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Regression Diagnostics
Unusual and Influential Data

Outliers
Leverage
Influence

Heterosckedasticity
Non-constant variance

Multicollinearity
Non-independence of x variables



Unusual and Influential Data
Outliers

An observation with large residual. 
An observation whose dependent-variable value is unusual 
given its values on the predictor variables. 
An outlier may indicate a sample peculiarity or may indicate a 
data entry error or other problem. 



Outliers

reg api00 meals ell emer
rvfplot, yline(0)

Largest 
positive outliers

Largest negative 
outliers



Unusual and Influential Data
Outliers

An observation with large residual. 
An observation whose dependent-variable value is unusual given its 
values on the predictor variables. 
An outlier may indicate a sample peculiarity or may indicate a data 
entry error or other problem. 

Leverage
An observation with an extreme value on a predictor variable 

Leverage is a measure of how far an independent variable deviates 
from its mean. 
These leverage points can have an effect on the estimate of 
regression coefficients. 



Leverage 

These cases have 
relatively large 

leverage



Unusual and Influential Data
Outliers

An observation with large residual. 
An observation whose dependent-variable value is unusual given its 
values on the predictor variables. 
An outlier may indicate a sample peculiarity or may indicate a data 
entry error or other problem. 

Leverage
An observation with an extreme value on a predictor variable 

Leverage is a measure of how far an independent variable deviates 
from its mean. 
These leverage points can have an effect on the estimate of 
regression coefficients. 

Influence
Influence can be thought of as the product of leverage and 
outlierness. 

Removing the observation substantially changes the estimate of 
coefficients. 



Influence 

This case has the 
largest influence

Regression line
without influential
data point

Regression line
with influential
data point



Introduction

A quadratic-in-x term
is significant here, but 
not when largest x is
removed.

Why is this a problem?
Conclusions that hinge on one or two data points must 
be considered extremely fragile and possibly 
misleading.

The problem: least squares is not resistant 
One or several observations can have undue influence 
on the results



Scatterplots
Residuals plots
Tentative fits of models with one or 
more cases set aside
A strategy for dealing with influential 
observations (11.3)

Tools to help detect outliers and 
influential cases (11.4)

Cook’s distance
Leverage
Studentized residual

Tools



Difficulties to overcome
Detection of influential observations 
depends on 

Having determined a good scale for y 
(transformation) first
Having the appropriate x’s in the model, 

But assessment of appropriate 
functional form and x’s can be 
affected by influential observations 
(see previous page).



Example of Influential Outliers

Log transformation smoothes data and  



General strategy

Start with a fairly rich model; 
Include possible x’s even if you’re not 
sure they will appear in the final model 
Be careful about this with small sample 
sizes

Resolve influence and transformation 
simultaneously, early in the data 
analysis
In complicated problems, be 
prepared for dead ends.



Influence
By influential influential observation(sobservation(s)) we mean 
one or several observations whose 
removal causes a different conclusion 
in the analysis.
Two strategies for dealing with the 
fact that least squares is not resistant:

Use an estimating procedure that is more 
resistant than least squares (and don’t 
worry about the influence problem)
Use least squares with the strategy 
defined below...



A strategy for dealing with influential cases

Do conclusions change when 
the case is deleted?

Proceed with the case 
included. Study it to see 

if anything can be learned

Is there reason to believe the case 
belongs to a population other than 

he one under investigation

Omit the case and proceed Does the case have unusually “distant”
explanatory variable values?

Omit the case and proceed. 
Report conclusions for the 

reduced range of explanatory 
Variables. 

More data are needed to 
resolve the question

No Yes

NoYes

Yes
No



Alcohol Metabolism Example (Section 11.1.1)

Does the fitted regression model change when 
the two isolated points are removed?

0
5

10
15

1 2 3 4 5
GASTRIC

Fitted values METABOL

Possible influential 
outliers



Example: Alcohol Metabolism
Step 1: Create indicator variables and 
Interactive terms.

Commands to generate dummies for femalefemale
and malemale:

gen female=gender if gender==1
(14 missing values generated)
gen male=gender if gender==2
(18 missing values generated)
replace female=0 if female!=1
(14 real changes made)
replace male=0 if male!=2
(18 real changes made)

Interactive Term
gen femgas=female*gastric



Example: Alcohol Metabolism (cont.)

Step 2: run initial regression model:



Step 3: run initial regression model:
exclude the largest values of gastric, cases 31 and 32

Example: Alcohol Metabolism (cont.)



Scatterplots

Female line 
does not change



Female line in detail



Male line in detail



Case influence statistics
Introduction

These help identify influential observations and help to 
clarify the course of action.
Use them when: 

you suspect influence problems and
when graphical displays may not be adequate

One useful set of case influence statistics:

Di: CookCook’’s Distances Distance - for measuring influence

hi: LeverageLeverage - for measuring “unusualness” of x’s

ri: StudentizedStudentized residualresidual - for measuring 
“outlierness”

Note: i = 1,2,..., n

Sample use of influence statistics…



CookCook’’s Distance: s Distance: 
MMeasure of overall influenceeasure of overall influence

predict D, predict D, cooskdcooskd
graph graph twowaytwoway spike D subjectspike D subject
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Note: observations 
31 and 32 have 
large cooks 
distances.

The impact that 
omitting a case has 
on the estimated 
regression 
coefficients.



Di: Cook’s Distance for identifying 
influential cases

One formula:

where is the estimated mean of y at observation j, 
based on the reduced data set with observation i 
deleted.
P is the number of regression coefficients

is the estimated variance from the fit, based on 
all observations.

Equivalent formula (admittedly mysterious):
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This term is big
if case i is unusual
in the y-direction

This term is big
if case i is unusual
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• It measures the multivariate distance between 
the x’s for case i and the average x’s, 
accounting for the correlation structure.

If there is only one x:

This case has a 
relatively large 

leverage

Leverage: hi for the single variable case
(also called: diagonal element of the hat matrix)

ns
xx

n
h

x

i
i

1
)1(

1
2

+⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ −
−

=

nxx
xxh i

i
1

)(
)(

2

2

+
−

−
=
∑

Leverage is the proportion 
of the total sum of squares 
of the explanatory variable 
contributed by the ith case.

Equivalently: 



Leverage: hi for the multivariate case

For several x’s, hi has a matrix 
expression

X1

X2

Unusual in explanatory 
variable values, 

although not unusual in 
X1 or X2 individually



Studentized residual for detecting outliers 
(in y direction)

Formula:

Fact:

i.e. different residuals have different 
variances, and since 0 < hi < 1 those with 
largest hi (unusual x’s) have the smallest 
SE(resi).

For outlier detection use this type of 
residual (but use ordinary residuals in the 
standard residual plots).
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Get the triplet (Di, hi, studresi) for each i 
from 1 to n
Look to see whether any Di’s are “large”

Large Di’s indicate influential observations 
Note: you ARE allowed to investigate these 
more closely by manual case deletion.

hi and studresi help explain the reason for 
influence 

unusual x-value, outlier or both; 
helps in deciding the course of action outlined in 
the strategy for dealing with suspected 
influential cases.

How to use case influence statistics



ROUGH guidelines for “large”
(Note emphasis on ROUGH)

Di values near or larger than 1 are good 
indications of influential cases; 

Sometimes a Di much larger than the others 
in the data set is worth looking at.

The average of hi is always p/n; 
some people suggest using hi>2p/n as “large”

Based on normality, |studres| > 2 is 
considered “large”



Sample situation with a single x



STATA commands:
predict derives statistics from the most recently fitted 
model.

Some predict options that can be used after anova or 
regress are:

LeveragePredict newvariable, hat

Studentized
residuals

predict newvariable, rstudent

Cook’s distancepredict newvariable, cooksd



1. predict D, cooksd
2. graph twoway scatter D subject, msymbol(i) mlabel(subject

ytitle("Cooks'D") xlabel(0(5)35) ylabel(0(0.5)1.5) 
title("Cook's Distance by subject")



1. predict studres, rstudent
2. graph twoway scatter studres subject, msymbol(i) 

mlabel(subject) ytitle(“Studentized Residuals")
title("Studentized Residuals by subject")



1. predict leverage, hat
2. graph twoway scatter leverage subject, msymbol(i) 

mlabel(subject) ytitle(“Leverage") ylabel(0(.1).5) 
xlabel(0(5)35) title(“Leverage by subject")



Alternative to Di: dffitsdffitsii (and others) 
Alternative to studresi: externallyexternally--
studentizedstudentized residualresidual

Suggestion: use whatever is convenient 
with the statistical computer package 
you’re using.

Note: Di only detects influence of 
single-cases; influential pairs may go 
undetected.

Alternative case influence statistics



Partial Residual Plots
A problem: a scatterplot of y vs x2 gives 
information regarding µ(y| x2) about 

(a) whether x2 is a useful predictor of y, 
(b) nonlinearity in x2 and 
(c) outliers and influential observations.

We would like a plot revealing (a), (b), and 
(c) for µ(y|x1, x2, x3)

e.g. what is the effect of x2, after accounting 
for x1 and x3?



Example: SAT Data (Case 12.01)

Question:
Is the distribution of state average SAT scores 
associated with state expenditure on public 
education, after accounting for percentage of high 
school students who take the SAT test?

We would like to visually explore the function 
f(expend) in:

µ(SAT|takers,expend) = β0 + β1 takers + f(expend)
After controlling for the number of students taking 
the test, does expenditures impact performance?



Step 1: Scatterplots
•Marginal plots y vs. x1 and y vs. x2 
•The scatterplot matrix depicts the 
interrelations among these three variables



Stata Commands: avplot
The added variable plot is also known as 
partial-regression leverage plots, adjusted partial 
residuals plots or adjusted variable plots. 

The AVPlot depicts the relationship between y and 
one x variable, adjusting for the effects of other x 
variables

Avplots help to uncover observations exerting a 
disproportionate influence on the regression 
model.

High leverage observations show in added variable 
plots as points horizontally distant from the rest of the 
data.



Added variable plots
- Is the state with largest expenditure influential?
- Is there an association of expend and SAT, after accounting for takers?



• Alaska is unusual in its 
expenditure, and is 
apparently quite 
influential



After accounting for % of students who take SAT, there is a 
positive association between expenditure and mean SAT scores.



Component plus Residual
We’d like to plot y versus x2 but with the effect of x1
subtracted out; 

i.e. plot                              versus x2

To approximate this, get the partial residualpartial residual for x2 :

a. Get                     in

b. Compute the partial residual as

This is also called a component plus residualcomponent plus residual; if res is the 

residual from 3a:
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Stata Commands: cprplot

The component plus residual plotcomponent plus residual plot is also 
known as partial-regression leverage 
plots, adjusted partial residuals plots or 
adjusted variable plots. 
The command “cprplot x” graph  each 
obervation’s residual plus its component 
predicted from x against values of x.
Cprplots help diagnose non-linearities and 
suggest alternative functional forms.



Graph cprplot x1

Graphs each 
observation's residual 
plus its component 
predicted from x1
against values of x1i

ii xbe 11+



Hetroskedasticity—(Non-constant Variance)

reg api00 meals ell emer
rvfplot, yline(0)

Heteroskastic: 
Systematic 
variation in the 
size of the 
residuals 
Here, for 
instance, the 
variance for 
smaller fitted 
values is 
greater than for 
larger ones



Hetroskedasticity

Heteroskastic: 
Systematic 
variation in the 
size of the 
residuals 
Here, for 
instance, the 
variance for 
smaller fitted 
values is 
greater than for 
larger ones

Rvfplot, yline(0)
reg api00 meals ell emer
rvfplot, yline(0)



Hetroskedasticity

Heteroskastic: 
Systematic 
variation in the 
size of the 
residuals
Here, for 
instance, the 
variance for 
smaller fitted 
values is 
greater than for 
larger ones

Rvfplot, yline(0)
reg api00 meals ell emer
rvfplot, yline(0)



Tests for Heteroskedasticity

Fails hettest

Grabbed whitetst from the web

Fails whitetst



Another Example

reg api00 enroll
rvfplot

These error 
terms are 
really bad!
Previous 
analysis 
suggested 
logging 
enrollment 
to correct 
skewness



Another Example

gen lenroll = log(enroll)
reg api00 lenroll
rvfplot

Much 
better
Errors look 
more-or-
less normal 
now



Back To First Example

Adding 
enrollment 
keeps errors 
normal
Don’t need to 
take the log 
of enrollment 
this time

reg api00 meals ell emer enroll
rvfplot, yline(0)



Weighted regression for certain types of 
non-constant variance (cont.)

1. Suppose:

and the wi’s are known

2. Weighted least squaresWeighted least squares is the appropriate tool for this 
model; it minimizes the weighted sum of squared residuals

3. In statistical computer programs: use linear regression in 
the usual way, specify the column w as a weightweight, read the 
output in the usual way
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4. Important special cases where this is useful:

a. yi is an average based on a sample of size mi

In this case, the weights are wi = 1/mi

b. the variance is proportional to x; so wi = 1/xi

Weighted regression for certain types of 
non-constant variance



Multicollinearity

This means that two or more regressors are 
highly correlated with each other.
Doesn’t bias the estimates of the dependent 
variable

So not a problem if all you care about is the 
predictive accuracy of the model

But it does affect the inferences about the 
significance of the collinear variables

To understand why, go back to Venn diagrams



Multicollinearity

Variable X explains Blue + Red
Variable W explains Green + Red
So how should Red be allocated? 



We could:
1. Allocate Red to both X and W
2. Split Red between X and W (using some formula)
3. Ignore Red entirely 

Multicollinearity



In fact, only the information in the Blue and 
Green areas is used to predict Y.
Red area is ignored when estimating βx and βw

Multicollinearity



Venn Diagrams and 
Estimation of Regression Model

Oil

Temp
Insulation

Only this 
information is 
used in the 
estimation of 2β

Only this 
information is 
used in the 
estimation of

1β This 
information 
is NOT used 
in the 
estimation 
of       nor1β 2β



Venn Diagrams and Collinearity

This is the usual 
situation: some 
overlap between 
regressors, but 
not too much.

Y

WX



Venn Diagrams and Collinearity
Now the overlap 
is so big, there’s 
hardly any 
information left 
over to use 
when estimating 
βx and βw. 

These variables 
“interfere” with 
each other.

Y

WX



Venn Diagrams and Collinearity

Oil

Temp
Insulation

Large Overlap Overlap in 
variation of Temp 
and Insulation is 
used in explaining 
the variation in 
Oil but NOTNOT in 
estimating      and  1β

2β

Large 
Overlap Overlap 
reflects 
collinearity 
between 
Temp and 
Insulation



Testing for Collinearity

. quietly regress api00 meals ell emer

. vif

Variable |       VIF       1/VIF  
-------------+----------------------

meals |      2.73    0.366965
ell |      2.51    0.398325
emer |      1.41    0.706805

-------------+----------------------
Mean VIF |      2.22

VIF = variance inflation factor
Any value over 10 is worrisome

“quietly” suppresses all output



Testing for Collinearity

. quietly regress api00 meals ell emer

. vif

Variable |       VIF       1/VIF  
-------------+----------------------

meals |      2.73    0.366965
ell |      2.51    0.398325
emer |      1.41    0.706805

-------------+----------------------
Mean VIF |      2.22

VIF = variance inflation factor
Any value over 10 is worrisome

“quietly” suppresses all output

These results
are not too bad



Testing for Collinearity

. qui regress api00 acs_k3 avg_ed grad_sch col_grad some_col

. vif

Variable |       VIF       1/VIF  
-------------+----------------------

avg_ed |     43.57    0.022951
grad_sch |     14.86    0.067274
col_grad |     14.78    0.067664
some_col |      4.07    0.245993
acs_k3 |      1.03    0.971867

-------------+----------------------
Mean VIF |     15.66

Now add different regressors
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Now add different regressors

Much worse.

Problem: 
education 
variables are 
highly correlated

Solution: delete 
collinear factors.
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Testing for Collinearity

. qui regress api00 acs_k3 grad_sch col_grad some_col

. vif

Variable |       VIF       1/VIF  
-------------+----------------------

col_grad |      1.28    0.782726
grad_sch |      1.26    0.792131
some_col |      1.03    0.966696
acs_k3 |      1.02    0.976666

-------------+----------------------
Mean VIF |      1.15

Delete average parent education

This solves the 
problem.



Measurement errors in x’s
Fact: least squares estimates are biased and inferences 
about 

µ( y|x1, x2) = β0 + β1 x1 + β2 x2

can be misleading if the available data for estimating the 
regression  are observations y, x1, x2*,where x2* is an 
imprecise measurement  of x2 (even though it may be an 
unbiased measurement)
This is an important problem to be aware of; general 
purpose solutions do not exist in standard statistical 
programs
Exception: if the purpose of the regression is to predict 
future y’s from future values of x1 and x2* then there is no 
need to worry about x2* being a measurement of x2


