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* Lagrange Dual Function



Lagrangian

minimize fo(x)
subject to  fi(z) < 0,i=
0

Lagrangian: L : R" x R™ x RP — R, with domL =D x R™ x RP

L(z,\v) = fo(z) + Z Aifi(x) + Z vihi ()

- weighted sum of objective and constraint functions

- \; is Lagrange multiplier associated with ¢th inequality constraint
- v; is Lagrange multiplier associated with ith equality constraint

- A\, v are called dual variables or Lagrange multiplier vectors



Lagrange Dual Function

Lagrange dual function: g : R™ x RP - R

g(\,v) = inf L(z,\,v) = inf (fg(a:) + Z Nifi(z) + Z I/ihz-(x)>

xeD x€eD

- For each x the Lagrangian L(z, A\, v) is affine in (A, v); thus, pointwise infimum
over x € D yields concave g(\,v)

- For any A > 0 and v, g(\,v) < p*

- Linear approximation interpretation: Consider the following unconstrained
problem with the same optimal point and optimal value as the original one:

minimize fo(e) + > I-(fi(@)) + 3 lo(hi(=))

where I_ and I are equal to O if the argument satisfies the subscript condition
and infinity otherwise. For any A\ > 0 and v, L(x,\,v) is simply an under-
estimator of the above formulation, and therefore minimizing L(x, A, v) yields a
lower bound g of the original optimal value p*.



Least-Norm Solution of Linear Equations

minimize z!x
subject to Ax =10
- Lagrangian is
L(z,v) = 'z + v (Az — b)
which is a convex quadratic function of z. Taking derivative of L(x,v) yields
VoL(z,v) =2z + Alv
which vanishes when x = —%ATV.

- Therefore, the Lagrange dual function is

1
g(v)=1L (—§AT1/, 1/) = (=1/4)vTAATY — "D

which is concave in v

- Lower bound property:

p* > (=1/4)v" AATY — b, Yy



Standard Form LP

minimize ¢z

subject to Ax =b
x>0

- Lagrangian is
Lz, \v)=clae = Mae+ v (Az —b) = (¢ = A + v A — vl
- Lagrange dual function is

—vTh N+ TA=0
g\ v) = {

—00 otherwise

which is linear on affine domain and hence concave

- Lower bound property:

p* > —v1b, for any v such that ¢! + 1A >0



Lagrange Dual and Conjugate Function

minimize fo(x)
subject to Ax Xb,Cx =d

Dual function:

g\ v)= inf (fo(x) + N (Az —b) + v (Cx — d))

re€dom fj
= Cijlmf ; (folz) + (AN +CTv)e — Xb —vhd)
redaom fq
= —fX(=ATXN=CTv) = X'b—1ld
- recall definition of conjugate: f*(y) = sup,cdoms (¥’ — f(2))

- simplifies derivation of dual if conjugate of fy is known

- example: entropy maximization

Z x;logx;, fiy Z edi™
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Lagrange Dual Problem

maximize ¢(A,v)
subject to A >0

- called the Lagrange dual problem, associated with the primal problem
- finds best lower bound on p*, obtained from Lagrange dual function
- a convex optimization problem; optimal value denoted by d*

- A\, v are said to be dual feasible if A = 0 and (\,v) € dom g
- often simplified by making implicit constraints (A, ) € dom g explicit

example: standard form LP and its dual

minimize ¢z maximize — by

subject to Az =10 subject to ATv 4+ ¢ >0
x>0
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Weak and Strong Duality

weak duality: d* < p*

- always holds (for convex and nonconvex problems)

- can be used to find nontrivial lower bound for difficult primal problems

- p* — d* is referred to as the optimal duality gap, which is always nonnegative

strong duality: d* = p*

- does not hold in general

- (usually) holds for convex problems

- conditions that guarantee strong duality in convex problems are called con-
straint qualifications
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Slater’s Constraint Qualifications

strong duality holds for a convex problem

minimize fy(z)
subject to  fi(x) <0,i=1,2,...,m
Ax =0

if it is strictly feasible, i.e.,

dJr e intD: fi(x)<0,i=1,2,...,m, Ax =10

- also guarantees that the dual optimum is attained if d* = p* > —o0, i.e. there
exists a dual feasible (A\*,v*) such that g(\*,v*) = d* = p*

- can be sharpened; there also exist many other types of constraint qualifications

- sufficient but not necessary condition; strong duality can hold for convex prob-
lems not satisfying Slater’s condition, or for nonconvex problems
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Geometric Interpretation
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Geometric Interpretation

for simplicity, consider problem with one constraint fi(x) <0

interpretation of dual function:

g(A) = (ui,g{;g(t +Au), G={(fi(z), fo(z))|z € D}

- A+t = g(A) is (non-vertical) supporting hyperplane to G

- hyperplane intersects t-axis at t = g(\)
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Geometric Interpretation

epigraph variation: same interpretation if G is replaced with

A ={(u,t)|f1(x) < u, fo(z) <t for some = € D}

A

*

Mutt=gN)— P
S K
B

strong duality

- holds if there is a non-vertical supporting hyperplane to A at (0, p*)

- for convex problem, A is convex, hence has supp. hyperplane at (0, p*)

- Slater’s condition: if there exist (@,f) € A with @ < 0, then supporting

hyperplanes at (0, p*) must be non-vertical

u
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Saddle-point Interpretation
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Max-Min Characterization of Duality

- for simplicity, assume no equality constraints

d* = supinf L(x, \) and p* = infsup L(z, \)
AZ0 ¥ T A=0

- weak duality: supinf L(x, \) < infsup L(z, \)
AZ0 * T -0

- strong duality: supinf L(z, \) = inf sup L(x, \)
A=0 @ T =0

- In general, we have max-min inequality

1/2

sup inf < inf s : o
sup inf, flw,z) < inf Sup f(w, 2)

When the equality holds in the above, we say f (and W, Z) satisfy the strong
max-min property or the saddle-point property. Game interpretation.

- strong max-min property holds only in special cases, e.g., when f : R" xR™ —
R is the Lagrangian of a problem for which strong duality attains, W = R"
and Z = R
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Optimality Conditions
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Complementary Slackness

assume strong duality holds, x* is primal optimal, (A*,v*) is dual optimal
p
fola®) = (A", v*) = inf ( )+ ZA*J‘} " sz‘hxw))
i=1
< folx +ZA filz +Zv:hz-(x
i=1

< fo(z")
hence the two inequalities hold with equality
- 2* minimizes L(x, \*, ™)

- Affi(x*) =0 for i € [1 : m] (known as complementary slackness)

XS 0= fi(at) =0, fi(z*) <0= A =0
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Karush-Kuhn-Tucker (KKT) Conditions

KKT conditions (for differentiable f;, h;):

1. primal constraints: f;(x) < 0,7 € [1:m], hi(x) =0,i € [1 : p]
2. dual constraints: A > 0

3. complementary slackness: \;f;(x) = 0,7 € [1 : m]

4. gradient of Lagrangian w.r.t. x vanishes

V fo(z }:AVﬁ E:th

If strong duality holds and x, A\, v are optimal, then they must satisfy the KKT
condition
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KKT Conditions For Convex Problems

if x, A\, v satisfy KKT for a convex problem, then they are optimal:
- from complementary slackness: fo(z) = L(x, A\, v)

- from 4th condition (and convexity): g(\,v) = L(z, A\, v)

hence, fo(x) = g(\,v)

if Slater’s condition is satisfied:

x is optimal if and only if there exist A, v that satisfy KKT conditions

- recall that Slater implies strong duality, and dual optimum is attained
- generalizes optimality condition V fy(x) = 0 for unconstrained problem
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Example: Waterfilling

Consider the problem of allocating a total power of one to a set of n commu-
nication channels with noise levels aq, as,...,a,. The goal is to maximize the
total communication rate Y., log(1 + z;/a;), i.e.,

minimize — Z log(c; + x;)
i=1
subject to x> 0,172z =1

By KKT conditions, x is optimal iff x > 0, 172 = 1, and 3\, v such that

)\EO, )\Z(L'Z:O, —I—)\z:V

a:i+ozi
-ifv<1/a;: Ay =0and z; = 1/v — «
-ifv>1/a;: \y=v—1/a; and x; =0
- determine v from 17z =>""  max{0,1/v —a;} =1

interpretation

- n patches; level of patch is at height «; 1/v”
- flood are with unit amount of water

- resulting level is 1/v*

22



Outline

Perturbation and Sensitivity Analysis
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Perturbation and Sensitivity Analysis

unperturbed problem and its dual

minimize fy(x) maximize ¢g(\,v)
subject to  fi(x) <0,i=1,2,...,m subject to A >0
hz(x) = O,Z = 1,2,...,]?

perturbed problem and its dual

minimize fy(x) maximize g(\,v) —ul A — o'y
subject to  fi(z) <wgi=1,2,...,m subject to A = 0
hi(x) =v;,i=1,2,...,p

- x is primal variable; u, v are parameters

- p*(u,v) is optimal value as a function of u, v

- what can we say about p*(u,v) based on the solution of the unperturbed
problem and its dual?
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Global Sensitivity Result

assume strong duality holds for unperturbed problem, and \*, v* are dual opti-
mal for unperturbed problem. Apply weak duality to perturbed problem:

p*(u,v) > g(A\",v") — ul N — ol p*
= p*(0,0) —uf X — ol v

- AF large: p* increases greatly if we tighten constraint ¢ (choose u; < 0)
- AF small: p* doesn’t decrease much if we loosen constraint i (choose u; > 0)

- v, large and positive: p* increases greatly if we take v; <0
v’ large and negative: p* increases greatly if we take v; > 0

- v; small and positive: p* doesn’t decrease much if we take v; > 0
v; small and negative: p* doesn’t decrease much if we take v; <0
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Local Sensitivity Result

if (in addition) p*(u,v) is differentiable at (0,0), then

o 00 L 90,0

(‘9ui ’ ¢ (%z-

This gives us a quantitative measure of how active a constraint is at the opti-
mum r*:

- fi(z*) < 0 and A\¥ = 0 (complementary slackness): constraint i is inactive and
can be tightened or loosened a small amount without affecting the optimal value

- fi(x*) = 0 and A} is small: constraint ¢ is active, but can be tightened or
loosened a small amount without much effect on the optimal value

- fi(x*) = 0 and A} is large: constraint 7 is active, and loosening or tightening
it a bit will have great effect on the optimal value
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Duality and Problem Reformulations

equivalent formulations of a problem can lead to very different duals

reformulating the primal problem can be useful when the dual is difficult to
derive, or uninteresting

common reformulations

- introduce new variables and equality constraints

- make explicit constraints implicit or vice-versa

- transform objective or constraint functions, e.g., replace fyo(x) by o(fo(x))
with ¢ convex, increasing

28



Introducing New Variables and Equality Constraints

minimize fy(Ax + b)

- dual function is constant: g = inf, L(z) = inf, fo(Ax 4+ b) = p*
- we have strong duality, but dual is quite useless

reformulated problem and its dual

minimize fo(y) maximize b'v — f5(v)

subject to Axr+b—y =20 subject to ATy =0

dual function follows from

— 00 otherwise
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Implicit Constraints

LP with box constraints: primal and dual problem

minimize ¢l maximize —blrv—1TN\ —1T),
subject to Ax =10 subject to ¢+ ATv 4+ — X =0
—-1=<z=1 Az 0,A2 20

Reformulation with box constraints made implicit

cl'e —1<zx<1

00 otherwise

minimize fo(z) = {

subject to Ax =1b

: . T T _
dual function g(v) = _1;312_1(6 xr+ v’ (Ax — b))

= —b'v—||AT v + |y

dual problem: maximize —b'v — ||ATv + ¢||;
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Generalized Inequalities
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Semidefinite Program

Primal SDP (F;,G € S¥)

minimize cfx

subject to z1Fy +x9Fs+ -+ x,F, —G =<0

- Lagrange multiplier is matrix Z € S*

- Lagrangian L(z,Z) = clo +tr(Z(x  Fy + - -+ 2, F, — GQ))

- dual function

— 00 otherwise

g(Z) = igfL(x,Z) = {

dual SDP:

maximize —tr(G2)

subject to Z = 0,tr(F;Z)+¢; =0,i=1,...

p* = d* if primal SDP is strictly feasible (dz with x1 F; +

—tr(GZ) tr(F;Z)+c¢;=0,i=1,...,n

it 2, Fp < G)
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