Lecture 5: Model Checking

Prof. Sharyn O'Halloran
Sustainable Development U9611
Econometrics II

Regression Diagnostics

- Unusual and Influential Data
 - □ Outliers
 - Leverage
 - □ Influence
- Heterosckedasticity
 - Non-constant variance
- Multicollinearity
 - Non-independence of x variables

Unusual and Influential Data

Outliers

- □ An observation with large residual.
 - An observation whose dependent-variable value is unusual given its values on the predictor variables.
 - An outlier may indicate a sample peculiarity or may indicate a data entry error or other problem.

Largest positive outliers

Largest negative outliers

reg api00 meals ell emer
rvfplot, yline(0)

Unusual and Influential Data

Outliers

- An observation with large residual.
 - An observation whose dependent-variable value is unusual given its values on the predictor variables.
 - An outlier may indicate a sample peculiarity or may indicate a data entry error or other problem.

Leverage

- An observation with an extreme value on a predictor variable
 - Leverage is a measure of how far an independent variable deviates from its mean.
 - These leverage points can have an effect on the estimate of regression coefficients.

М

Leverage

Unusual and Influential Data

Outliers

- An observation with large residual.
 - An observation whose dependent-variable value is unusual given its values on the predictor variables.
 - An outlier may indicate a sample peculiarity or may indicate a data entry error or other problem.

Leverage

- □ An observation with an extreme value on a predictor variable
 - Leverage is a measure of how far an independent variable deviates from its mean
 - These leverage points can have an effect on the estimate of regression coefficients.

Influence

- Influence can be thought of as the product of leverage and outlierness.
 - Removing the observation substantially changes the estimate of coefficients.

Influence

Introduction

- The problem: least squares is not resistant
 - One or several observations can have undue influence on the results

A quadratic-in-x term is significant here, but not when largest x is removed.

- Why is this a problem?
 - Conclusions that hinge on one or two data points must be considered extremely fragile and possibly misleading.

Tools

- Scatterplots
- Residuals plots
- Tentative fits of models with one or more cases set aside
- A strategy for dealing with influential observations (11.3)
- Tools to help detect outliers and influential cases (11.4)
 - □ Cook's distance
 - Leverage
 - Studentized residual

Difficulties to overcome

- Detection of influential observations depends on
 - Having determined a good scale for y (transformation) first
 - □ Having the appropriate x's in the model,
- But assessment of appropriate functional form and x's can be affected by influential observations (see previous page).

Example of Influential Outliers

Log transformation smoothes data and

General strategy

- Start with a fairly rich model;
 - □ Include possible x's even if you're not sure they will appear in the final model
 - Be careful about this with small sample sizes
- Resolve influence and transformation simultaneously, early in the data analysis
- In complicated problems, be prepared for dead ends.

Influence

- By influential observation(s) we mean one or several observations whose removal causes a different conclusion in the analysis.
- Two strategies for dealing with the fact that least squares is not resistant:
 - Use an estimating procedure that is more resistant than least squares (and don't worry about the influence problem)
 - Use least squares with the strategy defined below...

A strategy for dealing with influential cases

Alcohol Metabolism Example (Section 11.1.1)

Does the fitted regression model change when the two isolated points are removed?

be.

Example: Alcohol Metabolism

- Step 1: Create indicator variables and Interactive terms.
 - Commands to generate dummies for female and male:
 - gen female=gender if gender==1 (14 missing values generated)
 - gen male=gender if gender==2 (18 missing values generated)
 - replace female=0 if female!=1 (14 real changes made)
 - replace male=0 if male!=2 (18 real changes made)
 - □ Interactive Term
 - gen femgas=female*gastric

Example: Alcohol Metabolism (cont.)

Step 2: run initial regression model:

. reg metabol female gastric femgas									
Source	88	df	MS		Number of obs				
Model Residual	178.28201 40.8126802		273367 759572		Prob > F = R-squared =	= 0.0000 = 0.8137			
Total	219.09469	31 7.06	757066		Adj R-squared Root MSE	= 1.2073			
metabol	Coef.	Std. Err.	t	P> t	[95% Conf.	Intervall			
female gastric femgas _cons	.988497 2.343871 -1.506924 -1.185766	1.072391 .280148 .5591376 .7116847	0.92 8.37 -2.70 -1.67	0.365 0.000 0.012 0.107	-1.208197 1.770014 -2.652265 -2.643586	3.18519 2.917729 3615823 .2720539			

Example: Alcohol Metabolism (cont.)

Step 3: run initial regression model:

exclude the largest values of gastric, cases 31 and 32

. reg metabol female gastric femgas if gastric<3.5								
Source	SS	df	MS		Number of obs			
Model Residual	41.6100636 20.2236025		700212 830864		F(3, 26) = Prob > F = R-squared = Odi P-squared =	0.0000 0.6729		
Total	61.8336661	29 2.13	219538		Adj R-squared = Root MSE =			
metabol	Coef.	Std. Err.	t	P> t	[95% Conf.]	nterval]		
female gastric femgas _cons	2667927 1.565434 728486 .0695236	.9932437 .4073902 .5393695 .8019484	-0.27 3.84 -1.35 0.09	0.790 0.001 0.188 0.932		1.774849 2.402836 .380204 1.717952		

graph twoway lfit metabol gastric if female==1 & gastric<=3.5 !! lfit metabol gastric if female==0 & gastric<=3.5 !! lfit metabol gastric if female==1 !! lfit metabol gastric if female==1, msymbol(D) mcolor(cranberry) !! scatter metabol gastric if female==0, msymbol(Oh) mcolor(navy) legend(label(1 "female line with gastric<3.5") label(2 "male line with gastric<3.5") label(3 "female line") label(4 "male line") label(5 "female") label(6 "male") ytitle("Methabolism") xtitle("Gastric Activity")

graph twoway lfit metabol gastric if female==1 & gastric<=3.5 ¦¦ lfit metabol ga stric if female==1 ¦¦ scatter metabol gastric if female==1, msymbol(D) mcolor(cr anberry) ¦¦ scatter metabol gastric if female==0, msymbol(Oh) mcolor(navy) legend (label(1 "female line with gastric<3.5") label(2 "female line") label(3 "female") label(4 "male")) ytitle("Methabolism") xtitle("Gastric Activity")

graph twoway lfit metabol gastric if female==0 & gastric<=3.5 ;; lfit metabol gastric if female==1, msymbol(D) mcolor(cranberry) ;; scatter metabol gastric if female==0, msymbol(Oh) mcolor(navy) legend (label(1 "male line with gastric<3.5") label(2 "male line") label(3 "female") label(4 "male")) ytitle("Methabolism") xtitle("Gastric Activity")

M

Case influence statistics

- Introduction
 - These help identify influential observations and help to clarify the course of action.
 - □ Use them when:
 - you suspect influence problems and
 - when graphical displays may not be adequate
- One useful set of case influence statistics:
 - □ D_i: Cook's Distance for measuring influence
 - □ h_i: Leverage for measuring "unusualness" of x's
 - "cuttierness"
 "studentized residual for measuring "outlierness"
 - Note: i = 1,2,..., n
- Sample use of influence statistics...

Cook's Distance: Measure of overall influence

Note: observations 31 and 32 have large cooks distances.

The impact that omitting a case has on the estimated regression coefficients.

D_i: Cook's Distance for identifying influential cases

- One formula: $D_i = \sum_{j=1}^n \frac{(\hat{y}_{j(i)} \hat{y}_j)^2}{p\hat{\sigma}^2}$
 - where is the estimated mean of y at observation j, based on the reduced data set with observation i deleted.
 - □ P2is the number of regression coefficients
 - is the estimated variance from the fit, based on all observations.
- Equivalent formula (admittedly mysterious):

$$D_{i} = \frac{1}{p} (studres_{i})^{2} \left(\frac{h_{i}}{1 - h_{i}}\right)^{2}$$

This term is big if case *i* is unusual in the y-direction

This term is big if case i is unusual in the x-direction

Leverage: hi for the single variable case

(also called: diagonal element of the hat matrix)

It measures the multivariate distance between the x's for case i and the average x's, accounting for the correlation structure.

If there is only one x:
$$h_i = \frac{1}{(n-1)} \left(\frac{x_i - \overline{x}}{s_x} \right)^2 + \frac{1}{n}$$

Equivalently:

$$h_i = \frac{(x_i - \overline{x})^2}{\sum (x - \overline{x})^2} + \frac{1}{n}$$

Leverage is the proportion of the total sum of squares of the explanatory variable contributed by the ith case.

Ŋ4

Leverage: hi for the multivariate case

For several x's, h_i has a matrix expression

Unusual in explanatory variable values, although not unusual in X_1 or X_2 individually X_1 X_2

ÞΑ

Studentized residual for detecting outliers (in y direction)

Formula:
$$studres_i = \frac{res_i}{SE(res_i)}$$

■ Fact:
$$SE(res_i) = \hat{\sigma}\sqrt{1-h_i}$$

- □i.e. different residuals have different variances, and since 0 < h_i < 1 those with largest h_i (unusual x's) have the smallest SE(res_i).
- □ For outlier detection use this type of residual (but use ordinary residuals in the standard residual plots).

How to use case influence statistics

- Get the triplet (D_i, h_i, studresi) for each i from 1 to n
- Look to see whether any D_i's are "large"
 - □ Large D_i's indicate influential observations
 - Note: you ARE allowed to investigate these more closely by manual case deletion.
- h_i and studresi help explain the reason for influence
 - □ unusual x-value, outlier or both;
 - helps in deciding the course of action outlined in the strategy for dealing with suspected influential cases.

ROUGH guidelines for "large"

(Note emphasis on ROUGH)

- D_i values near or larger than 1 are good indications of influential cases;
 - □ Sometimes a D_i much larger than the others in the data set is worth looking at.
- The average of h_i is always p/n;
 - □ some people suggest using h_i>2p/n as "large"
- Based on normality, |studres| > 2 is considered "large"

Sample situation with a single x

STATA commands:

- **predict** derives statistics from the most recently fitted model.
- Some predict options that can be used after anova or regress are:

predict newvariable, cooksd	Cook's distance
predict newvariable, rstudent	Studentized residuals
Predict newvariable, hat	Leverage

- 1. predict D, cooksd
- 2. graph twoway scatter D subject, msymbol(i) mlabel(subject
 ytitle("Cooks'D") xlabel(0(5)35) ylabel(0(0.5)1.5)
 title("Cook's Distance by subject")

- 1. predict studres, rstudent
- 2. graph twoway scatter studres subject, msymbol(i)
 mlabel(subject) ytitle("Studentized Residuals")
 title("Studentized Residuals by subject")

- 1. predict leverage, hat
- 2. graph twoway scatter leverage subject, msymbol(i)
 mlabel(subject) ytitle("Leverage") ylabel(0(.1).5)
 xlabel(0(5)35) title("Leverage by subject")

Alternative case influence statistics

- Alternative to D_i: dffits_i (and others)
- Alternative to studresi: externallystudentized residual
 - Suggestion: use whatever is convenient with the statistical computer package you're using.
- Note: D_i only detects influence of single-cases; influential pairs may go undetected.

be.

Partial Residual Plots

- A problem: a scatterplot of y vs x_2 gives information regarding $\mu(y|x_2)$ about
 - \square (a) whether x_2 is a useful predictor of y,
 - \Box (b) nonlinearity in x_2 and
 - □ (c) outliers and influential observations.
- We would like a plot revealing (a), (b), and (c) for µ(y|x₁, x₂, x₃)
 - \square e.g. what is the effect of x_2 , after accounting for x_1 and x_3 ?

Example: SAT Data (Case 12.01)

- Question:
 - □ Is the distribution of state average SAT scores associated with state expenditure on public education, after accounting for percentage of high school students who take the SAT test?
- We would like to visually explore the function f(expend) in:
 - $\square \mu(SAT|takers,expend) = \beta_0 + \beta_1 takers + f(expend)$
 - □ After controlling for the number of students taking the test, does expenditures impact performance?

. graph matrix takers expend sat, half msymbol(D)

Stata Commands: avplot

- The added variable plot is also known as partial-regression leverage plots, adjusted partial residuals plots or adjusted variable plots.
 - □ The AVPlot depicts the relationship between y and one x variable, adjusting for the effects of other x variables
- Avplots help to uncover observations exerting a disproportionate influence on the regression model.
 - High leverage observations show in added variable plots as points horizontally distant from the rest of the data.

Added variable plots

- Is the state with largest expenditure influential?
- Is there an association of expend and SAT, after accounting for takers?

reg sat	takers	expend
---------	--------	--------

Source	SS	đf	MS		Number of obs F(2, 47)	
Model Residual	189732.978 56277.8419		866.489 7.40089		Prob > F R-squared Adj R-squared	= 0.0000 = 0.7712 = 0.7615
Total	246010.82	49 502	0.62898		Root MSE	= 34.603
sat	Coef.	Std. Err.	t	P> t	E95% Conf.	Intervall

avplots

After accounting for % of students who take SAT, there is a positive association between expenditure and mean SAT scores.

M

Component plus Residual

We'd like to plot y versus x₂ but with the effect of x₁ subtracted out;

i.e. plot
$$y - \beta_0 + \beta_1 x_1$$
 versus x_2

To approximate this, get the partial residual for x₂:

a. Get
$$\hat{\beta}_0, \hat{\beta}_1, \hat{\beta}_2$$
 in $\mu(y \mid x_1, x_2) = \beta_0 + \beta_1 x_1 + \beta_2 x_2$

- b. Compute the partial residual as $pres = y \hat{\beta}_0 + \hat{\beta}_1 x_1$
- This is also called a component plus residual; if res is the

residual from 3a:
$$pres = res + \hat{\beta}_2 x_2$$

Stata Commands: cprplot

- The component plus residual plot is also known as partial-regression leverage plots, adjusted partial residuals plots or adjusted variable plots.
- The command "cprplot x" graph each obervation's residual plus its component predicted from x against values of x.
- Cprplots help diagnose non-linearities and suggest alternative functional forms.

Graph cprplot x₁

reg api00 meals ell emer
rvfplot, yline(0)

- Heteroskastic: Systematic variation in the size of the residuals
- Here, for instance, the variance for smaller fitted values is greater than for larger ones

Hetroskedasticity

reg api00 meals ell emer
rvfplot, yline(0)

- Heteroskastic: Systematic variation in the size of the residuals
- Here, for instance, the variance for smaller fitted values is greater than for larger ones

Hetroskedasticity

reg api00 meals ell emer
rvfplot, yline(0)

- Heteroskastic: Systematic variation in the size of the residuals
- Here, for instance, the variance for smaller fitted values is greater than for larger ones

Tests for Heteroskedasticity

Grabbed whitetst from the web

```
. net install whitetst
checking whitetst consistency and verifying not already installed...
installing into c:\ado\plus\...
installation complete.
. hettest
Breusch-Pagan / Cook-Weisberg test for heteroskedasticity
    Ho: Constant variance
    Variables: fitted values of api00

    chi2(1) = 8.75
    Prob > chi2 = 0.0031
. whitetst
White's general test statistic : 18.35276 Chi-sq(9) P-value = .0313
```

Fails hettest

Fails whitetst

Another Example

- These error terms are really bad!
- Previous analysis suggested logging enrollment to correct skewness

reg api00 enroll rvfplot

Another Example

- Much better
- Errors look more-orless normal now

```
gen lenroll = log(enroll)
reg api00 lenroll
rvfplot
```

M

Back To First Example

- Adding enrollment keeps errors normal
- Don't need to take the log of enrollment this time

reg api00 meals ell emer enroll
rvfplot, yline(0)

Weighted regression for certain types of non-constant variance (cont.)

1. Suppose:
$$\mu(y \mid x_1, x_2) = \beta_0 + \beta_1 x_1 + \beta_2 x_2$$

 $\text{var}(y \mid x_1, x_2) = \sigma^2 / \omega_i$

and the wis are known

2. Weighted least squares is the appropriate tool for this model; it minimizes the weighted sum of squared residuals

$$\sum_{i=1}^{n} \omega_{i} (y_{i} - \hat{\beta}_{1} x_{1i} - \hat{\beta}_{2} x_{2i})^{2}$$

3. In statistical computer programs: use linear regression in the usual way, specify the column *w* as a *weight*, read the output in the usual way

Weighted regression for certain types of non-constant variance

- 4. Important special cases where this is useful:
- a. y_i is an average based on a sample of size m_i In this case, the weights are $w_i = 1/m_i$
- b. the variance is proportional to x; so $w_i = 1/x_i$

Multicollinearity

- This means that two or more regressors are highly correlated with each other.
- Doesn't bias the estimates of the dependent variable
 - So not a problem if all you care about is the predictive accuracy of the model
- But it <u>does</u> affect the inferences about the significance of the collinear variables
 - □ To understand why, go back to Venn diagrams

M

Multicollinearity

- Variable X explains Blue + Red
- Variable W explains Green + Red
- So how should Red be allocated?

Multicollinearity

We could:

- 1. Allocate Red to both X and W
- 2. Split Red between X and W (using some formula)
- Ignore Red entirely

Multicollinearity

- In fact, only the information in the Blue and Green areas is used to predict Y.
- Red area is ignored when estimating β_x and β_w

Venn Diagrams and Estimation of Regression Model

Venn Diagrams and Collinearity

This is the usual situation: some overlap between regressors, but not too much.

Venn Diagrams and Collinearity

Now the overlap is so big, there's hardly any information left over to use when estimating β_x and β_w .

These variables "interfere" with each other.

Venn Diagrams and Collinearity

M

Testing for Collinearity

"quietly" suppresses all output

- . quietly regress api00 meals ell emer
- . vif

Variable	VIF	1/VIF
meals ell emer	2.73 2.51 1.41	0.366965 0.398325 0.706805
Mean VIF	2.22	

VIF = variance inflation factor
Any value over 10 is worrisome

M

Testing for Collinearity

"quietly" suppresses all output

- . quietly regress api00 meals ell emer
- . vif

These results are not too bad

VIF = variance inflation factor
Any value over 10 is worrisome

м

Testing for Collinearity

Now add different regressors

- . qui regress api00 acs_k3 avg_ed grad_sch col_grad some_col
- . vif

Variable	VIF	1/VIF
avg_ed grad_sch	43.57 14.86	0.022951
col_grad some_col acs_k3	14.78 4.07 1.03	0.067664 0.245993 0.971867
Mean VIF	1.03 15.66	0.971807

Testing for Collinearity

Now add different regressors

- . qui regress api00 acs_k3 avg_ed grad_sch col_grad some_col
- . vif

Variable VIF 1/VIF 0.022951 avg_ed 0.067274 grad_sch 14.86 14.78 0.067664 col_grad 4.07 0.245993 some_col acs k3 1.03 0.971867 Mean VIF 15.66

Much worse.

м

Testing for Collinearity

Now add different regressors

- . qui regress api00 acs_k3 avg_ed grad_sch col_grad some_col
- . vif

Variable	VIF	1/VIF
avg_ed grad_sch col_grad some_col acs_k3	43.57 43.57 14.86 14.78 4.07 1.03	0.022951 0.067274 0.067664 0.245993 0.971867
Mean VIF	+ 15.66	

Much worse.

Problem:
education
variables are
highly correlated

Testing for Collinearity

Now add different regressors

- . qui regress api00 acs_k3 avg_ed grad_sch col_grad some_col
- . vif

Variable	VIF	1/VIF
	42 57	0 000051
avg_ed	43.57	0.022951
grad_sch	14.86	0.067274
col_grad	14.78	0.067664
some_col	4.07	0.245993
acs_k3	1.03	0.971867
	. – – – – – – –	
Mean VIF	15.66	

Much worse.

Problem:
education
variables are
highly correlated

Solution: delete collinear factors.

M

Testing for Collinearity

Delete average parent education

- . qui regress api00 acs_k3 grad_sch col_grad some_col
- . vif

Variable	VIF	1/VIF
col_grad grad_sch some_col	1.28 1.26 1.03	0.782726 0.792131 0.966696 0.976666
acs_k3 Mean VIF	1.02 1.15	0.97666

This solves the problem.

Measurement errors in x's

 Fact: least squares estimates are biased and inferences about

$$\mu(y|x1, x2) = \beta_0 + \beta_1 x_1 + \beta_2 x_2$$

can be misleading if the available data for estimating the regression are observations y, x_1 , x_2^* , where x_2^* is an imprecise measurement of x_2 (even though it may be an unbiased measurement)

- This is an important problem to be aware of; general purpose solutions do not exist in standard statistical programs
- Exception: if the purpose of the regression is to predict future y's from future values of x₁ and x₂* then there is no need to worry about x₂* being a measurement of x₂