Lecture 6

Chi Square Distribution (\mathbb{L}^{P}) and Least Squares Fitting

Chi Square Distribution ([)

- Suppose:
- We have a set of measurements $\left\{x_{1}, x_{2}, \ldots x_{n}\right\}$.
- We know the true value of each $x_{i}\left(x_{t t}, x_{t 2}, \ldots x_{t n}\right)$.
- We would like some way to measure how good these measurements really are.
- Obviously the closer the $\left(x_{1}, x_{2}, \ldots x_{n}\right)$'s are to the $\left(x_{t 1}, x_{t 2}, \ldots x_{t n}\right)$'s,
\square the better (or more accurate) the measurements.
\square can we get more specific?
- Assume:
\square The measurements are independent of each other.
\square The measurements come from a Gaussian distribution.
$\square\left(\square_{1}, \square_{2} \ldots \square_{n}\right)$ be the standard deviation associated with each measurement.
\square Consider the following two possible measures of the quality of the data:

$$
\begin{aligned}
R & \equiv \square_{i=1}^{n} \frac{x_{i} \square x_{t i}}{\square_{i}} \\
\square^{2} & \equiv \square_{i=1}^{n} \frac{\left(x_{i} \square x_{t i}\right)^{2}}{\square_{i}^{2}}
\end{aligned}
$$

- Which of the above gives more information on the quality of the data?
\square Both R and \square^{R} are zero if the measurements agree with the true value.
$\square \quad R$ looks good because via the Central Limit Theorem as $n \square$ the sum \square Gaussian.
\square However, \mathbb{T}^{R} is better!
K.K. Gan

L6: Chi Square Distribution

- One can show that the probability distribution for \square^{β} is exactly:

$$
p\left(\square^{2}, n\right)=\frac{1}{2^{n / 2} \square(n / 2)}\left[\square^{2}\right]^{n / 2 \square 1} e^{\square \nabla^{2} / 2} \quad 0 \square \square^{2} \square
$$

\square This is called the "Chi Square" $\left(\mathbb{F}^{\vee}\right)$ distribution.
$\square \quad \square$ is the Gamma Function:

$$
\begin{array}{ll}
\square(x) \equiv \square e^{\square t} t^{x \square 1} d t & x>0 \\
\square(n+1)=n! & n=1,2,3 \ldots \\
\square\left(\frac{1}{2}\right)=\sqrt{\square} &
\end{array}
$$

\square This is a continuous probability distribution that is a function of two variables:
$\square \quad \square^{2}$

- Number of degrees of freedom (dof):

$$
n=\# \text { of data points }-\# \text { of parameters calculated from the data points }
$$

- Example: We collected N events in an experiment.
- We histogram the data in n bins before performing a fit to the data points.
\square We have n data points!
\square Example: We count cosmic ray events in 15 second intervals and sort the data into 5 bins:

Number of counts in 15 second intervals	0	1	2	3	4
Number of intervals	2	7	6	3	2

- we have a total of 36 cosmic rays in 20 intervals
- we have only 5 data points
\square Suppose we want to compare our data with the expectations of a Poisson distribution:

$$
N=N_{0} \frac{e^{\mathbb{T}} \square^{m}}{m!}
$$

- Since we set $N_{0}=20$ in order to make the comparison, we lost one degree of freedom:

$$
n=5-1=4
$$

- If we calculate the mean of the Poission from data, we lost another degree of freedom: $n=5-2=3$
- Example: We have 10 data points.
\square Let \square and \square be the mean and standard deviation of the data.
\square If we calculate \square and \square from the 10 data point then $n=8$.
\square If we know \square and calculate \square then $n=9$.
\square If we know \square and calculate \square then $n=9$.
\square If we know \square and \square then $n=10$.
\square Like the Gaussian probability distribution, the probability integral cannot be done in closed form:

$$
P\left(\square^{2}>a\right)=\square_{a} p\left(\nabla^{2}, n\right) d \square^{2}=\square_{a}^{2 n / 2} \square(n / 2)\left[\square^{2}\right]^{n / 2 \square 1} e^{\square \square^{2} / 2} d \square^{2}
$$

- We must use to a table to find out the probability of exceeding certain ∇^{2} for a given dof

K.K. Gan

L6: Chi Square Distribution

- Example: What's the probability to have $\mathbb{R}^{2}>10$ with the number of degrees of freedom $n=4$?
\square Using Table D of Taylor we find $P\left(\square^{2}>10, n=4\right)=0.04$.
- We say that the probability of getting a $\square^{2}>10$ with 4 degrees of freedom by chance is 4%.

\square Some not so nice things about the \square^{2} distribution:
\square Given a set of data points two different functions can have the same value of \square^{2}.
- Does not produce a unique form of solution or function.
- Does not look at the order of the data points.
- Ignores trends in the data points.
- Ignores the sign of differences between the data points and "true" values.
\square Use only the square of the differences.
- There are other distributions/statistical test that do use the order of the points:
"run tests" and "Kolmogorov test"
K.K. Gan

L6: Chi Square Distribution

Least Squares Fitting

\square Suppose we have n data points $\left(x_{i}, y_{i}, \nabla_{i}\right)$.
\square Assume that we know a functional relationship between the points, $y=f(x, a, b \ldots)$

- Assume that for each y_{i} we know x_{i} exactly.
\square The parameters a, b, \ldots are constants that we wish to determine from our data points.
\square A procedure to obtain a and b is to minimize the following \square^{2} with respect to a and b.
$\nabla^{2}=\square_{i=1}^{n} \frac{\left[y_{i} \square f\left(x_{i}, a, b\right)\right]^{2}}{\square_{i}^{2}}$
- This is very similar to the Maximum Likelihood Method.
- For the Gaussian case MLM and LS are identical.
- Technically this is a \square^{2} distribution only if the y 's are from a Gaussian distribution.
- Since most of the time the y 's are not from a Gaussian we call it "least squares" rather than \square^{2}.
- Example: We have a function with one unknown parameter:

$$
f(x, b)=1+b x
$$

Find b using the least squares technique.
\square We need to minimize the following:

$$
\nabla^{2}=\square_{i=1}^{n} \frac{\left[y_{i} \square f\left(x_{i}, a, b\right)\right]^{2}}{\square_{i}^{2}}=\square_{i=1}^{n} \frac{\left[y_{i} \square 1 \square b x_{i}\right]^{2}}{\square_{i}^{2}}
$$

\square To find the b that minimizes the above function, we do the following:
$\frac{\partial \square^{2}}{\partial b}=\frac{\partial}{\partial b} \square_{i=1}^{n} \frac{\left[y_{i} \square 1 \square b x_{i}\right]^{2}}{\square_{i}^{2}}=\square_{i=1}^{n} \frac{\square 2\left[y_{i} \square 1 \square b x_{i}\right] x_{i}}{\square_{i}^{2}}=0$

$$
\square_{i=1}^{n} \frac{y_{i} x_{i}}{\square_{i}^{2}} \square \square_{i=1}^{n} \frac{x_{i}}{\square_{i}^{2}} \square \square_{i=1}^{n} \frac{b x_{i}^{2}}{\square_{i}^{2}}=0
$$

K.K. Gan

L6: Chi Square Distribution

$$
b=\frac{\square_{i=1}^{n} \frac{y_{i} x_{i}}{\square_{i}^{2}} \square \square_{i=1}^{n} \frac{x_{i}}{\square_{i}^{2}}}{\square_{i=1}^{n} \frac{x_{i}^{2}}{\square_{i}^{2}}}
$$

- Each measured data point $\left(y_{i}\right)$ is allowed to have a different standard deviation $\left(\square_{i}\right)$.
\square LS technique can be generalized to two or more parameters for simple and complicated (e.g. non-linear) functions.
\square One especially nice case is a polynomial function that is linear in the unknowns $\left(a_{i}\right)$: $f\left(x, a_{1} \ldots a_{n}\right)=a_{1}+a_{2} x+a_{3} x^{2}+a_{n} x^{n \square 1}$
\square We can always recast problem in terms of solving n simultaneous linear equations.
\square We use the techniques from linear algebra and invert an $n \mathrm{x} n$ matrix to find the a_{i} 's
- Example: Given the following data perform a least squares fit to find the value of b.

$$
f(x, b)=1+b x
$$

x	1.0	2.0	3.0	4.0
y	2.2	2.9	4.3	5.2
\square	0.2	0.4	0.3	0.1

- Using the above expression for b we calculate:

$$
b=1.05
$$

- A plot of the data points and the line from the least squares fit:

- If we assume that the data points are from a Gaussian distribution,
\square we can calculate a \square^{2} and the probability associated with the fit.
- From Table D of Taylor:
\square The probability to get $\square^{2}>1.04$ for 3 degrees of freedom $\approx 80 \%$.
\square We call this a "good" fit since the probability is close to 100%.
\square If however the T^{2} was large (e.g. 15),
- the probability would be small $(\approx 0.2 \%$ for 3 dof $)$.
- we say this was a "bad" fit.

RULE OF THUMB

A "good" fit has $\square^{2} /$ dof ≤ 1

