Lecture 5 Karnaugh Maps

- Algebraic procedures:
- Difficult to apply in a systematic way.
- Difficult to tell when you have arrived at a minimum solution.
- Karnaugh map (K-map) can be used to minimize functions of up to 6 variables.
- K-map is directly applied to twolevel networks composed of AND and OR gates.
- Sum-of-products, (SOP)
- Product-of-sum, (POS).

Minimum SOP

- It has a minimum no. of terms.
- That is, it has a minimum number of gates.
- It has a minimum no. of gate inputs.
- That is, minimum no. of literals.
- Each term in the minimum SOP is a prime implicant, i.e., it cannot be combined with others.
- It may not be unique.
- Depend on the order in which terms are combined or eliminated.

Minimum SOP

- Example: vertical input scheme

Fan-in reduction
Figure 3.2.5 IC logic circuit designs for a minimum SOP form of a function using a vertical input scheme: (a) without fan-in reduction, (b) with fan-in reduction.

Minimum POS

- It has a minimum no. factors.
- It has a minimum no. of literals.
- It may not be unique.
$-\operatorname{Use}(\mathrm{X}+\mathrm{Y})\left(\mathrm{X}+\mathrm{Y}^{\prime}\right)=\mathrm{X}$
$-\operatorname{Use}(\mathrm{X}+\mathrm{C})\left(\mathrm{X}^{\prime}+\mathrm{D}\right)(\mathrm{C}+\mathrm{D})=$ $(\mathrm{X}+\mathrm{C})\left(\mathrm{X}^{\prime}+\mathrm{D}\right)$ to eliminate term.

Minimum POS

- Example: Vertical input scheme

Figure 3.2.7 IC logic circuit design for a minimum POS form of a function using a vertical input scheme.

2-Variable K-map

- Place 1 s and 0 s from the truth table in the K-map.
- Each square of $1 \mathrm{~s}=$ minterms.
- Minterms in adjacent squares can be combined since they differ in only one variable. Use $X Y^{\prime}+X Y=X$.

(a)

(b)

$$
F=A^{\prime} B^{\prime}+A^{\prime} B
$$

(c)

$F=A^{\prime}$

3-Variable K-map

- Note BC is listed in the order of 00,01 , 11,10 . (Gray code)
- Minterms in adjacent squares that differ in only one variable can be combined using $X Y^{\prime}+X Y=X$.

(a)

F
(b)

Location of Minterms

- Adjacent terms in 3-variable K map.

(a) Binary notation
(b) Decimal notation

K Map Example

- K-map of $\mathrm{F}(\mathrm{a}, \mathrm{b}, \mathrm{c})=\sum \mathrm{m}(1,3,5)$
 $$
=П \mathrm{M}(0,2,4,6,7)
$$

Karnaugh Map of
$F(a, b, c)=\sum m(1,3,5)=\prod M(0,2,4,6,7)$

Place Product Terms on K Map

- Example
- Place b, bc' and ac' in the 3-variable K map.

Chap 5

C-H 10

More Example

- Exercise. $\operatorname{Plot} \mathrm{f}(\mathrm{a}, \mathrm{b}, \mathrm{c})=\mathrm{abc}{ }^{\prime}+$ b'c + a' into the K-map.

$$
f(a, b, c)=a b c^{\prime}+b^{\prime} c+a^{\prime}
$$

we would plot the map as follows:

1. The term abc' is 1 when $a=1$ and $b c=10$, so we place a 1 in the square which corresponds to the $a=1$ column and the $b c=10$ row of the map.
2. The term $b^{\prime} c$ is 1 when $b c=01$, so we place 1 's in both squares of the $b c=01$ row of the map.
3. The term a^{\prime} is 1 when $a=0$, so we place l's in all the squares of the $a=0$ column of the map. (Note: since there already is a 1 in the $a b c=$ 001 square, we do not have to place a second 1 there because $x+x=x$.)

Simplication Example

- Exercise. Simplify: $\mathrm{F}(\mathrm{a}, \mathrm{b}, \mathrm{c})=$ $\sum \mathrm{m}(1,3,5)$
- Procedure: place minterms into map.
- Select adjacent 1's in group of two 1's or four 1's etc.
- Kick off x and x '.

$$
F=\Sigma m(1,3,5)
$$

(a) Plot of minterms

(b) Simplified form of F

More Example

- The complement of F

- Using four 1's to eliminate two variables.

Redundant Terms

- If a term is covered by two other terms, that term is redundant. That is, it is a consensus term.
- Example: yz is the redundant.

$$
x y+x^{\prime} z+y z=x y+x^{\prime} z
$$

More Than Two Minimum Solutions

- $F=\sum m(0,1,2,5,6,7)$

Chap 5

4-Variable K Map

- Each minterm is adjacent to 4 terms with which it can combine.
- 0,8 are adjacent squares
- 0,2 are adjacent squares, etc.
- $1,4,13,7$ are adjacent to 5 .

Plot a 4-variable Expression

- $F(a, b, c, d)=a c d+a^{\prime} b+d^{\prime}$ $\operatorname{acd}=1$ if $a=1, c=1, d=1$

Chap 5

Simplification Example

- Minterms are combined in groups of 2, 4 , or 8 to eliminate $1,2,3$ variables.
- Corner terms.

$$
\begin{aligned}
f_{1} & =\sum m(1,3,4,5,10,12,13) \\
& =b c^{\prime}+a^{\prime} b^{\prime} d+a b^{\prime} c d^{\prime}
\end{aligned}
$$

(a)

$$
\begin{aligned}
f_{2} & =\sum m(0,2,3,5,6,7,8,10,11,14,15) \\
& =c+b^{\prime} d^{\prime}+a^{\prime} b d
\end{aligned}
$$

Simplification with Don't Care

- Don't care " x " is covered if it helps. Otherwise leave it along.

Get a Minimum POS Using K Map

- Cover 0's to get simplified POS.
- We want 0 in each term.

$$
f=x^{\prime} z^{\prime}+w y z+w^{\prime} y^{\prime} z^{\prime}+x^{\prime} y
$$

First, the 1's of f are plotted in Fig. 5-14. Then, from the 0's,

$$
f^{\prime}=y^{\prime} z+w x z^{\prime}+w^{\prime} x y
$$

and the minimum product of sums for f is

$$
f=\left(y+z^{\prime}\right)\left(w^{\prime}+x^{\prime}+z\right)\left(w+x^{\prime}+y^{\prime}\right)
$$

	00	01	11	10
00	1	1	0	1
01	0	0	0	0
11	1	0	1	1
10	1	0	0	1

Determination of Minimum Expressions Using Essential Prime Implicants

- Definitions:
- Implicants: An implicant of a function F is a single element of the on set (1) or any group of elements that can be combined together in a K-map.
- Prime Implicants: An implicant that cannot be combined with another to eliminate a literal.
- Essential Prime Implicants: If a particular element of the on-set is covered by a single prime implicant. That implicant is called an essential prime implicant.
- All essential primes must be part of the minimized expression.

Implicant of F

- Implicant

- Any single 1 or any group of 1's
- Prime implicant
- An implicant that can not be combined with another term to eliminate a variable.
- a'b'c, a'cd', ac' are prime implicant.
- a'b'c'd' is not (combined with a'b'cd'). abc' and ab' c' are not.

Chap 5
C-H 22

Prime Implicant

- A single 1 which is not adjacent to any other 1's.
- Two adjacent 1 's which are not contained in a group of four 1's. And so on.
- Shaded loops are also prime implicants, but not part of the minimum solution.
- a'c'd and b'cd are already covered by other group. So we do not need them.

Essential Prime Implicants for Minimum SOP

- If CD is chosen first, then f has 4 terms. We don't need CD since it is covered by other group. CD is not a essential prime implicant.
- m 2 is essential prime implicant since it is covered only be one prime implicant. So does m 5 , and m 14 . We need them in the answer.

(a)

$f=B D+B^{\prime} C+A C$
(b)

Rule of Thumb

- Look at all squares adjacent to a minterm.

- If the given minterm and all of the 1 's adjacent to it are covered by a single term, then that term is an essential prime implicant
- But if it is covered by more than two prime implicant, we can not tell whether this term is essential or not.
- The solution is $\mathrm{A}^{\prime} \mathrm{C}^{\prime}+\mathrm{A}^{\prime} \mathrm{B}^{\prime} \mathrm{D}^{\prime}+\mathrm{ACD}+$ ($\mathrm{A}^{\prime} \mathrm{BD}$ or BCD).

Flow Chart

Example

- Find the 1 that is covered by only one term first (Do not share with other circle).

Shaded I's are covered by only one prime implicant

5-Variable K Map

- Use two 4-variable map to form a 5variable K map $(16+16=32)$ (A,B,C,D,E)
- A' in the bottom layer
- A in the top layer.

These terms don't combine because they are

These 8 terms combine to give $B D^{\prime}$ (B from last two columns and D^{\prime} from top two rows; A is eliminated since 4 terms are in the top layer and 4 in the bottom).

These 4 terms (2 from top layer and 2 from bottom) combine to give $C D E$ (C from the middle two columns and $D E$ from the row).

These 2 terms in the top layer combine to give $A B^{\prime} D E^{\prime}$.

5 Neighbors

- Same plane and above or under

Chap 5
C-H 29

Example: 5-variables

$$
\begin{aligned}
& \text { Ans: } \mathrm{F}=\mathrm{A}^{\prime} \mathrm{B}^{\prime} \mathrm{D}^{\prime}+\mathrm{ABE} \mathrm{~A}^{\prime}+\mathrm{ACD}+ \\
& \mathrm{A}^{\prime} \mathrm{BCE}+\left\{\mathrm{AB}^{\prime} \mathrm{C} \text { or } \mathrm{B}^{\prime} \mathrm{CD} \mathrm{D}^{\prime}\right\} \\
& -\mathrm{P} 1+\mathrm{P} 2+\mathrm{P} 3+\mathrm{P} 4+\mathrm{AB}^{\prime} \mathrm{C} \text { or } \mathrm{B}^{\prime} \mathrm{CD}^{\prime}
\end{aligned}
$$

Chap 5

One More

- $\mathrm{F}=\mathrm{B}^{\prime} \mathrm{C}^{\prime} \mathrm{D}^{\prime}+\mathrm{B}^{\prime} \mathrm{C}^{\prime} \mathrm{E}+\mathrm{A}^{\prime} \mathrm{C}^{\prime} \mathrm{D}^{\prime}+\mathrm{A}^{\prime} \mathrm{BCD}+$ $\mathrm{ABDE}+\left\{\mathrm{C}^{\prime} \mathrm{D}^{\prime} \mathrm{E}\right.$ or $\left.\mathrm{AC} \mathrm{C}^{\prime} \mathrm{E}\right\}$
- $\left(17,19,25,27=A C^{\prime} E\right),\left(1,9,17,25=C^{\prime} D^{\prime} E\right)$

Simplification Using MapEntered Variables

- Extend K-map for more variables.

- When E appears in a square, if $\mathrm{E}=1$, then the corresponding minterm is present in the function G .
$-\mathrm{G}(\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D}, \mathrm{E}, \mathrm{F})=\mathrm{m}_{0}+\mathrm{m}_{2}+\mathrm{m}_{3}+$ $\mathrm{Em}_{5}+\mathrm{Em}_{7}+\mathrm{Fm}_{9}+\mathrm{m}_{11}+\mathrm{m}_{15}+$ (don't care terms)

(b)

$E=0, F=1$
$M S_{2}=A D$

Map-Entered Variable

- $\mathrm{F}(\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D})=\mathrm{A}^{\prime} \mathrm{B}^{\prime} \mathrm{C}+\mathrm{A}^{\prime} \mathrm{BC}+$ $\mathrm{A}^{\prime} \mathrm{BC}^{\prime} \mathrm{D}+\mathrm{ABCD}+\left(\mathrm{AB}^{\prime} \mathrm{C}\right)$, (don't care)
- Choose D as a map-entered variable.
- When $\mathrm{D}=0, \mathrm{~F}=\mathrm{A}^{\prime} \mathrm{C}$ (Fig. a)
- When $\mathrm{D}=1, \mathrm{~F}=\mathrm{C}+\mathrm{A}^{\prime} \mathrm{B}$ (Fig. b)
- two l's are changed to x's since they are covered in Fig. a.
- $\mathrm{F}=\mathrm{A}^{\prime} \mathrm{C}+\mathrm{D}\left(\mathrm{C}+\mathrm{A}^{\prime} \mathrm{B}\right)=\mathrm{A}^{\prime} \mathrm{C}+\mathrm{CD}+$ $\mathrm{A}^{\prime} \mathrm{BD}$

(a)

(b)

(c)

General View for MapEntered Variable Method

- Given a map with variables P1, P2 etc, entered into some of the squares, the minimum SOP form of F is as follows:
- $\mathrm{F}=\mathrm{MS} 0+\mathrm{P} 1 \mathrm{MS} 1+\mathrm{P} 2 \mathrm{MS} 2+\ldots$ where
- MS0 is minimum sum obtained by setting P1 = P2 .. $=0$
- MS1 is minimum sum obtained by setting $\mathrm{P} 1=1, \mathrm{Pj}=0(\mathrm{j} \neq 1)$, and replacing all 1's on the map with don't cares.
- Previously, $\mathrm{G}=\mathrm{A}^{\prime} \mathrm{B}^{\prime}+\mathrm{ACD}+\mathrm{EA}^{\prime} \mathrm{D}$ + FAD.

