
Lecture 5

THE PROPORTIONAL HAZARDS
REGRESSION MODEL

Now we will explore the relationship between survival and

explanatory variables by mostly semiparametric regression

modeling. We will first consider a major class of semipara-

metric regression models (Cox 1972, 1975):

Proportional Hazards (PH) models

λ(t|Z) = λ0(t)e
β′Z

Here Z is a vector of covariates of interest, which may in-
clude:

• continuous factors (eg, age, blood pressure),

• discrete factors (gender, marital status),

• possible interactions (age by sex interaction)

Note the infinite dimensional parameter λ0(t).
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λ0(t) is called the baseline hazard function, and re-

flects the underlying hazard for subjects with all covariates

Z1, ..., Zp equal to 0 (i.e., the “reference group”).

The general form is:

λ(t|Z) = λ0(t) exp(β1Z1 + β2Z2 + · · · + βpZp)

So when we substitute all of the Zj’s equal to 0, we get:

λ(t|Z = 0) = λ0(t) exp(β1 ∗ 0 + β2 ∗ 0 + · · · + βp ∗ 0)

= λ0(t)

In the general case, we think of the i-th individual having a

set of covariates Zi = (Z1i, Z2i, ..., Zpi), and we model their

hazard rate as some multiple of the baseline hazard rate:

λi(t) = λ(t|Zi) = λ0(t) exp(β1Z1i + · · · + βpZpi)

Q: Should the model have an intercept in the

linear combination?
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Why do we call it proportional hazards?

Think of an earlier example on Leukemia data, where Z = 1

for treated and Z = 0 for control. Then if we think of λ1(t)

as the hazard rate for the treated group, and λ0(t) as the

hazard for control, then we can write:

λ1(t) = λ(t|Z = 1) = λ0(t) exp(βZ)

= λ0(t) exp(β)

This implies that the ratio of the two hazards is a constant,

eβ, which does NOT depend on time, t. In other words, the

hazards of the two groups remain proportional over time.

λ1(t)

λ0(t)
= eβ

• eβ is referred to as the hazard ratio (HR) or relative

risk (RR)

• β is the log hazard ratio or log relative risk.

This applied to any types of Z, as they are the (log) HR for

one unit increase in the value of Z.
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This means we can write the log of the hazard ratio for the

i-th individual to the baseline as:

log


λi(t)

λ0(t)

 = β1Z1i + β2Z2i + · · · + βpZpi

The Cox Proportional Hazards model is a

linear model for the log of the hazard ratio

One of the main advantages of the framework of the Cox PH

model is that we can estimate the parameters β

without having to estimate λ0(t).

And, we don’t have to assume that λ0(t) follows an expo-

nential model, or a Weibull model, or any other particular

parametric model.

This second part is what makes the model semiparametric.

Q: Why don’t we just model the hazard ratio,

φ = λi(t)/λ0(t), directly as a linear function of the

covariates Z?
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Under the PH model, we will address the following questions:

• What does the term λ0(t) mean?

• What’s “proportional” about the PH model?

• How do we estimate the parameters in the model?

• How do we interpret the estimated values?

• How can we construct tests of whether the covariates

have a significant effect on the distribution of survival

times?

• How do these tests relate to the logrank test or the

Wilcoxon test?

• How do we predict survival under the model?

• time-varying covariate Z(t)

• model diagnostics

• model/variable selection
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The Cox (1972) Proportional Hazards model

λ(t|Z) = λ0(t) exp(β′Z)

is the most commonly used regression model for survival

data.

Why?

• suitable for survival type data

• flexible choice of covariates

• fairly easy to fit

• standard software exists

Note: some books or papers use h(t; X) as their standard

notation for the hazard instead of λ(t; Z), and H(t) for the

cumulative hazard instead of Λ(t).
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Likelihood Estimation for the PH Model

Cox (1972, 1975) proposed a partial likelihood for β

without involving λ0(t).

Suppose we observe (Xi, δi,Zi) for individual i, where

• Xi is a possibly censored failure time random variable

• δi is the failure/censoring indicator (1=fail, 0=censor)

• Zi represents a set of covariates

Suppose there are K distinct failure (or death) times, and

let τ1 < ... < τK represent the K ordered, distinct death

times.

For now, assume there are no tied death times.

The idea is similar to the log-rank test, we look at (i.e. con-

dition on) each observed failure time.

Let R(t) = {i : Xi ≥ t} denote the set of individuals who

are “at risk” for failure at time t, called the risk set.

The partial likelihood is a product over the observed failure

times of conditional probabilities, of seeing the observed fail-

ure, given the risk set at that time and that one failure is to

happen.
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In other words, these are the conditional probabilities of the

observed individual, being chosen from the risk set to fail.

At each failure time Xj, the contribution to the likelihood

is:

Lj(β) = P (individual j fails|one failure from R(Xj))

=
P (individual j fails| at risk at Xj)∑

`∈R(Xj) P (individual ` fails| at risk at Xj)

=
λ(Xj|Zj)∑

`∈R(Xj) λ(Xj|Z`)

Under the PH assumption, λ(t|Z) = λ0(t)e
β′Z, so the par-

tial likelihood is:

L(β) =
K∏
j=1

λ0(Xj)e
β′Zj

∑
`∈R(Xj) λ0(Xj)eβ

′Z`

=
K∏
j=1

eβ
′Zj

∑
`∈R(Xj) e

β′Z`
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Partial likelihood as a rank likelihood

Notice that the partial likelihood only uses the ranks of the

failure times. In the absence of censoring, Kalbfleisch and

Prentice derived the same likelihood as the marginal

likelihood of the ranks of the observed failure times.

In fact, suppose that T follows a PH model:

λ(t|Z) = λ0(t)e
β′Z

Now consider T ∗ = g(T ), where g is a strictly increasing

transformation.

Ex. a) Show that T ∗ also follows a PH model, with the same

relative risk, eβ
′Z.

Ex. b) Without loss of generality we may assume that

λ0(t) = 1. Then Ti ∼ exp(λi) where λi = eβ
′Zi. Show that

P (Ti < Tj) = λi
λi+λj

.

9



A censored-data likelihood derivation:

Recall that in general, the likelihood contributions for right-

censored data fall into two categories:

• Individual is censored at Xi:

Li(β) = Si(Xi)

• Individual fails at Xi:

Li(β) = fi(Xi) = Si(Xi)λi(Xi)

So the full likelihood is:

L(β) =
n∏
i=1
λi(Xi)

δi Si(Xi)

=
n∏
i=1

 λi(Xi)∑
j∈R(Xi) λj(Xi)


δi

 ∑
j∈R(Xi)

λj(Xi)


δi

Si(Xi)

in the above we have multiplied and divided by the term[∑
j∈R(Xi) λj(Xi)

]δi
.

Cox (1972) argued that the first term in this product con-

tained almost all of the information about β, while the last

two terms contained the information about λ0(t), the base-

line hazard.
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If we keep only the first term, then under the PH assumption:

L(β) =
n∏
i=1

 λi(Xi)∑
j∈R(Xi) λj(Xi)


δi

=
n∏
i=1

 λ0(Xi) exp(β′Zi)∑
j∈R(Xi) λ0(Xi) exp(β′Zj)


δi

=
n∏
i=1

 exp(β′Zi)∑
j∈R(Xi) exp(β′Zj)


δi

This is the partial likelihood defined by Cox. Note that it

does not depend on the underlying hazard function λ0(·).
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A simple example:

individual Xi δi Zi
1 9 1 4

2 8 0 5

3 6 1 7

4 10 1 3

Now let’s compile the pieces that go into the partial likeli-

hood contributions at each failure time:

ordered

failure Likelihood contribution

time Xi R(Xi) i
[
eβZi/

∑
j∈R(Xi) e

βZj
]δi

6 {1,2,3,4} 3 e7β/[e4β + e5β + e7β + e3β]

8 {1,2,4} 2 1

9 {1,4} 1 e4β/[e4β + e3β]

10 {4} 4 e3β/e3β = 1

The partial likelihood would be the product of these four

terms.
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Partial likelihood inference

Cox recommended to treat the partial likelihood as a regular

likelihood for making inferences about β, in the presence of

the nuisance parameter λ0(·). This turned out to be valid

(Tsiatis 1981, Andersen and Gill 1982, Murphy and van der

Vaart 2000).

The log-partial likelihood is:

`(β) = log


n∏
i=1

eβ
′Zi

∑
`∈R(Xi) e

β′Z`


δi

=
n∑
i=1
δi

β′Zi − log


∑

`∈R(Xi)
eβ
′Z`




=
n∑
i=1
li(β)

where li is the log-partial likelihood contribution from indi-

vidual i.

Note that the li’s are not i.i.d. terms (why, and what is the

implication of this fact?).

13



The partial likelihood score function is:

U(β) =
∂

∂β
`(β) =

n∑
i=1
δi

Zi −
∑
`∈R(Xi)Z`e

β′Z`∑
`∈R(Xi) e

β′Z`


=

n∑
i=1

∫ ∞
0

Zi −
∑n
l=1 Yl(t)Zle

β′Zl∑n
l=1 Yl(t)e

β′Zl

 dNi(t).

Denote

πj(β; t) =
Yj(t)e

β′Zj∑n
l=1 Yl(t)e

β′Zl
.

These are the conditional probabilities that contribute to the

partial likelihood.

We can express U(β) as a sum of “observed” minus “ex-

pected” values:

U(β) =
∂

∂β
`(β) =

n∑
i=1
δi{Zi − E(Z;Xi)},

where E(Z;Xi) is the expectation of the covariate Z w.r.t.

the (discrete) probability distribution {πj(β;Xi)}nj=1.

The maximum partial likelihood estimator can be found by

solving U(β) = 0.
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Analogous to standard likelihood theory, it can be shown

that asymptotically

(β̂ − β)

se(β̂)
∼ N(0, 1).

The variance of β̂ can be estimated by inverting the second

derivative of the partial likelihood,

V̂ar(β̂) =

− ∂2

∂β2
`(β̂)


−1

.

From the earlier expression for U(β), we have:

− ∂2

∂β2
`(β) =

n∑
i=1
δi


∑
`∈R(Xi)Z

⊗2
` eβ

′Z`∑
`∈R(Xi) e

β′Z`
− E(Z;Xi)

⊗2



=
n∑
i=1

∫ ∞
0


∑n
l=1 Yl(t)Z

⊗2
l eβ

′Zl∑n
l=1 Yl(t)e

β′Zl
−


∑n
l=1 Yl(t)Zle

β′Zl∑n
l=1 Yl(t)e

β′Zl


⊗2 dNi(t),

where a⊗2 = aa′ for a vector a.

Notice that in [ ] is the variance of Z with respect to the

probability distribution {πj(β;Xi)}nj=1.
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Eg. Leukemia Data

SAS PROC PHREG Output:

The PHREG Procedure

Data Set: WORK.LEUKEM

Dependent Variable: FAILTIME Time to Relapse

Censoring Variable: FAIL

Censoring Value(s): 0

Ties Handling: BRESLOW

Summary of the Number of

Event and Censored Values

Percent

Total Event Censored Censored

42 30 12 28.57

Testing Global Null Hypothesis: BETA=0

Without With

Criterion Covariates Covariates Model Chi-Square

-2 LOG L 187.970 172.759 15.211 with 1 DF (p=0.0001)

Score . . 15.931 with 1 DF (p=0.0001)

Wald . . 13.578 with 1 DF (p=0.0002)

Analysis of Maximum Likelihood Estimates

Parameter Standard Wald Pr > Risk

Variable DF Estimate Error Chi-Square Chi-Square Ratio

TRTMT 1 -1.509191 0.40956 13.57826 0.0002 0.221
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Compare this with the logrank test

The LIFETEST Procedure

Rank Tests for the Association of FAILTIME with Covariates

Pooled over Strata

Univariate Chi-Squares for the LOG RANK Test

Test Standard Pr >

Variable Statistic Deviation Chi-Square Chi-Square

TRTMT 10.2505 2.5682 15.9305 0.0001

Notes:

• The logrank test = score test under the PH model

(more later).

• In general, the score test would be for all of the variables

in the model, but in this case, we have only “trtmt”.

• In R you can use coxph() to fit the PH model.
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More Notes:

• The Cox Proportional hazards model has the advantage

over a simple logrank test of giving us an estimate of

the “risk ratio” (i.e., φ = λ1(t)/λ0(t)). This is more

informative than just a test statistic, and we can also

form confidence intervals for the risk ratio.

• In this case, φ̂ = eβ̂ = 0.221, which can be interpreted to

mean that the hazard for relapse among patients treated

with 6-MP is less than 25% of that for placebo patients.

• As you see, the software does not immediately give es-

timates of the survival function Ŝ(t) for each treatment

group. Why?
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Confidence intervals for the Hazard Ratio:

Many software packages provide estimates of β, but the haz-

ard ratio, or relative risk, RR= exp(β) is often the parameter

of interest.

Confidence intervals for exp(β)

Form a confidence interval for β̂, and then exponentiate the

endpoints:

[L,U ] = [eβ̂−1.96se(β̂), eβ̂+1.96se(β̂)]

Should we try to use the delta method for eβ̂?
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Hypothesis Tests:

For each covariate of interest, the null hypothesis is

H0 : RRj = 1⇔ βj = 0

A Wald test of the above hypothesis is constructed as:

Z =
β̂j

se(β̂j)
or χ2 =

 β̂j

se(β̂j)


2

Note: if we have a factor A with a levels, then we would need

to construct a χ2 test with (a − 1) df, using a test statistic

based on a quadratic form:

χ2
(a−1) = β̂

′
AVar(β̂A)−1β̂A

where βA = (β1, ..., βa−1)
′ are the (a− 1) coefficients corre-

sponding to the binary variables Z1, ..., Za−1.
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Likelihood Ratio Test:

Suppose there are (p + q) explanatory variables measured:

Z1, . . . , Zp, Zp+1, . . . , Zp+q.

Consider the following models:

•Model 1: (contains only the first p covariates)

λ(t|Z) = λ0(t) exp(β1Z1 + · · · + βpZp)

•Model 2: (contains all (p + q) covariates)

λi(t|Z) = λ0(t) exp(β1Z1 + · · · + βp+qZp+q)

We can construct a likelihood ratio test for testing

H0 : βp+1 = · · · = βp+q = 0

as:

χ2
LR = −2 {logL(M1)− logL(M2)} ,

where L(M ·) is the maximized partial likelihood under each

model. Under H0, this test statistic is approximately dis-

tributed as χ2 with q df.
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An example:

MAC Disease Trial

ACTG 196 was a randomized clinical trial to study the ef-

fects of combination regimens on prevention of MAC (my-

cobacterium avium complex) disease, which is one of the

most common opportunistic infections in AIDS patients and

is associated with high mortality and morbidity.

The treatment regimens were:

• clarithromycin (new)

• rifabutin (standard)

• clarithromycin plus rifabutin

The study also recorded the patients’ performance status

(Karnofski score) and CD4 counts.
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Model 1:

No. of subjects = 1151 Number of obs = 1151

No. of failures = 121

Time at risk = 489509

LR chi2(3) = 32.01

Log likelihood = -754.52813 Prob > chi2 = 0.0000

-----------------------------------------------------------------------

_t |

_d | Coef. Std. Err. z P>|z| [95% Conf. Interval]

---------+-------------------------------------------------------------

karnof | -.0448295 .0106355 -4.215 0.000 -.0656747 -.0239843

rif | .8723819 .2369497 3.682 0.000 .4079691 1.336795

clari | .2760775 .2580215 1.070 0.285 -.2296354 .7817903

-----------------------------------------------------------------------

Model 2:

No. of subjects = 1151 Number of obs = 1151

No. of failures = 121

Time at risk = 489509

LR chi2(4) = 63.74

Log likelihood = -738.66225 Prob > chi2 = 0.0000

-------------------------------------------------------------------------

_t |

_d | Coef. Std. Err. z P>|z| [95% Conf. Interval]

---------+---------------------------------------------------------------

karnof | -.0368538 .0106652 -3.456 0.001 -.0577572 -.0159503

rif | .880338 .2371111 3.713 0.000 .4156089 1.345067

clari | .2530205 .2583478 0.979 0.327 -.253332 .7593729

cd4 | -.0183553 .0036839 -4.983 0.000 -.0255757 -.0111349

-------------------------------------------------------------------------
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Notes:

• We can compute the hazard ratio of CD4, for example,

by exponentiating the coefficients:

RRcd4 = exp(−0.01835) = 0.98

What is the interpretation of this RR?

Although this RR is highly significant, it is very close to

1, why?

• The likelihood ratio test for the effect of CD4 is twice

the difference in minus log-likelihoods between the two

models:

χ2
LR = 2 ∗ (754.533− 738.66) = 31.74

How does this test statistic compare to the Wald χ2 test?

• In the MAC study, there were three treatment arms (rif,

clari, and the rif+clari combination). Because we have

only included the rif and clari effects in the model,

the combination therapy is the “reference” group.
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• Stata allows a Wald test comparing the treatment effect

across three groups:

. test rif clari

( 1) rif = 0.0

( 2) clari = 0.0

chi2( 2) = 17.01

Prob > chi2 = 0.0002

This tests whether both treatment coefficients are equal

to 0.

How would you do this in R?
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[Reading] A special case: the two-sample prob-

lem

Previously, we derived the logrank test for

(X01, δ01) . . . (X0n0, δ0n0) from group 0,

and (X11, δ11), . . . , (X1n1, δ1n1) from group 1.

Just as the chi-squared test for 2x2 tables can be derived

from a logistic model, we will see here that the logrank test

can be derived as a special case of the Cox Proportional

Hazards regression model.

First, re-define our notation in terms of (Xi, δi, Zi):

(X01, δ01), . . . , (X0n0, δ0n0) =⇒ (X1, δ1, 0), . . . , (Xn0, δn0, 0)

(X11, δ11), . . . , (X1n1, δ1n1) =⇒ (Xn0+1, δn0+1, 1), . . . , (Xn0+n1, δn0+n1, 1)

In other words, we have n0 rows of data (Xi, δi, 0) for the

group 0 subjects, then n1 rows of data (Xi, δi, 1) for the

group 1 subjects.

Using the proportional hazards formulation, we have

λ(t;Z) = λ0(t) e
βZ

Group 0 hazard: λ0(t)

Group 1 hazard: λ0(t) e
β
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The log-partial likelihood is:

logL(β) = log

 K∏
j=1

eβZj∑
`∈R(Xj) e

βZ`



=
K∑
j=1

βZj − log[
∑

`∈R(Xj)
eβZ`]



Taking the derivative with respect to β, we get:

U(β) =
∂

∂β
`(β)

=
n∑
j=1

δj

Zj −
∑
`∈R(Xj)Z`e

βZ`

∑
`∈R(Xj) e

βZ`



=
n∑
j=1

δj(Zj − Z̄j)

where

Z̄j =

∑
`∈R(Xj)Z`e

βZ`

∑
`∈R(Xj) e

βZ`

β=0
=

∑
`∈R(Xj)Z`

|R(Xj)|
=
r1j
rj
.

U(β) is the “score”.

27



As we discussed earlier in the class, one useful form of a

likelihood-based test is the score test. This is obtained by

using the score U(β) evaluated under H0 as a test statistic.

Let’s look more closely at the form of the score:

δjZj observed number of deaths in group 1 at Xj

δjZ̄j expected number of deaths in group 1 at Xj

Why? Under H0 : β = 0, Z̄j is simply the number of

individuals from group 1 in the risk set at time Xj (call this

r1j), divided by the total number in the risk set at that time

(call this rj). Thus, Z̄j approximates the probability that

given there is a death at Xj, it is from group 1.

When there are no ties,

U(0) =
∑
δj

d1j −
r1j
rj

 ,
also

I(0) = −U ′(0) =
∑
δj


r1j
rj
−

r1j
rj


2
 .

Therefore the score test under the Cox model for two-group comparison,

which has U(0)/
√
I(0)

H0∼ N(0, 1), is the log-rank test.
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Adjusting for ties

The proportional hazards model assumes a continuous haz-

ard – ties should not be ‘heavy’. However, when they do

happen, there are a few proposed modifications to the par-

tial likelihood to adjust for ties.

(1) Cox’s (1972) modification: “discrete” method

(2) Peto-Breslow method

(3) Efron’s (1977) method

(4) Exact method (Kalbfleisch and Prentice)

(5) Exact marginal method (stata)

Some notation:

τ1, ....τK the K ordered, distinct death times

dj the number of failures at τj

Hj the “history” of the entire data set, up to

right before the j-th death or failure time

ij1, ...ijdj the identities of the dj individuals who fail at τj
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(1) Cox’s (1972) modification: “discrete” method

Cox’s method assumes that if there are tied failure times,

they truly happened at the same time.

The partial likelihood is then:

L(β) =
K∏
j=1

Pr(ij1, ...ijdj fail | dj fail at τj, from R(τj))

=
K∏
j=1

Pr(ij1, ...ijdj fail | in R(τj))∑
`∈s(j,dj) Pr(`1, ....`dj fail | in R(τj))

=
K∏
j=1

exp(βZij1) · · · exp(βZijdj
)

∑
`∈s(j,dj) exp(βZ`1) · · · exp(βZ`dj

)

=
K∏
j=1

exp(βSj)∑
`∈s(j,dj) exp(βSj`)

where

• s(j, dj) is the set of all possible sets of dj individuals that

can possibly be drawn from the risk set at time Xj

• Sj is the sum of the Z’s for all the dj individuals who

fail at Xj

• Sj` is the sum of the Z’s for all the dj individuals in the

`-th set drawn out of s(j, dj)
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Let’s modify our previous simple example to include ties.

Simple Example (with ties)

Group 0: 4+, 6, 8+, 9, 10+ =⇒ Zi = 0

Group 1: 3, 5, 5+, 6, 8+ =⇒ Zi = 1

Ordered
failure Number at risk Likelihood Contribution

j time Xi Group 0 Group 1 eβSj/
∑
`∈s(j,dj) e

βSj`

1 3 5 5 eβ/[5 + 5eβ]

2 5 4 4 eβ/[4 + 4eβ]

3 6 4 2 eβ/[6 + 8eβ + e2β]

4 9 2 0 e0/2 = 1/2

The tie occurs at t = 6, whenR(Xj) = {Z = 0 : (6, 8+, 9, 10+),

Z = 1 : (6, 8+)}. Of the
(6
2

)
= 15 possible pairs of subjects

at risk at t=6, there are 6 pairs formed where both are from

group 0 (Sj = 0), 8 pairs formed with one in each group

(Sj = 1), and 1 pairs formed with both in group 1 (Sj = 2).

Problem: With large numbers of ties, the denominator can

have many many terms and be difficult to calculate.
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(2) Exact method (Kalbfleisch and Prentice):

What we discussed in (1) is an exact method assuming that

tied events truly are tied.

This second exact method is based on the assumption that

if there are tied events, that is due to the imprecise nature

of our measurement, and that there must be some true or-

dering.

All possible orderings of the tied events are calculated, and

the probabilities of each are summed.

Example with 2 tied events (1,2) from riskset (1,2,3,4):

eβZ1

eβZ1 + eβZ2 + eβZ3 + eβZ4
× eβZ2

eβZ2 + eβZ3 + eβZ4

+
eβZ2

eβZ1 + eβZ2 + eβZ3 + eβZ4
× eβZ1

eβZ1 + eβZ3 + eβZ4
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(3) Breslow method:

Breslow and Peto suggested an approximation: replacing the

term
∑
`∈s(j,dj) e

βSj` in the denominator by the term
(∑

`∈R(τj) e
βZ`

)dj
,

so that the following modified partial likelihood would be

used:

L(β) =
K∏
j=1

eβSj∑
`∈s(j,dj) e

βSj`
≈

K∏
j=1

eβSj(∑
`∈R(τj) e

βZ`
)dj

Justification:

Suppose individuals 1 and 2 fail from {1, 2, 3, 4} at time τj. Let
φ(i) = exp(βZi) be the relative risk for individual i.

P{ 1 and 2 fail | two failures from R(τj) }

=
φ(1)

φ(1) + φ(2) + φ(3) + φ(4)
× φ(2)

φ(2) + φ(3) + φ(4)

or
φ(2)

φ(1) + φ(2) + φ(3) + φ(4)
× φ(1)

φ(1) + φ(3) + φ(4)

≈ φ(1)φ(2)

[φ(1) + φ(2) + φ(3) + φ(4)]2

This approximation will break down when the number of ties are

large relative to the size of the risk sets, and then tends to yield

estimates of β which are biased toward 0.

This used to be the default for most software programs, be-

cause it is computationally simple. But it is no longer the

case in R.
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(4) Efron’s (1977) method:

Efron suggested an even closer approximation to the discrete

likelihood:

L(β) =
K∏
j=1

eβSj

∏dj
r=1

(∑
`∈R(τj) e

βZ` − r−1
dj

∑
`∈D(τj) e

βZ`

)

Like the Breslow approximation, Efron’s method also as-

sumes that the failures occur one at a time, and will yield

estimates of β which are biased toward 0 when there are

many ties.

However, the Efron approximation is much faster than the

exact methods and tends to yield much closer estimates than

the Breslow approach.

This is the default in R coxph().
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Implications of Ties

(1) When there are no ties, all options give exactly the

same results.

(2) When there are only a few ties, it won’t make

much difference which method is used.

(3) When there are many ties (relative to the number

at risk), the Breslow option performs poorly (Farewell &

Prentice, 1980; Hsieh, 1995). Both of the approximate

methods, Breslow and Efron, yield coefficients that are

attenuated (biased toward 0).

(4) The choice of which exact method to use could

be based on substantive grounds - are the tied event

times truly tied? ...or are they the result of imprecise

measurement?

(5) Computing time of exact methods is much longer

than that of the approximate methods. However, this

tends to be less of a concern now.

(6) Best approximate method - the Efron approxi-

mation nearly always works better than the Breslow

method, with no increase in computing time, so use this

option if exact methods are too computer-intensive.
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Example: The fecundability study

Women who had recently given birth (or had tried to get

pregnant for at least a year) were asked to recall how long

it took them to become pregnant, and whether or not they

smoked during that time. The outcome of interest is time to

pregnancy (measured in menstrual cycles).

data fecund;

input smoke cycle status count;

cards;

0 1 1 198

0 2 1 107

0 3 1 55

0 4 1 38

0 5 1 18

0 6 1 22

..........................................

1 10 1 1

1 11 1 1

1 12 1 3

1 12 0 7

;

proc phreg;

model cycle*status(0) = smoke /ties=breslow; /* default in SAS */

freq count;

proc phreg;

model cycle*status(0) = smoke /ties=discrete;

freq count;

proc phreg;

model cycle*status(0) = smoke /ties=exact;

freq count;

proc phreg;

model cycle*status(0) = smoke /ties=efron;

freq count;
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SAS Output for Fecundability study:

Accounting for Ties

***************************************************************************

Ties Handling: BRESLOW

Parameter Standard Wald Pr > Risk

Variable DF Estimate Error Chi-Square Chi-Square Ratio

SMOKE 1 -0.329054 0.11412 8.31390 0.0039 0.720

***************************************************************************

Ties Handling: DISCRETE

Parameter Standard Wald Pr > Risk

Variable DF Estimate Error Chi-Square Chi-Square Ratio

SMOKE 1 -0.461246 0.13248 12.12116 0.0005 0.630

***************************************************************************

Ties Handling: EXACT

Parameter Standard Wald Pr > Risk

Variable DF Estimate Error Chi-Square Chi-Square Ratio

SMOKE 1 -0.391548 0.11450 11.69359 0.0006 0.676

***************************************************************************

Ties Handling: EFRON

Parameter Standard Wald Pr > Risk

Variable DF Estimate Error Chi-Square Chi-Square Ratio

SMOKE 1 -0.387793 0.11402 11.56743 0.0007 0.679

***************************************************************************

For this particular dataset, does it seem like it

would be important to consider the effect of tied

failure times? Which method would be best?
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When there are ties and comparing two or more groups, the

score test under the PH model can correspond to different

versions of the log-rank test.

Typically (depending on software):

discrete/exactp → Mantel-Haenszel logrank test

breslow → linear rank version of the logrank test
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