
CS110 Spring 2021
Lecture 5: Introduction to Multiprocessing
(note: pre-lecture material included for your convenience)

Principles of Computer Systems
Stanford University, Dept. Of Computer Science

Lecturer: Roz Cyrus
Content adapted from material by Jerry Cain. Diagrams by Roz.

1
Version 3

Roslyn Michelle Cyrus | Stanford University 2

● Pre-lecture content: control flow, exceptions, & context switches
● Process life cycle
● The fork system call
● The waitpid system call

Lecture Overview

Bryant & O'Hallaron: Sections 1 - 4 of: Chapter 1 (reader) or 8 (full textbook)

Reading Material

Roslyn Michelle Cyrus | Stanford University 3

● Congrats on finishing Assignment 1!
● Assignment 2 is out...get started EARLY (a.k.a. now)
● Office hours

Updates

Roslyn Michelle Cyrus | Stanford University

● Today's lecture examples reside within:
/usr/class/cs110/lecture-examples/processes.
○ First ssh into a myth machine (ssh yourusername@myth.stanford.edu). When

prompted for your password, it is normal for the text not to appear as you enter your
password. Once logged onto a myth machine, cd into the above directory.

○ To get started, type:
git clone /usr/class/cs110/lecture-examples cs110-lecture-examples
at the command prompt to create a local copy of the master.

○ Each time I mention there are new examples (or whenever you think to), descend into
your local copy and type git pull. Doing so will update your local copy to match
whatever the master has become.

4

Accessing Code Examples

mailto:yourusername@myth.stanford.edu

Roslyn Michelle Cyrus | Stanford University 5

Pre-Lecture Slides

Roslyn Michelle Cyrus | Stanford University

● A process is an instance of a program in execution, versus a program, which is the
code and data. Processes are active, whereas programs are passive.

● A program always runs in the context of some process. This context has state that the
program needs in order to properly run.

● Processes provide two key abstractions to an application:
○ 1. A private address space that provides the illusion that our program has exclusive use of memory

(discussed in the last lecture)

○ 2. An independent logical control flow that provides the illusion that our program has exclusive use of
the processor

6

Processes Recap
From B&O’s Exceptional Control Flow chapter, section 2

Roslyn Michelle Cyrus | Stanford University

● The processor’s program counter (which contains the next address to be executed)
assumes a sequence of addresses that each correspond to an instruction.

● Each transition from one instruction to another is a control transfer, and a sequence of
such control transfers is called the flow of control (control flow) of the processor.

○ A “smooth” control flow runs contiguous (adjacent in memory) instructions. Abrupt changes in this
flow could occur from something program-related, such as jumps, function calls and returns.

○ Other abrupt changes to the system may not have to do with the running program at all. Examples:

■ A hardware timer going off

■ Network packets arrive and must be stored in memory

■ Another program is ready to receive data

■ Parent processes (explained later) are notified when their children processes terminate

○ These kinds of abrupt changes are called exceptional control flow (keyword: “exception”)

7

Introducing Control Flow
From B&O’s Exceptional Control Flow chapter, intro section

Roslyn Michelle Cyrus | Stanford University

● Exceptional control flow occurs at all levels of a computer system. Examples:
○ Hardware level: events detected by hardware trigger abrupt control transfers to exception handlers

○ OS level: the kernel transfers control from one user process to another via context switches
(explained in a later slide).

○ Application level: a process can send a signal to another process, which abruptly transfers control to
a signal handler in the recipient.

■ A signal is a small message that notifies a process that an event of some type occurred. Signals
are often sent by the kernel, but they can be sent from other processes as well. Signals and
signal handlers will be explained in greater detail in the next lecture.

8

Control Flow (continued)
From B&O’s Exceptional Control Flow chapter, intro section

Roslyn Michelle Cyrus | Stanford University

● An exception is an abrupt change in the control flow in response to some change in the
processor’s state.

9

Exceptions
From B&O’s Exceptional Control Flow chapter, section 1

○ A change in the processor’s state (an event) triggers an abrupt control transfer (an exception) from
the program to an exception handler. After it finishes processing, the handler either returns control
to the interrupted program (to either the same instruction or the next one) or aborts.

Roslyn Michelle Cyrus | Stanford University

● Each type of possible exception in a system is assigned a unique nonnegative integer
exception number. x86-64 systems: up to 256 exception types, numbered 0 - 255.

● Some numbers are assigned by designers of the processor. Examples:
○ Divide by zero (exception number 0)
○ Arithmetic overflows

10

Exceptions (continued)
From B&O’s Exceptional Control Flow chapter, section 1

● Other numbers are assigned by the
designers of the kernel. (e.g. system calls)

● An exception table stores the address of
the handler code for each exception. It is
initialized at boot time. Exception control
handlers run in kernel mode, meaning they
have complete access to all system
resources. Once hardware triggers the
exception, the handler runs in software and
then optionally returns to the interrupted
program.

○ Page faults (exception number 14)
○ Memory access violations

Roslyn Michelle Cyrus | Stanford University

Types of exceptions

11

Exceptions (continued)
From B&O’s Exceptional Control Flow chapter, section 1

Class Cause Async/sync Return behavior

Interrupt Signal from I/O device that is external to the
processor

Async Always returns to next instruction

Trap Intentional exception as a result of executing an
instruction. Includes system calls

Sync Always returns to next instruction

Fault Potentially recoverable error (e.g. a page fault) Sync Might return to current instruction

Abort Nonrecoverable error Sync Never returns

Roslyn Michelle Cyrus | Stanford University

● The most important use of traps is to provide a procedure-like interface between user
programs and the kernel, known as a system call (explained in the previous lecture). (View a
list of Linux system calls)

○ Regular functions run in user mode, which restricts the types of instructions they can execute.

○ A system call runs in kernel mode, which allows it to execute privileged instructions and access a
stack defined in the kernel.

● User programs often need to request services from the kernel such as handing a file (read,
write, open, etc.) and creating a new process (fork).

● To allow controlled access to such kernel services, processors provide a special syscall n
instruction that user programs can execute when they want to request service n.

12

More About System Calls
From B&O’s Exceptional Control Flow chapter, section 1

http://man7.org/linux/man-pages/man2/syscalls.2.html
http://man7.org/linux/man-pages/man2/syscalls.2.html

Roslyn Michelle Cyrus | Stanford University

System Calls Summary (continued)

● A system call uses a software interrupt (a.k.a. a trap)
to transfer control to the OS kernel. The user can
only call a set of well-defined system calls, and
there is little room for a security breach.

● Once the kernel is running a system call, it is in
complete control of the system, and can access the
necessary resources to fulfill the system call's
needs.

● After a system call, the kernel returns control to the
user program.

13

Recap: “Exclusive” Memory Use
From B&O’s Exceptional Control Flow chapter, section 2

Roslyn Michelle Cyrus | Stanford University

● Processes provide each program with the illusion
that it has exclusive use of the processor. Each
vertical bar in the right image represents a portion
of the logical control flow for a process. Note how
the execution of the three logical flows is
interleaved. Each process takes turns using the
processor; each runs for a while then is
temporarily suspended while others get their turn.

● Two flows run concurrently if their execution
overlap in time. Multiple flows executing
concurrently is concurrency. This is independent
of # of cores. Which processes are concurrent?

14

“Exclusive” Processor Use
From B&O’s Exceptional Control Flow chapter, section 2

● This notion of a process taking turns with other processes is also called multitasking.
● There may be tens, hundreds, or thousands of processes "running" at once, but on a single-core system, only

one can run at a time, and this is coordinated by the OS. On multi-core machines (like most modern
computers), multiple programs can literally run at the same time, one per core. Parallel flows are a subset of
concurrent flows: flows running concurrently on different processor cores or computers. This is true
multiprocessing.

● Each time period that a process executes a portion of its flow is called a time slice (roughly 20 milliseconds)

Roslyn Michelle Cyrus | Stanford University

● The operating system kernel implements multitasking using a higher-level form of exceptional control flow
known as a context switch. The decision to preempt the current process and restart a previously
preempted process is called scheduling.

● A context switch (1) Saves the context of the current process, (2) restores the saved context of some
previously preempted process, and (3) passes control to this newly restored process.

● Recall that the kernel maintains a context for each process, which is state that the kernel needs in order to
restart a preempted process. The context is stored in a process control block (one per process) which
stores a lot of process-related information, including:

○ Contents of general-purpose and floating-point registers
○ Program counter
○ User and kernel stack
○ Status registers
○ Code and in-memory data
○ A file descriptor table

15

Context Switches
From B&O’s Exceptional Control Flow chapter, section 2

Roslyn Michelle Cyrus | Stanford University

In the below example, the kernel runs some code for process A in user mode. It then reaches the read syscall,
which requests data from disk to be loaded into memory, but since this will take a while, the kernel context
switches from A to B: the kernel first does work on A’s behalf in kernel mode, then stays in kernel mode and
does some work for B. The B’s user code is run in user mode until the disk interrupts and says, “hey! I have data
ready for process A!” Shortly after, the kernel will get tired of running B and will context switch to A (first
wrapping up B in kernel mode, then some kernel mode work for A). It will then proceed with A’s code in user
mode, picking up right after the read call. A will continue happily along until the next exception occurs.

16

Context Switches
From B&O’s Exceptional Control Flow chapter, section 2

Roslyn Michelle Cyrus | Stanford University 17

Let’s talk about multiprocessing!

Roslyn Michelle Cyrus | Stanford University 18

Multiprocessing Recap
From B&O’s Exceptional Control Flow chapter, section 2

● In the CS curriculum so far, your programs have operated in a single process, meaning,
basically, that one program was running your code, line-for-line. The operating system
made it look like your program was the only thing running, and that was that.

● Now, we are going to move into the realm of multitasking, where you control more
than one process at a time with your programs. You will tell the OS, “do these things
concurrently”, and it will.

Roslyn Michelle Cyrus | Stanford University 19

Kernel
Data
Structures
Recap
The user program sees
a file descriptor as the
identifier needed to
interact with a resource
(most often a file) via
read, write, and
close calls. Internally,
that descriptor is an
index into the
descriptor table of the
process.

Roslyn Michelle Cyrus | Stanford University 20

Kernel
Data
Structures
Recap
Processes do not have
direct access to files or
inode tables. Each
process must pass a
file descriptor to the
kernel via a syscall,
which will handle the
file for the process.

Roslyn Michelle Cyrus | Stanford University 21

Kernel
Data
Structures
Recap
The process control
block tracks which
descriptors are in use
and which ones aren't.
When allocating a new
descriptor, the OS
typically chooses the
smallest available
number.

Roslyn Michelle Cyrus | Stanford University

● Process table: stores information about all currently running processes (each entry is a process control block). Process control
blocks store many things (the user who launched it, what time it was launched, CPU state, etc.). Among the many items it
stores is the descriptor table.

● Descriptor Table: each process has its own separate descriptor table whose entries are indexed by the process’s open file
descriptors. Each open descriptor entry points to an entry in the open file table. Descriptors 0, 1, and 2 are understood to be
treated as standard input, standard output, and standard error, but there are no predefined meanings for descriptors 3 and up.

● Open file table: contains info about all open files. It is shared by all processes. An open file table entry maintains information
about an active session with a file (or something that behaves like a file, like the terminal or a network connection). Each file
table entry contains pertinent file information, including (for our purposes):

○ The file mode: tracks whether we're reading, writing, or both.
○ The current file position (cursor): tracks a position within the file payload
○ A reference count of the number of descriptor entries (across all processes) that currently point to the entry.

■ Closing a descriptor decrements the reference count in the associated file table entry. The kernel will not delete
the file table entry until its reference count is 0.

○ A pointer to an entry in the v-node table
● V-node table: Each entry contains most of the information in the stat structure that we previously explained (including

st_mode and st_size). This is also shared by all processes. Each entry describes the actual underlying files. Vnodes (virtual
file system entries) exist so that kernel functions don't need to care about which filesystem they are dealing with. Vnodes
contain information about the file's inode.

22

Kernel Data Structures Explained
From B&O’s System-Level I/O chapter, section 8

Roslyn Michelle Cyrus | Stanford University

Mac: Activity Monitor

23

Viewing Processes on Your Computer

Windows: Task Manager

Roslyn Michelle Cyrus | Stanford University

● When you start a program, it runs in a single process. It has a process id (an integer)
that the OS assigns. A program can find out its process id with the getpid system call:

24

More About Processes

// file: getpidEx.c

#include <stdio.h>

#include <stdlib.h>

#include <unistd.h> // for getpid

int main(int argc, char *argv[]) {

 pid_t pid = getpid();

 printf("My process id: %d\n", pid);

 return 0;

}

$./getpidEx
My process id: 1186537

● All programs are associated with one or more processes, and a process is scheduled to
run its code by the OS.

Roslyn Michelle Cyrus | Stanford University

● To view processes running on a
Linux machine like the myth
machines, run top.

● You can also run ps -A to view
a static list of all running
processes.

● You can run pstree to see the
process tree

25

Viewing Processes via a Linux shell

Roslyn Michelle Cyrus | Stanford University

● A shell is a command-line interpreter (CLI) that runs programs on behalf of the user.
● It is called a shell because it is a “wrapper” around the kernel.
● To find out which shell you are running:

26

But Wait...What is a shell?

myth54$ ps -p $$
 PID TTY TIME CMD
28740 pts/8 00:00:00 bash

● The first $ denotes a shell variable, and the second $ gets the process ID of the current process, which is
the shell. Another way to get PID of the shell: echo $$

● Columns:
○ PID is the process ID
○ TTY is the terminal (device file) associated with the process
○ TIME is the total CPU usage
○ CMD is the command (name of the process)

● Differences between shell, terminal, etc.: read this

https://unix.stackexchange.com/questions/4126/what-is-the-exact-difference-between-a-terminal-a-shell-a-tty-and-a-con?noredirect=1&lq=1

Roslyn Michelle Cyrus | Stanford University 27

Bonus: Useful Linux Commands

myth54$ ls /proc/28740/fd/
0 1 2 255 3 4

● To see which which files these descriptors point to in the open file table (lsof = “list of open files”):

● To view a list of file descriptors in the shell’s descriptor table (28470 below represents the PID of the shell):

myth54$ lsof -a -p 28740
COMMAND PID USER FD TYPE DEVICE SIZE/OFF NODE NAME
[...]
bash 28740 rcyrus 0u CHR 136,8 0t0 11 /dev/pts/8
bash 28740 rcyrus 1u CHR 136,8 0t0 11 /dev/pts/8
bash 28740 rcyrus 2u CHR 136,8 0t0 11 /dev/pts/8
bash 28740 rcyrus 255u CHR 136,8 0t0 11 /dev/pts/8

● /dev/pts/8 is the terminal, which you can verify with the tty command:

myth54$ tty
/dev/pts/8

● Thus file descriptors 0, 1, 2, and 255 are connected to the terminal for reading and writing. 255 is like a backup file
descriptor that bash uses for terminal access. Note that FD is followed by one of these characters, describing the
mode under which the file is open: r for read access; w for write access; u for read and write access.

Roslyn Michelle Cyrus | Stanford University

In order to provide the illusion of running many processes simultaneously, the operating system scheduler does
the following:

28

Scheduling

● A process is allowed to run on a particular CPU core. After its time slice, the OS pauses the process,
copies the necessary data into a process control block, and adds that data structure to a queue of
ready-to-run (“runnable”) processes called the ready queue.

● The OS then selects another process from the ready queue, restores its state, and resumes execution of
that process as if it had never stopped.

● Occasionally, a process needs to wait for something (e.g. it calls sleep or it waits for a network request to
come in). In this case, the process is removed from the ready queue and is instead moved to the blocked
set. (Eventually it is moved back to the ready queue when the thing it was waiting for is ready.)

● Note that the ready queue isn’t a simple ordered queue; we may have high-priority processes that should
get more CPU time. The scheduler employs a sophisticated algorithm to balance process needs. You are
never given any guarantees about process scheduling.

Roslyn Michelle Cyrus | Stanford University

Here is a naive view of the life cycle for each newly created process. Think of this as the scheduler’s view of the
process.

29

Process Life Cycle

● Created: a brand new process that the kernel sets up to prep for execution. Processes are created via the
fork() system call (more on this in a few slides).

● Ready: all set up and ready to be assigned to a processor and scheduled for execution

● Executing: currently executing on the processor (only one process can execute on a processor at a time!)

● Terminated: stopped permanently, for one of three reasons: (1) receiving a signal that terminates the
process, (2) returning from main, (3) calling exit (note: exit terminates process with the given status
code; another way to set the exit status is to return an integer from the main routine)

From B&O’s Exceptional Control Flow chapter, section 4

Roslyn Michelle Cyrus | Stanford University

What happens if the process needs to wait for a resource?

30

Process Life Cycle

Roslyn Michelle Cyrus | Stanford University

Here’s a 5-state process life cycle with the waiting state introduced.

31

Process Life Cycle

● Waiting (a.k.a. Sleeping): blocked because it is waiting for some event to complete (e.g. input/output)

From B&O’s Exceptional Control Flow chapter, section 4

Roslyn Michelle Cyrus | Stanford University

What happens if we stop a program? (Think ‘CTRL-Z’)

32

Process Life Cycle

Roslyn Michelle Cyrus | Stanford University

Here is a more robust 6-state process
life cycle. Processes change state as
they execute. This is the process
state perspective.

33

Process Life Cycle

● Stopped: process execution stops and won’t be scheduled until it receives a SIGCONT signal.

Roslyn Michelle Cyrus | Stanford University

Here is a more robust 6-state process
life cycle. Processes change state as
they execute. This is the process
state perspective.

34

Process Life Cycle

● As far as the process is concerned, the ready state and executing states are the same (which is why they both are in the ‘R’ state).

Roslyn Michelle Cyrus | Stanford University

● When running ps, here are the different values that the s, stat and state output
specifiers (header "STAT" or "S") will display to describe the state of a process:

35

ps State Codes

D uninterruptible sleep (usually IO)
I Idle kernel thread
R running or runnable (on run queue)
S interruptible sleep (waiting for an event to complete)
T stopped by job control signal
t stopped by debugger during the tracing
W paging (not valid since the 2.6.xx kernel)
X dead (should never be seen)
Z defunct ("zombie") process, terminated but not reaped by its parent

● We’ll ignore the light gray statuses for the purposes of this class; they are just there for
completeness.

● For more info (if you’re curious), check out the task state bitmask as defined here (the
beauty of open source!)

https://github.com/torvalds/linux/blob/master/include/linux/sched.h

Roslyn Michelle Cyrus | Stanford University 36

ps State Codes
D uninterruptible sleep (usually IO)
R running or runnable (on run queue)
S interruptible sleep (waiting for an event to complete)
T stopped by job control signal
Z defunct ("zombie") process, terminated but not reaped by its parent

● R: running or runnable (ready)

This state means that the process is either ready ro run (it has all the resources that it
needs to run) but the processor is currently unavailable, or it is currently executing on
the processor. As far is the process implementation on linux is concerned, the two
states are the same and are thus both are represented as R.

Roslyn Michelle Cyrus | Stanford University 37

ps State Codes
D uninterruptible sleep (usually IO)
R running or runnable (on run queue)
S interruptible sleep (waiting for an event to complete)
T stopped by job control signal
Z defunct ("zombie") process, terminated but not reaped by its parent

● S: interruptible sleep (e.g. the sleep syscall)
The process is waiting for some condition to exist. When the condition is met, the process will come
out of this state. It can also wake up prematurely and become runnable if it receives a signal.

● D: uninterruptible sleep
Similar to S, except the process won't immediately handle a signal (in other words, it won’t wake up if it
receives a signal). It wakes up after the condition is met or after a time-out occurs during that wait (if
specified when put to sleep). This state is used if the condition is expected to be met quickly, or when
the process must wait without interruption. When a process is in this state, any signals accumulated
during the sleep are noticed when the process returns from the system call or trap. Of the two, this
state is used less frequently because it doesn’t respond to signals.

● There are two sleep (waiting) states: uninterruptible and interruptible. A process enters a sleeping state
when it needs a resource that is currently unavailable.

Roslyn Michelle Cyrus | Stanford University 38

ps State Codes
D uninterruptible sleep (usually IO)
R running or runnable (on run queue)
S interruptible sleep (waiting for an event to complete)
T stopped by job control signal
Z defunct ("zombie") process, terminated but not reaped by its parent

● T: stopped

This state means that the process was stopped as a result of either being debugged via
a trace or receiving a signal like SIGSTOP or SIGTSTP (CTRL-Z)

Roslyn Michelle Cyrus | Stanford University 39

ps State Codes
D uninterruptible sleep (usually IO)
R running or runnable (on run queue)
S interruptible sleep (waiting for an event to complete)
T stopped by job control signal
Z defunct ("zombie") process, terminated but not reaped by its parent

● Z: zombie

This state means that the process is terminated (meaning it finished as a child process),
but it hasn’t yet been reaped (cleaned up) by its parent process.

Roslyn Michelle Cyrus | Stanford University 40

Reintroducing fork

Roslyn Michelle Cyrus | Stanford University

● A program may decide that it wants to run multiple processes itself. We will see many examples of why a program
may want to do this as the course progresses.

● If a program wants to launch a second process, it uses the fork system call.
● fork() does exactly this:

○ It creates a new process (a child process) that starts on the next instruction after the fork call. The parent
process also continues on the next instruction, as well.

○ A successful fork call returns a pid_t (an integer) to both processes (and returns -1 on error). Neither is the
actual pid of the process that receives it:

■ The parent process gets a return value that is the pid of the child process.
■ The child process gets a return value of 0, indicating that it is the child.

● The child process does, indeed, have its own pid, but it would need to call getpid itself to
retrieve it.

○ All memory is identical between the parent and child, though it is not shared (it is copied).

41

Recap: System Call fork
Reading: B&O’s Exceptional Control Flow chapter, section 4

Roslyn Michelle Cyrus | Stanford University

Here's a simple program that knows how to spawn new processes. It uses system calls named
fork, getpid, and getppid. The full program can be viewed here.

42

Understanding fork

● getpid and getppid return the process id of the caller and the process id of the caller's
parent, respectively. Here's the output of the above program.

int main(int argc, char *argv[]) { // basic-fork.c
 printf("Greetings from process %d! (parent %d)\n", getpid(), getppid());
 pid_t pid = fork();
 assert(pid >= 0);
 printf("Bye-bye from process %d! (parent %d)\n", getpid(), getppid());
 return 0;
}

myth54$ echo $$
28740
myth54$./basic-fork
Greetings from process 29686! (parent 28740)
Bye-bye from process 29686! (parent 28740)
Bye-bye from process 29687! (parent 29686)

● echo $$ prints the process ID of the current shell.

Reading: B&O’s Exceptional Control Flow chapter, section 4

http://www.stanford.edu/class/cs110/examples/processes/basic-fork.c

Roslyn Michelle Cyrus | Stanford University

fork is called once, but it returns twice.
● fork knows how to clone the calling process, synthesize a nearly identical

copy of it (with a new process ID), and schedule the copy as if it were running
all along. The child (clone) process gets a separate copy of:

○ The parent’s user-level virtual address space (code and data
segments, heap, shared libraries, and user stack)

○ All open file descriptors (these copies are donated to the clone). This
means the child can read and write any files that were open in the
parent when it called fork.

● As a result, the output of our above program is the output of two processes.

43

Understanding fork
int main(int argc, char *argv[]) { // basic-fork.c
 printf("Greetings from process %d! (parent %d)\n", getpid(), getppid());
 pid_t pid = fork();
 assert(pid >= 0);
 printf("Bye-bye from process %d! (parent %d)\n", getpid(), getppid());
 return 0;
}

Reading: B&O’s Exceptional Control Flow chapter, section 4

Roslyn Michelle Cyrus | Stanford University

● Fork calls can be diagrammed using process graphs (assert not shown):

44

Understanding fork
int main(int argc, char *argv[]) { // basic-fork.c
 printf("Greetings from process %d! (parent %d)\n", getpid(), getppid());
 pid_t pid = fork();
 assert(pid >= 0);
 printf("Bye-bye from process %d! (parent %d)\n", getpid(), getppid());
 return 0;
}

Roslyn Michelle Cyrus | Stanford University

● Fork calls can be diagrammed using process graphs (assert not shown):

45

Understanding fork
int main(int argc, char *argv[]) { // basic-fork.c
 printf("Greetings from process %d! (parent %d)\n", getpid(), getppid());
 pid_t pid = fork();
 assert(pid >= 0);
 printf("Bye-bye from process %d! (parent %d)\n", getpid(), getppid());
 return 0;
}

Roslyn Michelle Cyrus | Stanford University

● Fork calls can be diagrammed using process graphs (assert not shown):

46

Understanding fork
int main(int argc, char *argv[]) { // basic-fork.c
 printf("Greetings from process %d! (parent %d)\n", getpid(), getppid());
 pid_t pid = fork();
 assert(pid >= 0);
 printf("Bye-bye from process %d! (parent %d)\n", getpid(), getppid());
 return 0;
}

Roslyn Michelle Cyrus | Stanford University

● Fork calls can be diagrammed using process graphs (assert not shown):

47

Understanding fork
int main(int argc, char *argv[]) { // basic-fork.c
 printf("Greetings from process %d! (parent %d)\n", getpid(), getppid());
 pid_t pid = fork();
 assert(pid >= 0);
 printf("Bye-bye from process %d! (parent %d)\n", getpid(), getppid());
 return 0;
}

Roslyn Michelle Cyrus | Stanford University

● Fork calls can be diagrammed using process graphs (assert not shown):

48

Understanding fork
int main(int argc, char *argv[]) { // basic-fork.c
 printf("Greetings from process %d! (parent %d)\n", getpid(), getppid());
 pid_t pid = fork();
 assert(pid >= 0);
 printf("Bye-bye from process %d! (parent %d)\n", getpid(), getppid());
 return 0;
}

Roslyn Michelle Cyrus | Stanford University 49

Question:
Why is the child also able to print to stdout?

Roslyn Michelle Cyrus | Stanford University 50

Descriptors and fork
● Answer: recall that the parent process’

file descriptor table is cloned on fork.

Reading: B&O’s Exceptional Control Flow chapter, section 4

Roslyn Michelle Cyrus | Stanford University 51

Descriptors and fork
● On fork, the reference count in each

of the open file table entries that are
pointed to by the parent process is
incremented by one.

● Thus on fork, a child process inherits
the stdin, stdout, and stderr linked to
the terminal.

Reading: B&O’s Exceptional Control Flow chapter, section 4

Roslyn Michelle Cyrus | Stanford University 52

Understanding fork
● Differences between parent calling fork and child generated by it:

○ The most obvious difference is that each gets a unique process id. That's important.
Otherwise, the OS can't tell them apart.

○ Another key difference: fork's return value in the two processes
■ When fork returns in the parent process, it returns the pid of the new child.
■ When fork returns in the child process, it returns 0. That isn't to say the child's pid is 0,

but rather that fork elects to return a 0 as a way of allowing the child process to easily
self-identify as the child process.

■ The return value can be used to dispatch each of the two processes in a different
direction (although in this introductory example, we don't do that).

Reading: B&O’s Exceptional Control Flow chapter, section 4

Roslyn Michelle Cyrus | Stanford University 53

Understanding fork
myth54$ echo $$
28740
myth54$./basic-fork
Greetings from process 29686! (parent 28740)
Bye-bye from process 29686! (parent 28740)
Bye-bye from process 29687! (parent 29686)

● Here's why the program output makes sense:
○ Process IDs are generally assigned consecutively. That's why you see 29686 and 29687.
○ 28740 is the pid of the shell itself, and you can see that the basic-fork process—with pid 29686—is

a direct child processes of the terminal. The output tells us so.
○ The clone of the original is assigned pid 29687, and the output is clear about the parent-child

relationship between 29686 and 29687.
○ You can run this program multiple times to get a better understanding of the process IDs.

Reading: B&O’s Exceptional Control Flow chapter, section 4

Roslyn Michelle Cyrus | Stanford University 54

Understanding fork
● The parent and child are separate processes that run concurrently.

○ The instructions in their logical control flows are arbitrarily interleaved by the kernel, so as
programmers, we cannot make assumptions about the order in which the instructions will run
in different processes. The output is nondeterministic.

● There is no default sharing of data between the two processes, though the parent process can
wait (more on this later) for child processes to complete.

● You can use shared memory to communicate between processes, but this must be explicitly set up
before making fork calls.

Reading: B&O’s Exceptional Control Flow chapter, section 4

Roslyn Michelle Cyrus | Stanford University

What will the values of x be in each process?

55

Understanding fork

int main() // fork-ints.c
{
 pid_t pid;
 int x = 1;

 pid = fork();
 if (pid == 0) { // Child
 printf("child: x=%d\n", ++x);
 return 0;
 }

 // Parent
 printf("parent: x=%d\n", --x);
 return 0;
}

Reading: B&O’s Exceptional Control Flow chapter, section 4

● Since the parent and child are separate processes, they
each have their own private address spaces, so any
changes to one of the processes will not be reflected in
the memory of the other process.

myth54$./fork-ints
parent: x=0
child: x=2

● Another example:

Roslyn Michelle Cyrus | Stanford University

What will the values of x be in each process?

56

Understanding fork

int main(int argc, char *argv[]) {
 int x = 1;

 pid_t pid = fork();
 assert(pid >= 0);

 if (pid == 0) { // in child
 printf("x=%d\n", ++x);
 }

 printf("x=%d\n", --x);

 return 0;
}

Reading: B&O’s Exceptional Control Flow chapter, section 4

● The catch is that the child actually will execute both print
statements since it doesn’t return/exit in the if statement!
Also remember the possible nondeterministic orderings here.
Think about a topological sort of the process graph.

myth54$./forkprob0
x=0
x=2
x=1

● Here’s trickier example (code here). Take a look and see if you can understand what would happen.

myth54$./forkprob0
x=2
x=1
x=0

Answer: In the child: x=2, then x=1. In the parent: x=0.

myth54$./forkprob0
x=2
x=0
x=1

http://web.stanford.edu/class/cs110/examples/processes/forkprob0.c

Roslyn Michelle Cyrus | Stanford University 57

Another fork Example That Shows Process States

Roslyn Michelle Cyrus | Stanford University

● You can run the following to see the process ID, state, and command for each process:

58

Using ps To See Process States

$ ps -o pid,state,command
 PID S COMMAND
1157608 S -bash
1157958 R ps -o pid,state,command

● The command we just ran to get this output is state R, which shows the state as
running at the time that we executed the command.

● Note: the current shell (bash) is state S, which is interruptible sleep. Rather than
constantly checking the keyboard for input, the shell puts itself to sleep while waiting
on an event, such as an interrupt from the keyboard when it has input for the shell to
process.

Roslyn Michelle Cyrus | Stanford University

● To actually see the shell in a running state:

59

Bonus Slide: Using ps To See Process States

myth66$ echo $$
1157608
myth66$ tty
/dev/pts/18
myth66$ while true; do NOTHING=1; done

● Left: First we get the terminal that the current shell is running in with tty. Then we
create an infinite loop that does, well, nothing meaningful, but it keeps bash busy.

● Right: Next, in a separate terminal that is connected to the same myth machine, we run
the ps command to get info about the bash process that is connected to the first
terminal we ran the while loop on. It shows that bash is running! 🎉

● Remember to hit CTRL-C in first terminal to stop the while loop 😊

myth66$ tty
/dev/pts/22
myth66$ ps -xo pid,state,command,tty | grep pts/18
1157600 S sshd: rcyrus@pts/18 ?
1157608 R -bash pts/18
1226776 S grep pts/18 pts/22

Roslyn Michelle Cyrus | Stanford University

Here’s an example that has the parent sleep for a while before exiting so we can see what
happens when the child exits before its sleepy parent.

60

#include <stdio.h> // for printf
#include <unistd.h> // for fork, getpid, getppid

int main(int argc, char *argv[]) {
 printf("PARENT: process %d (parent %d)\n", getpid(), getppid());
 pid_t pid = fork();
 if (pid == 0) {
 printf("CHILD: process %d (parent %d) - time to eat!\n", getpid(), getppid());
 sleep(10);
 printf("CHILD done eating!\n");
 return 0;
 }
 printf("PARENT (process %d): I'm going to sleep for a bit before cleaning up after my kid...\n", getpid());
 sleep(20);
 printf("PARENT exiting!\n");
 return 0;
}

Using ps To See Process States

Roslyn Michelle Cyrus | Stanford University

Results shown across two terminals:

61

Using ps To See Process States

myth66$./slowparent
PARENT: process 1236838 (parent 1157608)
PARENT (process 1236838): I'm going to sleep
for a bit before cleaning up after my kid...
CHILD: process 1236839 (parent 1236838) - time
to eat!
CHILD done eating!
PARENT exiting!

● Left: First we run the program and get the expected print outs. The parent process
goes to sleep so we have time to check the process states in another terminal, shown
on right. We must do this before the ‘PARENT exiting!’ line appears after ~20 seconds.

● Right: Next, in a separate terminal that is connected to the same myth machine, we run
the ps command to get info about the slowparent parent and child processes that are
running in our first terminal. It shows that the parent is sleeping (S) and the child is a
zombie (in the Z state), as expected! 🎉 🎉

myth66$ tty
/dev/pts/22
myth66$ ps -xo pid,state,command,tty | grep pts/18
1157600 S sshd: rcyrus@pts/18 ?
1157608 S -bash pts/18
1236838 S ./slowparent pts/18
1236839 Z [slowparent] <defunct> pts/18
1236847 S grep pts/18 pts/22

Roslyn Michelle Cyrus | Stanford University

Let’s check for one more state...Run the program again:

62

Using ps To See Process States

myth66$./slowparent
PARENT: process 1237813 (parent 1157608)
PARENT (process 1237813): I'm going to sleep
for a bit before cleaning up after my kid...
CHILD: process 1237814 (parent 1237813) - time
to eat!
CHILD done eating!
^Z
[1]+ Stopped ./slowparent

● Left: We run the program again, but then press CTRL-Z to stop the process right after
until child is “done eating” (at which point it exits).

● Right: Next, we run the ps command to get info about the slowparent parent and child
processes. It shows that the parent is stopped (T) and the child is a zombie (in the Z
state), as expected! 🎉 🎉 🎉

● If we enter fg into the first terminal, the process will continue and then exit.

myth66$ ps -o pid,state,command,tty | grep slowparent
1237813 T ./slowparent pts/18
1237814 Z [slowparent] <defunct> pts/18
1238443 S grep slowparent pts/18

Roslyn Michelle Cyrus | Stanford University 63

Using lsof To See File Descriptors

myth66$./slowparent
PARENT: process 1444075 (parent 1441382)
PARENT (process 1444075): I'm going to sleep for a bit before
cleaning up after my kid...
CHILD: process 1444076 (parent 1444075) - time to eat!
^Z

[1]+ Stopped ./slowparent

Reading: B&O’s Exceptional Control Flow chapter, section 4

● To show that the child gets a copy of the parent’s file descriptors, let’s view the file descriptors for the slowparent
program using lsof:

myth66$ lsof /dev/pts/18
[...]
COMMAND PID USER FD TYPE DEVICE SIZE/OFF NODE NAME
bash 1441382 rcyrus 0u CHR 136,18 0t0 21 /dev/pts/18
bash 1441382 rcyrus 1u CHR 136,18 0t0 21 /dev/pts/18
bash 1441382 rcyrus 2u CHR 136,18 0t0 21 /dev/pts/18
bash 1441382 rcyrus 255u CHR 136,18 0t0 21 /dev/pts/18
slowparen 1444075 rcyrus 0u CHR 136,18 0t0 21 /dev/pts/18
slowparen 1444075 rcyrus 1u CHR 136,18 0t0 21 /dev/pts/18
slowparen 1444075 rcyrus 2u CHR 136,18 0t0 21 /dev/pts/18
slowparen 1444076 rcyrus 0u CHR 136,18 0t0 21 /dev/pts/18
slowparen 1444076 rcyrus 1u CHR 136,18 0t0 21 /dev/pts/18
slowparen 1444076 rcyrus 2u CHR 136,18 0t0 21 /dev/pts/18
lsof 1444499 rcyrus 0u CHR 136,18 0t0 21 /dev/pts/18
lsof 1444499 rcyrus 1u CHR 136,18 0t0 21 /dev/pts/18
lsof 1444499 rcyrus 2u CHR 136,18 0t0 21 /dev/pts/18

● We hit CTRL-Z before the child prints “done eating” so that we can check the entries for both the parent and the
child before they exit. You can see on the right that the parent and the child indeed both have fd 0, 1, and 2 open.

● Question: What other parent/child relationship do you see in the output shown above on the right?

Roslyn Michelle Cyrus | Stanford University

We’ve demonstrated how to view all the process states that we care about. What about the
D (uninterruptible) state?

64

Using ps To See Process States

● This state is harder to reproduce because processes that end up in this state really
shouldn’t take that long to begin with, else they end up stuck there with no way to be
killed (because they can’t be interrupted, they can’t receive signals to kill them!). But
just believe me when I say that this state is possible!

Roslyn Michelle Cyrus | Stanford University

What kind of output do you expect?

65

Understanding fork

static const char const *kTrail = "abcd";

int main(int argc, char *argv[]) {
 size_t trailLength = strlen(kTrail);

 for (size_t i = 0; i < trailLength; i++) {
 printf("%c\n", kTrail[i]);
 pid_t pid = fork();
 assert(pid >= 0);
 }

 return 0;
}

Reading: B&O’s Exceptional Control Flow chapter, section 4

● While you rarely have reason to use fork this way, it's
instructive to trace through a short program where spawned
processes themselves call fork.

● Yet another example: a tree of fork calls (the full program can be viewed here):

http://www.stanford.edu/class/cs110/examples/processes/fork-puzzle.c

Roslyn Michelle Cyrus | Stanford University 66

Understanding fork
Reading: B&O’s Exceptional Control Flow chapter, section 4

● Two samples runs are shown on the right.
● Reasonably obvious: A single a is printed by the

soon-to-be-great-great-granddaddy process.
● Less obvious: The first child and the parent each return

from fork and continue running in mirror processes, each
with their own copy of the global "abcd" string, and each
advancing to the i++ line within a loop that promotes a 0
to 1. It's hopefully clear now that two b's will be printed,
and this pattern will continue until the end.

● Key questions to answer:
○ Why aren't the two b's always consecutive?
○ How many c's get printed?
○ How many d's get printed?
○ Why is there a shell prompt in the middle of the

output of the second run on the right?

Roslyn Michelle Cyrus | Stanford University 67

Understanding fork

Roslyn Michelle Cyrus | Stanford University 68

Introducing waitpid

Roslyn Michelle Cyrus | Stanford University 69

Waiting For Children to Finish

pid_t waitpid(pid_t pid, int *status, int options);

● Notice in the fork puzzle example that it was possible for the d’s to be printed after the prompt.
This is because the parent finishes before the child, but the child still has access to stdout and
continues printing its data.

● Synchronization between parent and child can be done by using the system call waitpid. It can
be used to temporarily block a process until a child process terminates or stops.

Reading: B&O’s Exceptional Control Flow chapter, section 4

● The first argument specifies the wait set, which for the moment is just the ID of the child process
that needs to complete before waitpid can return.

● The second argument supplies the address of an integer where termination information can be
placed (or we can pass in NULL if we don't care for the information).

● The third argument is a collection of bitwise-or'ed flags we'll study later. For the time being, we'll
just go with 0 as the required parameter value, which means that waitpid should only return
when a process in the supplied wait set exits.

● The return value is the pid of the child that exited, or -1 if waitpid was called and there were no
child processes in the supplied wait set.

Roslyn Michelle Cyrus | Stanford University

Consider the following program, which is more representative of how fork really gets used in practice
(full program, with error checking, is right here):

70

Waiting For Children to Finish
Reading: B&O’s Exceptional Control Flow chapter, section 4

int main(int argc, char *argv[]) {

 printf("Before.\n");

 pid_t pid = fork();

 printf("After.\n");

 if (pid == 0) {

 printf("I am the child, and the parent will wait up for me.\n");

 return 110; // contrived exit status

 } else {

 int status;

 waitpid(pid, &status, 0);

 if (WIFEXITED(status)) {

 printf("Child exited with status %d.\n", WEXITSTATUS(status));

 } else {

 printf("Child terminated abnormally.\n");

 }

 return 0;

 }

 }

● The parent process correctly waits for
the child to complete using waitpid.

● The parent lifts child exit information out
of the waitpid call, and uses the
WIFEXITED macro to examine some
high-order bits of its argument to
confirm the process exited normally, and
it uses the WEXITSTATUS macro to
extract the lower eight bits of its
argument to produce the child return
value (which is 110 as expected).

● The waitpid call also donates child
process-oriented resources back to the
system.

http://cs110.stanford.edu/examples/processes/separate.c

Roslyn Michelle Cyrus | Stanford University 71

Waiting For Children to Finish
Reading: B&O’s Exceptional Control Flow chapter, section 4

The output is likely what is shown on the left below every single time the program is executed, since the
parent likely continues running without halting when it calls fork (since all fork does is set up new data
structures for a new process, returns, and then carries on). However, it is theoretically possible to get the
output on the right if the child runs first:

myth60$./separate
Before.
After.
After.
I am the child, and the parent will wait up for me.
Child exited with status 110.
myth60$

myth60$./separate
Before.
After.
I'm the child, and the parent will wait up for me.
After.
Child exited with status 110.
myth60$

Roslyn Michelle Cyrus | Stanford University 72

Debugging Two Processes

● You might be asking yourself, How do I debug two processes at once? This is a very good
question! gdb has built-in support for debugging multiple processes, as follows:
○ set detach-on-fork off

■ This tells gdb to capture any fork'd processes, though it pauses them upon the fork.
○ info inferiors

■ This lists the processes that gdb has captured.
○ inferior X

■ Switch to a different process to debug it.
○ detach inferior X

■ Tell gdb to stop watching the process, and continue it
○ You can see an entire debugging session on the basic-fork program right here.

Reading: B&O’s Exceptional Control Flow chapter, section 4

https://web.stanford.edu/class/cs110/examples/processes/basic-fork_gdb.txt

Roslyn Michelle Cyrus | Stanford University 73

The Point Of It All
● So, now we know how to create processes… but why would we do that in the first place? There are

a few major reasons:
○ performance (ability to use multiple CPUs)
○ security (isolation of possibly sensitive components of an application)
○ Next time, we’ll talk about a third reason: starting executables from disk.

Reading: B&O’s Exceptional Control Flow chapter, section 4

Roslyn Michelle Cyrus | Stanford University
74

End of Lecture 5

