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Lagrangian 

minimize f0(x)

subject to fi(x)  0, i = 1, 2, . . . ,m

hi(x) = 0, i = 1, 2, . . . , p

Lagrangian: L : Rn ⇥Rm ⇥Rp ! R, with domL = D ⇥Rm ⇥Rp

L(x,�, ⌫) = f0(x) +
mX

i=1

�ifi(x) +
pX

i=1

⌫ihi(x)

- weighted sum of objective and constraint functions
- �i is Lagrange multiplier associated with ith inequality constraint
- ⌫i is Lagrange multiplier associated with ith equality constraint
- �, ⌫ are called dual variables or Lagrange multiplier vectors
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Lagrange Dual Function 

Lagrange dual function: g : Rm ⇥Rp ! R

g(�, ⌫) = inf
x2D

L(x,�, ⌫) = inf
x2D

 
f0(x) +

mX

i=1

�ifi(x) +
pX

i=1

⌫ihi(x)

!

- For each x the Lagrangian L(x,�, ⌫) is a�ne in (�, ⌫); thus, pointwise infimum
over x 2 D yields concave g(�, ⌫)

- For any � � 0 and ⌫, g(�, ⌫)  p⇤

- Linear approximation interpretation: Consider the following unconstrained
problem with the same optimal point and optimal value as the original one:

minimize f0(x) +
mX

i=1

I�(fi(x)) +
pX

i=1

I0(hi(x))

where I� and I0 are equal to 0 if the argument satisfies the subscript condition
and infinity otherwise. For any � � 0 and ⌫, L(x,�, ⌫) is simply an under-
estimator of the above formulation, and therefore minimizing L(x,�, ⌫) yields a
lower bound g of the original optimal value p⇤.
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Least-Norm Solution of Linear Equations  
minimize xTx

subject to Ax = b

- Lagrangian is

L(x, ⌫) = xTx+ ⌫T (Ax� b)

which is a convex quadratic function of x. Taking derivative of L(x, ⌫) yields

rxL(x, ⌫) = 2x+AT ⌫

which vanishes when x = � 1
2A

T ⌫.

- Therefore, the Lagrange dual function is

g(⌫) = L

✓
�1

2
AT ⌫, ⌫

◆
= (�1/4)⌫TAAT ⌫ � ⌫T b

which is concave in ⌫

- Lower bound property:

p⇤ � (�1/4)⌫TAAT ⌫ � ⌫T b, 8⌫
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Standard Form LP 

minimize cTx

subject to Ax = b

x � 0

- Lagrangian is

L(x,�, ⌫) = cTx� �Tx+ ⌫T (Ax� b) = (cT � �T + ⌫TA)x� ⌫T b

- Lagrange dual function is

g(�, ⌫) =

(
�⌫T b cT � �T + ⌫TA = 0

�1 otherwise

which is linear on a�ne domain and hence concave

- Lower bound property:

p⇤ � �⌫T b, for any ⌫ such that cT + ⌫TA � 0
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Lagrange Dual and Conjugate Function 

minimize f0(x)

subject to Ax � b, Cx = d

Dual function:

g(�, ⌫) = inf
x2domf0

(f0(x) + �T (Ax� b) + ⌫T (Cx� d))

= inf
x2domf0

(f0(x) + (AT�+ CT ⌫)Tx� �T b� ⌫T d)

= �f⇤
0 (�AT�� CT ⌫)� �T b� ⌫T d

- recall definition of conjugate: f⇤(y) = supx2domf (y
Tx� f(x))

- simplifies derivation of dual if conjugate of f0 is known

- example: entropy maximization

f0(x) =
nX

i=1

xi log xi, f⇤
0 (y) =

nX

i=1

eyi�1
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Lagrange Dual Problem 

maximize � bT ⌫

subject to AT ⌫ + c ⌫ 0

minimize cTx

subject to Ax = b

x ⌫ 0

maximize g(�, ⌫)

subject to � ⌫ 0

- called the Lagrange dual problem, associated with the primal problem
- finds best lower bound on p⇤, obtained from Lagrange dual function
- a convex optimization problem; optimal value denoted by d⇤

- �, ⌫ are said to be dual feasible if � ⌫ 0 and (�, ⌫) 2 dom g
- often simplified by making implicit constraints (�, ⌫) 2 dom g explicit

example: standard form LP and its dual
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Weak and Strong Duality 

weak duality: d⇤  p⇤

- always holds (for convex and nonconvex problems)
- can be used to find nontrivial lower bound for di�cult primal problems
- p⇤ � d⇤ is referred to as the optimal duality gap, which is always nonnegative

strong duality: d⇤ = p⇤

- does not hold in general
- (usually) holds for convex problems
- conditions that guarantee strong duality in convex problems are called con-
straint qualifications
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Slater’s Constraint Qualifications  

strong duality holds for a convex problem

minimize f0(x)

subject to fi(x)  0, i = 1, 2, . . . ,m

Ax = b

if it is strictly feasible, i.e.,

9x 2 intD : fi(x) < 0, i = 1, 2, . . . ,m, Ax = b

- also guarantees that the dual optimum is attained if d⇤ = p⇤ > �1, i.e. there
exists a dual feasible (�⇤, ⌫⇤) such that g(�⇤, ⌫⇤) = d⇤ = p⇤

- can be sharpened; there also exist many other types of constraint qualifications

- su�cient but not necessary condition; strong duality can hold for convex prob-
lems not satisfying Slater’s condition, or for nonconvex problems
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Geometric Interpretation 

for simplicity, consider problem with one constraint f1(x)  0

interpretation of dual function:

g(�) = inf
(u,t)2G

(t+ �u), G = {(f1(x), f0(x))|x 2 D}

- �u+ t = g(�) is (non-vertical) supporting hyperplane to G

- hyperplane intersects t-axis at t = g(�)
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Geometric Interpretation 

epigraph variation: same interpretation if G is replaced with

A = {(u, t)|f1(x)  u, f0(x)  t for some x 2 D}

strong duality
- holds if there is a non-vertical supporting hyperplane to A at (0, p⇤)
- for convex problem, A is convex, hence has supp. hyperplane at (0, p⇤)
- Slater’s condition: if there exist (ũ, t̃) 2 A with ũ < 0, then supporting
hyperplanes at (0, p⇤) must be non-vertical
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Max-Min Characterization of Duality 

- weak duality: sup
�⌫0

inf
x

L(x,�)  inf
x

sup
�⌫0

L(x,�)

- strong duality: sup
�⌫0

inf
x

L(x,�) = inf
x

sup
�⌫0

L(x,�)

- strong max-min property holds only in special cases, e.g., when f : Rn⇥Rm !
R is the Lagrangian of a problem for which strong duality attains, W = Rn

and Z = Rm
+

- for simplicity, assume no equality constraints

d⇤ = sup
�⌫0

inf
x

L(x,�) and p⇤ = inf
x

sup
�⌫0

L(x,�)

- In general, we have max-min inequality

sup
z2Z

inf
w2W

f(w, z)  inf
w2W

sup
z2Z

f(w, z)

When the equality holds in the above, we say f (and W,Z) satisfy the strong
max-min property or the saddle-point property. Game interpretation.
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Complementary Slackness 

assume strong duality holds, x⇤ is primal optimal, (�⇤, ⌫⇤) is dual optimal

f0(x
⇤) = g(�⇤, ⌫⇤) = inf

x

 
f0(x) +

mX

i=1

�⇤
i fi(x) +

pX

i=1

⌫⇤i hi(x)

!

 f0(x
⇤) +

mX

i=1

�⇤
i fi(x

⇤) +
pX

i=1

⌫⇤i hi(x
⇤)

 f0(x
⇤)

hence the two inequalities hold with equality
- x⇤ minimizes L(x,�⇤, ⌫⇤)
- �⇤

i fi(x
⇤) = 0 for i 2 [1 : m] (known as complementary slackness)

�⇤
i > 0 ) fi(x

⇤) = 0, fi(x
⇤) < 0 ) �⇤

i = 0
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Karush-Kuhn-Tucker (KKT) Conditions 

KKT conditions (for di↵erentiable fi, hi):

1. primal constraints: fi(x)  0, i 2 [1 : m], hi(x) = 0, i 2 [1 : p]

2. dual constraints: � ⌫ 0

3. complementary slackness: �ifi(x) = 0, i 2 [1 : m]

4. gradient of Lagrangian w.r.t. x vanishes

rf0(x) +
mX

i=1

�irfi(x) +
pX

i=1

⌫irhi(x) = 0

If strong duality holds and x,�, ⌫ are optimal, then they must satisfy the KKT
condition
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KKT Conditions For Convex Problems 

if x,�, ⌫ satisfy KKT for a convex problem, then they are optimal:
- from complementary slackness: f0(x) = L(x,�, ⌫)
- from 4th condition (and convexity): g(�, ⌫) = L(x,�, ⌫)
hence, f0(x) = g(�, ⌫)

if Slater’s condition is satisfied:
x is optimal if and only if there exist �, ⌫ that satisfy KKT conditions
- recall that Slater implies strong duality, and dual optimum is attained
- generalizes optimality condition rf0(x) = 0 for unconstrained problem
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Example: Waterfilling 
Consider the problem of allocating a total power of one to a set of n commu-
nication channels with noise levels ↵1,↵2, . . . ,↵n. The goal is to maximize the
total communication rate

Pn
i=1 log(1 + xi/↵i), i.e.,

interpretation
- n patches; level of patch is at height ↵i

- flood are with unit amount of water
- resulting level is 1/⌫⇤

minimize �
nX

i=1

log(↵i + xi)

subject to x ⌫ 0,1Tx = 1

By KKT conditions, x is optimal i↵ x ⌫ 0, 1Tx = 1, and 9�, ⌫ such that

� ⌫ 0, �ixi = 0,
1

xi + ↵i
+ �i = ⌫

- if ⌫ < 1/↵i: �i = 0 and xi = 1/⌫ � ↵i

- if ⌫ � 1/↵i: �i = ⌫ � 1/↵i and xi = 0
- determine ⌫ from 1Tx =

Pn
i=1 max{0, 1/⌫ � ↵i} = 1
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Perturbation and Sensitivity Analysis 

maximize g(�, ⌫)

subject to � ⌫ 0

minimize f0(x)

subject to fi(x)  0, i = 1, 2, . . . ,m

hi(x) = 0, i = 1, 2, . . . , p

unperturbed problem and its dual

perturbed problem and its dual

minimize f0(x)

subject to fi(x)  ui, i = 1, 2, . . . ,m

hi(x) = vi, i = 1, 2, . . . , p

maximize g(�, ⌫)� uT�� vT ⌫

subject to � ⌫ 0

- x is primal variable; u, v are parameters
- p⇤(u, v) is optimal value as a function of u, v
- what can we say about p⇤(u, v) based on the solution of the unperturbed
problem and its dual?
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Global Sensitivity Result 

assume strong duality holds for unperturbed problem, and �⇤, ⌫⇤ are dual opti-
mal for unperturbed problem. Apply weak duality to perturbed problem:

p⇤(u, v) � g(�⇤, ⌫⇤)� uT�⇤ � vT ⌫⇤

= p⇤(0, 0)� uT�⇤ � vT ⌫⇤

- �⇤
i large: p⇤ increases greatly if we tighten constraint i (choose ui < 0)

- �⇤
i small: p⇤ doesn’t decrease much if we loosen constraint i (choose ui > 0)

- ⌫⇤i large and positive: p⇤ increases greatly if we take vi < 0
⌫⇤i large and negative: p⇤ increases greatly if we take vi > 0

- ⌫⇤i small and positive: p⇤ doesn’t decrease much if we take vi > 0
⌫⇤i small and negative: p⇤ doesn’t decrease much if we take vi < 0
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Local Sensitivity Result 

This gives us a quantitative measure of how active a constraint is at the opti-
mum x⇤:

- fi(x⇤) < 0 and �⇤
i = 0 (complementary slackness): constraint i is inactive and

can be tightened or loosened a small amount without a↵ecting the optimal value

- fi(x⇤) = 0 and �⇤
i is small: constraint i is active, but can be tightened or

loosened a small amount without much e↵ect on the optimal value

- fi(x⇤) = 0 and �⇤
i is large: constraint i is active, and loosening or tightening

it a bit will have great e↵ect on the optimal value

if (in addition) p⇤(u, v) is di↵erentiable at (0, 0), then

�⇤
i = �@p⇤(0, 0)

@ui
, ⌫⇤i = �@p⇤(0, 0)

@vi
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Duality and Problem Reformulations 

equivalent formulations of a problem can lead to very di↵erent duals

reformulating the primal problem can be useful when the dual is di�cult to
derive, or uninteresting

common reformulations
- introduce new variables and equality constraints
- make explicit constraints implicit or vice-versa
- transform objective or constraint functions, e.g., replace f0(x) by �(f0(x))
with � convex, increasing
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Introducing New Variables and Equality Constraints  

minimize f0(Ax+ b)

- dual function is constant: g = infx L(x) = infx f0(Ax+ b) = p⇤

- we have strong duality, but dual is quite useless

reformulated problem and its dual

minimize f0(y)

subject to Ax+ b� y = 0

maximize bT ⌫ � f⇤
0 (⌫)

subject to AT ⌫ = 0

dual function follows from

g(⌫) = inf
x,y

(f0(y)� ⌫T y + ⌫TAx+ bT ⌫)

=

(
�f⇤

0 (⌫) + bT ⌫ AT ⌫ = 0

�1 otherwise
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Implicit Constraints 

LP with box constraints: primal and dual problem

maximize � bT ⌫ � 1T�1 � 1T�2

subject to c+AT ⌫ + �1 � �2 = 0

�1 ⌫ 0,�2 ⌫ 0

Reformulation with box constraints made implicit

dual function g(⌫) = inf
�1�x��1

(cTx+ ⌫T (Ax� b))

= �bT ⌫ � kAT ⌫ + ck1

dual problem: maximize �bT ⌫ � kAT ⌫ + ck1

minimize cTx

subject to Ax = b

� 1 � x � 1

minimize f0(x) =

(
cTx �1 � x � 1

1 otherwise

subject to Ax = b
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Semidefinite Program 
Primal SDP (Fi, G 2 Sk)

minimize cTx

subject to x1F1 + x2F2 + · · ·+ xnFn �G � 0

- Lagrange multiplier is matrix Z 2 Sk

- Lagrangian L(x, Z) = cTx+ tr(Z(x1F1 + · · ·+ xnFn �G))
- dual function

g(Z) = inf
x

L(x, Z) =

(
�tr(GZ) tr(FiZ) + ci = 0, i = 1, . . . , n

�1 otherwise

dual SDP:

maximize � tr(GZ)

subject to Z ⌫ 0, tr(FiZ) + ci = 0, i = 1, . . . , n

p⇤ = d⇤ if primal SDP is strictly feasible (9x with x1F1 + · · ·+ xnFn � G)


