

Let’s obtain a criterion characterizing the stochastic dominance,
involving only the cumulative distribution functions (c.d.f.s) of X
and Y .

Then, we are able to identify by only looking at distribution
functions of X and Y if any of the two portfolios is preferred by an
investor from the class.
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First-order stochastic dominance

Suppose that X is an investment opportunity with two possible
outcomes — the investor receives $100 with probability 1/2 and
$200 with probability 1/2.

Similarly, Y is a venture with two payoffs — $150 with probability
1/2 and $200 with probability 1/2.

A non-satiable investor would never prefer the first opportunity
because of the following relationship between the corresponding
expected utilities,

U(PX ) = u(100)/2+u(200)/2 ≤ u(150)/2+u(200)/2 = U(PY ).

The inequality arises because u(100) ≤ u(150) as a non-satiable
investor by definition prefers more to less.
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First-order stochastic dominance

Denote by U1 the set of all utility functions representing
non-satiable investors; that is, the set contains all non-decreasing
utility functions.

We say that the venture X dominates the venture Y in the sense
of the first-order stochastic dominance (FSD), X �FSD Y , if a
non-satiable investor would not prefer Y to X . In terms of the
expected utility,

X �FSD Y if Eu(X ) ≥ Eu(Y ), for anyu ∈ U1.

The condition in terms of the c.d.f.s of X and Y characterizing the
FSD order is the following,

X �FSD Y if and only if FX (x) ≤ FY (x), ∀ x ∈ R. (5)

where FX (x) and FY (x) are the c.d.f.s of the two ventures.
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First-order stochastic dominance
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Figure: An illustration of the first-order stochastic dominance condition in
terms of the distribution functions, X �FSD Y . A non-satiable investor would
never invest in Y .
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First-order stochastic dominance

A necessary condition for FSD is that the expected payoff of the
preferred venture should exceed the expected payoff of the
alternative, EX ≥ EY if X �FSD Y .

This is true because the utility function u(x) = x represents a
non-satiable investor as it is non-decreasing and, therefore, it
belongs to the set U1.

Consequently, if X is preferred by all non-satiable investors, then it
is preferred by the investor with utility function u(x) = x which
means that the expected utility of X is not less than the expected
utility of Y , EX ≥ EY .
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First-order stochastic dominance

In general, the converse statement does not hold.

If the expected payoff of a portfolio exceeds the expected payoff of
another portfolio it does not follow that any non-satiable investor
would necessarily choose the portfolio with the larger expected
payoff.

This is because the inequality between the c.d.f.s of the two
portfolios given in (5) may not hold.

In effect, there will be non-satiable investors who would choose
the portfolio with the larger expected payoff and other non-satiable
investors who would choose the portfolio with the smaller
expected payoff.
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Second-order stochastic dominance

For decision making under risk, the concept of first-order
stochastic dominance is not very useful because the condition in
(5) is rather restrictive.

If the distribution functions of two portfolios satisfy (5), then a
non-satiable investor would never prefer portfolio Y . This
conclusion also holds for the sub-category of the non-satiable
investors who are also risk-averse.

Therefore, the condition in (5) is only a sufficient condition for this
sub-category of investors but is unable to characterize completely
their preferences. (See the following example).
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Second-order stochastic dominance

Consider a venture Y with two possible payoffs — $100 with
probability 1/2 and $200 with probability 1/2, and a prospect X
yielding $180 with probability one.

A non-satiable, risk-averse investor would never prefer Y to X
because the expected utility of Y is not larger than the expected
utility of X ,

Eu(X ) = u(180) ≥ u(150) ≥ u(100)/2 + u(200)/2 = Eu(Y )

where u(x) satisfies property (3) and is assumed to be
non-decreasing.

The distribution functions of X and Y do not satisfy (5).
Nevertheless, a non-satiable, risk-averse investor would never
prefer Y .
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Second-order stochastic dominance

Denote by U2 the set of all utility functions which are
non-decreasing and concave. Thus, the set U2 represents the
non-satiable, risk-averse investors and is a subset of U1, U2 ⊂ U1.
We say that a venture X dominates venture Y in the sense of
second-order stochastic dominance (SSD), X �SSD Y , if a
non-satiable, risk-averse investor does not prefer Y to X .
In terms of the expected utility,

X �SSD Y if Eu(X ) ≥ Eu(Y ), for anyu ∈ U2.

The condition in terms of the c.d.f.s of X and Y characterizing the
SSD order is the following,

X �SSD Y ⇐⇒

∫ x

−∞

FX (t)dt ≤
∫ x

−∞

FY (t)dt , ∀ x ∈ R. (6)

where FX (t) and FY (t) are the c.d.f.s of the two ventures.
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Second-order stochastic dominance

Similarly to FSD, inequality between the expected payoffs is a
necessary condition for SSD, EX ≥ EY if X �SSD Y , because the
utility function u(x) = x belongs to the set U2.

In contrast to the FSD, the condition in (6) allows the distribution
functions to intersect.

It turns out that if the distribution functions cross only once, then X
dominates Y with respect to SSD if FX (x) is below FY (x) to the
left of the crossing point. (See the illustration on the next slide).
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Second-order stochastic dominance
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Figure: An illustration of the second-order stochastic dominance condition in
terms of the distribution functions, X �SSD Y .
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Rothschild-Stiglitz stochastic dominance

Rothschild and Stiglitz (1970) introduce a slightly different order by
dropping the requirement that the investors are non-satiable.

A venture X is said to dominate a venture Y in the sense of
Rothschild-Stiglitz stochastic dominance (RSD) ,2 X �RSD Y , if no
risk-averse investor prefers Y to X .

In terms of the expected utility,

X �RSD Y if Eu(X ) ≥ Eu(Y ), for any concaveu(x).

2Also called concave order.
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Rothschild-Stiglitz stochastic dominance

The class of risk-averse investors is represented by the set of all
concave utility functions, which contains the set U2. Thus, the
condition in (6) is only a necessary condition for the RSD but it is
not sufficient to characterize the RSD order.

If the portfolio X dominates the portfolio Y in the sense of the
RSD order, then a risk-averter would never prefer Y to X .

This conclusion holds for the non-satiable risk-averters as well
and, therefore, the relation in (6) holds as a consequence,

X �RSD Y =⇒ X �SSD Y .
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Rothschild-Stiglitz stochastic dominance

The converse relation is not true. If the portfolio Y pays off $100
with probability 1/2 and $200 with probability 1/2 then no
risk-averse investor would prefer it to a prospect yielding $150
with probability one,

u(150) = u(100/2 + 200/2) ≥ u(100)/2 + u(200)/2 = Eu(Y ),

which is just an application of the assumption of concavity in (3).

It is not possible to determine whether a risk-averse investor
would prefer a prospect yielding $150 with probability one or the
prospect X yielding $180 with probability one.

Those who are non-satiable would certainly prefer the larger sum
but this is not universally true for all risk-averse investors because
we do not assume that u(x) is non-decreasing.
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Rothschild-Stiglitz stochastic dominance

The condition which characterizes the RSD stochastic dominance
is the following one,

X �RSD Y ⇐⇒







EX = EY ,
∫ x

−∞

FX (t)dt ≤
∫ x

−∞

FY (t)dt , ∀ x ∈ R.

(7)

In fact, this is the condition for the SSD order with the additional
assumption that the mean payoffs should coincide.
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Third-order stochastic dominance

We defined the coefficient of absolute risk aversion rA(x) in
equation (4). Generally, its values vary for different payoffs
depending on the corresponding derivatives of the utility function.
Larger values of rA(x) correspond to a more pronounced
risk-aversion effect.

A negative second derivative of the utility function for all payoffs
means that the investor is risk-averse at any payoff level. The
closer u′′(x) to zero, the less risk-averse the investor since the
coefficient rA(x) decreases, other things held equal.

The logarithmic utility function is an example of a utility function
exhibiting decreasing absolute risk aversion. The larger the payoff
level, the less “curved” the function is, which corresponds to a
closer to zero second derivative and a less pronounced
risk-aversion property. (See the illustration on the next slide).
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Third-order stochastic dominance
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Figure: The graph of the logarithmic utility function, u(x) = log x . For smaller
values of x , the graph is more curved while for larger values of x , the graph is
closer to a straight line and, thus, to risk neutrality.
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Third-order stochastic dominance

Utility functions exhibiting a decreasing absolute risk aversion are
important because the investors they represent favor positive to
negative skewness.

This is a consequence of the decreasing risk aversion — at higher
payoff levels such investors are less inclined to avoid risk in
comparison to lower payoff levels at which they are much more
sensitive to risk taking.

Technically, a utility function with a decreasing absolute risk
aversion has a non-negative third derivative, u′′′(x) ≥ 0, as this
means that the second derivative is non-decreasing.
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Third-order stochastic dominance

Denote by U3 the set of all utility functions which are
non-decreasing, concave, and have a non-negative third
derivative, u′′′(x) ≥ 0.
Thus, U3 represents the class of non-satiable, risk-averse
investors who prefer positive to negative skewness.
A venture X is said to dominate a venture Y in the sense of
third-order stochastic dominance (TSD), X �TSD Y , if an investor
with a utility function from the set U3 does not prefer Y to X .
terms of the expected utility,

X �TSD Y if Eu(X ) ≥ Eu(Y ), for anyu ∈ U3.

The set of utility functions U3 is contained in the set of
non-decreasing, concave utilities, U3 ⊂ U2. Therefore, the
condition (6) for SSD is only sufficient in the case of TSD,

X �SSD Y =⇒ X �TSD Y .

Prof. Dr. Svetlozar Rachev (University of Karlsruhe)Lecture 5: Choice under uncertainty 2008 47 / 70



Third-order stochastic dominance

The condition, characterizing the TSD stochastic dominance, is

X �TSD Y ⇐⇒ E(X − t)2
+ ≤ E(Y − t)2

+, ∀ t ∈ R (8)

where the notation (x − t)2
+ means the maximum between x − t

and zero raised to the second power, (x − t)2
+ = (max(x − t , 0))2.

The quantity E(X − t)2
+ is known as the second lower partial

moment of the random variable X . It measures the variability of X
below a target payoff level t .

Suppose that X and Y have equal means and variances. If X has
a positive skewness and Y has a negative skewness, then the
variability of X below any target payoff level t will be smaller than
the variability of Y below the same target payoff level.

In fact, it is only a matter of algebraic manipulations to show that,
indeed, if (6) holds, then (8) holds as well.
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Efficient sets and the portfolio choice problem

Taking advantage of the criteria for stochastic dominance, we can
characterize the efficient sets of the corresponding categories of
investors.

The efficient set of a given class of investors is defined as the set
of ventures not dominated with respect to the corresponding
stochastic dominance relation.

For example, the efficient set of the non-satiable investors is the
set of those ventures which are not dominated with respect to the
FSD order.

⇒ By construction, any venture which is not in the efficient set will be
necessarily discarded by all investors in the class.
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Efficient sets and the portfolio choice problem

The portfolio choice problem of a given investor can be divided into two
steps.

1. The first step concerns finding the efficient set of the class of
investors which the given investor belongs to. Any portfolio not
belonging to the efficient set will not be selected by any of the
investors in the class and is, therefore, suboptimal for the investor.
The efficient set comprises all portfolios not dominated with
respect to the SSD order.

2. The second step involves calculation of the expected utility of the
investor for the portfolios in the efficient set. The portfolio which
maximizes the investor’s expected utility represents the optimal
choice of the investor.
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Efficient sets and the portfolio choice problem

The difficulty of adopting this approach in practice is that it is very
hard to obtain explicitly the efficient sets.

That is why the problem of finding the optimal portfolio for the
investor is very often replaced by a more simple one, involving
only certain characteristics of the portfolios return distributions,
such as the expected return and the risk.

In this situation, it is critical that the more simple problem is
consistent with the corresponding stochastic dominance relation
in order to guarantee that its solution is among the portfolios in the
efficient set.

Checking the consistency reduces to choosing a risk measure
which is compatible with the stochastic dominance relation.
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Return versus payoff

Note that the expected utility theory deals with the portfolio payoff
and not the portfolio return.

Nevertheless, all relations defining the stochastic dominance
orders can be adopted if we consider the distribution functions of
portfolio returns rather than portfolio profits.

In the following, we examine the FSD and SSD orders concerning
log-return distributions and the connection to the corresponding
orders concerning random payoffs.
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Return versus payoff

Suppose that Pt is a random variable describing the price of a common
stock at a future time t , t > 0 where t = 0 is present time. We can
assume that the stock does not pay dividends.
Denote by rt the log-return for the period (0, t),

rt = log
Pt

P0
,

where P0 is the price of the common stock at present and is a
non-random positive quantity.
The random variable Pt can be regarded as the random payoff of the
common stock at time t , while rt is the corresponding random log-return.
Then the random payoff is

Pt = P0 exp(rt).

It turns out that, generally, stochastic dominance relations concerning
two log-return distributions are not equivalent to the corresponding
stochastic dominance relations concerning their payoff distributions.
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Return versus payoff

Consider an investor with utility function u(x) where x > 0 stands
for payoff. We demonstrate that the utility function of the investor
concerning the log-return can be expressed as

v(y) = u(P0 exp(y)), y ∈ R (9)

where y stands for the log-return of a common stock and P0 is the
price at present.

Equation (9) and the inverse,

u(x) = v(log(x/P0)), x > 0 (10)

provide the link between utilities concerning log-returns and
payoff.
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Return versus payoff

It turns out that an investor who is non-satiable and risk-averse
with respect to payoff distributions may not be risk-averse with
respect to log-return distributions.

The utility function u(x) representing such an investor has the
properties

u′(x) ≥ 0 and u′′(x) ≤ 0, ∀x > 0,

but it does not follow that the function v(y) given by (9) will satisfy
them.

In fact, v(y) also has non-positive first derivative but the sign of
the second derivative can be arbitrary.

Therefore the investor is non-satiable but may not be risk-averse
with respect to log-return distributions. (See the figure on the next
slide).
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Return versus payoff
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Figure: u(x) represents a non-satiable and risk-averse investor on the space
of payoffs and v(y) is the corresponding utility on the space of log-returns.
Apparently, v(y) is not concave.
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Return versus payoff

Conversely, an investor who is non-satiable and risk-averse with
respect to log-return distributions, is also non-satiable and
risk-averse with concerning payoff distributions.

This is true because if v(y) satisfies the corresponding derivative
inequalities, so does u(x) given by (10).

Consequently, it follows that the investors who are non-satiable
and risk-averse on the space of log-return distributions are a
sub-class of those who are non-satiable and risk-averse on the
space of payoff distributions.
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Return versus payoff

This analysis implies that the FSD order of two common stocks,
for example, remains unaffected as to whether we consider their
payoff distributions or their log-return distributions,

P1
t �FSD P2

t ⇐⇒ r1
t �FSD r2

t ,

where P1
t and P2

t are the payoffs of the two common stocks at
time t > t0, and r1

t and r2
t are the corresponding log-returns for the

same period.

However, such an equivalence does not hold for the SSD order.
Actually, the SSD order on the space of payoff distributions implies
the same order on the space of log-return distributions but not
vice versa,

P1
t �SSD P2

t =⇒ r1
t �SSD r2

t .
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Return versus payoff

Note that these relations are always true if the present values of
the two ventures are equal P1

0 = P2
0 .

Consider, for example, the FSD order of random payoffs. Suppose
that P1

t dominates P2
t with respect to the FSD order, P1

t �FSD P2
t .

According to the characterization in terms of the c.d.f.s we obtain

FP1
t
(x) ≤ FP2

t
(x), ∀x ∈ R.

Let’s represent this inequality in terms of the log-returns r1
t and r2

t :

P

(

r1
t ≤ log

x
P1

0

)

≤ P

(

r2
t ≤ log

x
P2

0

)

, ∀x ∈ R.

In fact, the above inequality implies that r1
t �FSD r2

t if P1
0 = P2

0 . In
case the present values of the ventures differ a lot, it may happen
that the c.d.f.s of the log-return distributions do not satisfy the
inequality Fr1

t
(y) ≤ Fr2

t
(y) for all y ∈ R, which means that the FSD

order may not hold.
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Probability metrics and stochastic dominance

The conditions for stochastic dominance involving the distribution
functions of the ventures X and Y represent a powerful method to
determine if an entire class of investors would prefer any of the
portfolios.

For example, in order to verify if any non-satiable, risk-averse
investor would not prefer Y to X , we have to verify if condition (6)
holds.

Note that a negative result does not necessarily mean that any
such investor would actually prefer Y or be indifferent between X
and Y . It may be the case that the inequality between the
quantities in (6) is satisfied for some values of the argument, and
for others, the converse inequality holds.

That is, neither X �SSD Y nor Y �SSD X is true. Thus, only a part
of the non-satiable, risk-averse investors may prefer X to Y ; it now
depends on the particular investor we consider.
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Probability metrics and stochastic dominance

Suppose the verification confirms that either X is preferred or the
investors are indifferent between X and Y , X �SSD Y . This result
is only qualitative.

If we know that no investors from the class prefer Y to Z ,
Z �SSD Y, then can we determine whether Z is more strongly
preferred to Y than X is?

The only way to approach these questions is to add a quantitative
element through a probability metric since only by means of a
probability metric can we calculate distances between random
quantities.
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Probability metrics and stochastic dominance

For example, we can choose a probability metric µ and we can
calculate the distances µ(X , Y ) and µ(Z , Y ). If µ(X , Y ) < µ(Z , Y ),
then the return distribution of X is “closer” to the return distribution
of Y than are the return distributions of Z and Y .

On this ground, we can draw the conclusion that Z is more
strongly preferred to Y than X is, on condition that we know in
advance the relations X �SSD Y and Z �SSD Y .
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Probability metrics and stochastic dominance

However, not any probability metric appears suitable for this
calculation.

Suppose that Y and X are normally distributed random variables
describing portfolio returns with equal means, X ∈ N(a, σ2

X ) and
Y ∈ N(a, σ2

Y ), with σ2
X < σ2

Y . Z is a prospect yielding a dollars with
probability one.

The c.d.f.s FX (x) and FY (x) cross only once at x = a and the
FX (x) is below FY (x) to the left of the crossing point because the
variance of X is assumed to be smaller than the variance of Y .

Therefore, according to the condition in (7), no risk-averse investor
would prefer Y to X and consequently X �SSD Y .

The prospect Z provides a non-random return equal to the
expected returns of X and Y , EX = EY = a, and, in effect, any
risk-averse investor would rather choose Z from the three
alternatives, Z �SSD X �SSD Y .
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Probability metrics and stochastic dominance

A probability metric with which we would like to quantify the
second-order stochastic dominance relation should be able to
indicate that,

1. µ(X , Y ) < µ(Z , Y ) because Z is more strongly preferred to Y , and
2. µ(Z , X ) < µ(Z , Y ) because Y is more strongly rejected than X with

respect to Z .

The assumptions in the example give us the information to order
completely the three alternatives and that is why we are expecting
the two inequalities should hold.
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Probability metrics and stochastic dominance

Let us choose the Kolmogorov metric,

ρ(X , Y ) = sup
x∈R

|FX (x) − FY (x)|,

for the purpose of calculating the corresponding distances. It
computes the largest absolute difference between the two
distribution functions.

Applying it to the distributions in the example, we obtain that
ρ(X , Z ) = ρ(Y , Z ) = 1/2 and ρ(X , Y ) < 1/2.

As a result, the Kolmogorov metric is capable of showing that Z is
more strongly preferred relative to Y but cannot show that Y is
more strongly rejected with respect to Z . (See the illustration on
the next slide).
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Figure: The distribution functions of two normal distributions with equal
means, EX = EY = a and the distribution function of Z = a with probability
one. The arrows indicate where the largest absolute difference between the
corresponding c.d.f.s is located. The arrow length equals the Kolmogorov
distance.
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Probability metrics and stochastic dominance

The example shows that there are probability metrics which are
not appropriate to quantify a stochastic dominance order.

We cannot expect that one probability metric will appear suitable
for all stochastic orders, rather, a probability metric may be best
suited for a selected stochastic dominance relation.

Technically, we have to impose another condition in order for the
problem of quantification to have a practical meaning.

The probability metric calculating the distances between the
ordered random variables should be bounded. If it explodes, then
we cannot draw any conclusions.

For instance, if µ(X , Y ) = ∞ and µ(Z , Y ) = ∞, then we cannot
compare the investors’ preferences.
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Probability metrics and stochastic dominance

Concerning the FSD order, a suitable choice for a probability
metric is the Kantorovich metric,

κ(X , Y ) =

∫

∞

−∞

|FX (x) − FY (x)|dx .

Note that the condition in (5) can be restated as
FX (x) − FY (x) ≤ 0, ∀x ∈ R.

Summing up all absolute differences gives an idea how “close” X
is to Y which is a natural way of measuring the distance between
X and Y with respect to the FSD order.

The Kantorovich metric is finite as long as the random variables
have finite means.
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Probability metrics and stochastic dominance

The RSD order can also be quantified in a similar fashion.
Consider the Zolotarev ideal metric,

ζ2(X , Y ) =

∫

∞

−∞

∣

∣

∣

∣

∫ x

−∞

FX (t)dt −
∫ x

−∞

FY (t)dt

∣

∣

∣

∣

dx .

The structure of this probability metric is directly based on the
condition in (7) and it calculates in a natural way the distance
between X and Y with respect to the RSD order.

The requirement that EX = EY in (7) combined with the additional
assumption that the second moments of X and Y are finite,
EX 2 < ∞ and EY 2 < ∞, represent the needed sufficient
conditions for the boundedness of ζ2(X , Y ).
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Probability metrics and stochastic dominance

Due to the similarities of the conditions (6) and (8), defining the
SSD and the TSD orders, it is reasonable to expect that the
Rachev ideal metric is best suited to quantify the SSD and the
TSD orders. (See the appendix of this lecture for details).
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