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Lecture 6:
Electronic Health Records

Introduction
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Announcements
● Upcoming deadlines:

○ A1 due Tue 10/6
○ Project proposal due Fri 10/9
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What are electronic health records?
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What are electronic health records?

Figure credit: Rajkomar et al. 2018

Patient chart in digital form, 
containing medical and 
treatment history



5Serena Yeung BIODS 220: AI in Healthcare Lecture 6 -

What are electronic health records?

Figure credit: Rajkomar et al. 2018

Patient chart in digital form, 
containing medical and 
treatment history

Stores patient information 
over time
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What are electronic health records?

Figure credit: Rajkomar et al. 2018

Patient chart in digital form, 
containing medical and 
treatment history

Nursing notes
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What are electronic health records?

Figure credit: Rajkomar et al. 2018

Patient chart in digital form, 
containing medical and 
treatment history

Medications
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What are electronic health records?

Figure credit: Rajkomar et al. 2018

Patient chart in digital form, 
containing medical and 
treatment history

Physician notes and diagnoses
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What are electronic health records?

Figure credit: Rajkomar et al. 2018

Patient chart in digital form, 
containing medical and 
treatment history

Medical imaging and lab test results and reports
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1960s: invention
1980s: increased effort

2009: HITECH Act (Health Information 
Technology for Economic and Clinical 
Health Act) -- financial incentives for 
health care providers to adopt EHR

What are electronic health records?
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EHR adoption in the US (hospitals)

Figure credit: https://dashboard.healthit.gov/evaluations/images/db-35-figure1.svg
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EHR adoption in the US (hospitals)

Figure credit: https://dashboard.healthit.gov/evaluations/images/db-35-figure1.svg

HITECH Act
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EHR adoption in the US (office-based physicians)

Figure credit: https://dashboard.healthit.gov/quickstats/pages/physician-ehr-adoption-trends.php

https://dashboard.healthit.gov/quickstats/pages/physician-ehr-adoption-trends.php


14Serena Yeung BIODS 220: AI in Healthcare Lecture 6 -

Convergence of key ingredients of deep learning 
Algorithms Compute

Data
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Convergence of key ingredients of deep learning 
Algorithms Compute

Data
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A real example of EHR data: MIMIC-III dataset
- Open source database of de-identified data for 38,597 adult patients, corresponding to 

49,785 hospital admissions

- All patients admitted to critical care units at Beth Israel Deaconess Medical Center (Boston, 
MA) between 2001 - 2012

- Also 7870 neonates admitted between 2001-2008

- Median hospital stay length: 6.9 days

- Median ICU stay length: 2.1 days

- In-hospital mortality: 11.5%

- Mean of 4579 charted observations and 380 laboratory measurements for each admission
Johnson et al. MIMIC-III, a freely accessible critical care database. 2016.
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A real example of EHR data: MIMIC-III dataset

Johnson et al. MIMIC-III, a freely accessible critical care database. 2016.
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Johnson et al. MIMIC-III, a freely accessible critical care database. 2016.
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ICD9 (International 
classification of 
diseases): 
Diagnosis codes

Johnson et al. MIMIC-III, a freely accessible critical care database. 2016.
Additional figure credit: 
http://www.shieldhealthcare.com/community/wp-content/uploads/2015/08/ICD-9-to-
ICD-10-Conversion-Guide-Page-1.jpg

http://www.shieldhealthcare.com/community/wp-content/uploads/2015/08/ICD-9-to-ICD-10-Conversion-Guide-Page-1.jpg
http://www.shieldhealthcare.com/community/wp-content/uploads/2015/08/ICD-9-to-ICD-10-Conversion-Guide-Page-1.jpg
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DRG (diagnosis 
related group): 
Higher-level codes 
describing patient 
groups w/ similar 
hospital resource 
use

Johnson et al. MIMIC-III, a freely accessible critical care database. 2016.
Additional figure credit: 
https://www.flashcode.com/help_pages/drg_from_icd.html

https://www.flashcode.com/help_pages/drg_from_icd.html
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CPT (Current 
procedural 
terminology): 
procedures and 
services codes

Johnson et al. MIMIC-III, a freely accessible critical care database. 2016.
Additional figure credit: 
https://d20ohkaloyme4g.cloudfront.net/img/document_thumbnails/e570ad
571499b88c8814e7366594e9bd/thumb_1200_1553.png
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Free text data

Johnson et al. MIMIC-III, a freely accessible critical care database. 2016.



23Serena Yeung BIODS 220: AI in Healthcare Lecture 6 -

Johnson et al. MIMIC-III, a freely accessible critical care database. 2016.
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Johnson et al. MIMIC-III, a freely accessible critical care database. 2016.
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Examples of prediction tasks: phenotypes
- What conditions a patient has
- Useful for patient treatment and risk monitoring

Figure credit: Harutyunyan et al. Multitask learning and benchmarking with clinical time series data. 2019.
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Examples of prediction tasks: in-hospital mortality
- Whether patient will die in the hospital
- Early detection of at-risk patients can improve outcomes

Figure credit: Harutyunyan et al. Multitask learning and benchmarking with clinical time series data. 2019.
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Examples of prediction tasks: decompensation
- Whether patient will die in the next 24 hours
- Also for early detection, related to in-hospital mortality

Figure credit: Harutyunyan et al. Multitask learning and benchmarking with clinical time series data. 2019.
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Examples of prediction tasks: length-of-stay
- How much longer the patient is expected to stay in the ICU
- Useful for measuring patient acuity and resource management

Figure credit: Harutyunyan et al. Multitask learning and benchmarking with clinical time series data. 2019.
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Model input: data vector Model output: prediction (single number) 

Let us consider the task of regression: predicting a single real-valued output from input data  

Example: predicting hospital length-of-stay from clinical variables in the electronic health record

[age, weight, …, temperature, oxygen saturation] length-of-stay (days)

Remember: “vanilla” neural networks for predictions from 
clinical variables
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Remember: “vanilla” neural networks for predictions from 
clinical variables

Neural network parameters: 

Our first architecture: a single-layer, fully connected neural network 

all inputs of a layer are connected to 
all outputs of a layer

Output:

For simplicity, use a 3-dimensional input (N = 3)

layer inputs

layer output(s)

Caveats of our first (simple) neural network architecture:
- Single layer still “shallow”, not yet a “deep” neural network. Will see soon how to stack multiple layers.
- Also equivalent to a linear regression model! But useful base case for deep learning.

bias term (allows 
constant shift)

layer “weights” layer bias

Often refer to all parameters together as just 
“weights”. Bias is implicitly assumed.
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Remember: “vanilla” neural networks for predictions from 
clinical variables

Output:

Sigmoid “activation 
function”Activation functions 

introduce non-linearity into 
the model -- allowing it to 
represent highly complex 
functions.

A fully-connected neural network (also known 
as multi-layer perceptron) is a stack of [affine  
transformation + activation function] layers. There 
is no activation function at the last layer.

Full function expression:

Two-layer fully-connected neural network
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Different classes of neural networks

...

Input sequence

Output sequence

Fully connected neural networks
(linear layers, good for “feature vector” inputs)

Convolutional neural networks
(convolutional layers, good for image inputs)

Recurrent neural networks
(linear layers modeling recurrence relation across 

sequence, good for sequence inputs)
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Different classes of neural networks

...

Input sequence

Output sequence

Fully connected neural networks
(linear layers, good for “feature vector” inputs)

Convolutional neural networks
(convolutional layers, good for image inputs)

Recurrent neural networks
(linear layers modeling recurrence relation across 

sequence, good for sequence inputs)

Natural fit for clinical data time-series
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Recurrent Neural Network

x

RNN

y

Input sequence

Slide credit: CS231n
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Recurrent Neural Network

x

RNN

y
Key idea: RNNs have an 
“internal state” that is 
updated as a sequence is 
processed

Slide credit: CS231n
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Recurrent Neural Network

x

RNN

y

Output
(do not necessarily need 
to have an output at every 
timestep of the sequence)

Slide credit: CS231n
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Recurrent Neural Network

x

RNN

y
We can process a sequence of vectors x by 
applying a recurrence formula at every time step:

new state old state input vector at 
some time step

some function
with parameters W

Slide credit: CS231n
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Recurrent Neural Network

x

RNN

y
We can process a sequence of vectors x by 
applying a recurrence formula at every time step:

Notice: the same function and the same set 
of parameters are used at every time step.

Slide credit: CS231n
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(Vanilla) Recurrent Neural Network

x

RNN

y

The state consists of a single “hidden” vector h:

Slide credit: CS231n
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(Vanilla) Recurrent Neural Network

x

RNN

y

The state consists of a single “hidden” vector h:

Slide credit: CS231n
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(Vanilla) Recurrent Neural Network

x

RNN

y

The state consists of a single “hidden” vector h:

Fully connected layers
Slide credit: CS231n
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h0 fW h1

x1

RNN: Computational Graph

Slide credit: CS231n
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h0 fW h1 fW h2

x2x1

RNN: Computational Graph

Slide credit: CS231n
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h0 fW h1 fW h2 fW h3

x3

… 

x2x1

RNN: Computational Graph

hT

Slide credit: CS231n
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h0 fW h1 fW h2 fW h3

x3

… 

x2x1W

RNN: Computational Graph

Re-use the same weight matrix at every time-step

hT

Slide credit: CS231n
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h0 fW h1 fW h2 fW h3

x3

yT

… 

x2x1W

RNN: Computational Graph: Many to Many

hT

y3y2y1

Slide credit: CS231n
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h0 fW h1 fW h2 fW h3

x3

yT

… 

x2x1W

RNN: Computational Graph: Many to Many

hT

y3y2y1Also re-use
at every timestep 

Slide credit: CS231n
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h0 fW h1 fW h2 fW h3

x3

yT

… 

x2x1W

RNN: Computational Graph: Many to Many

hT

y3y2y1 L1
L2 L3 LT

Slide credit: CS231n
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h0 fW h1 fW h2 fW h3

x3

yT

… 

x2x1W

RNN: Computational Graph: Many to Many

hT

y3y2y1 L1
L2 L3 LT

L

Slide credit: CS231n
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h0 fW h1 fW h2 fW h3

x3

y

… 

x2x1W

RNN: Computational Graph: Many to One

hT

Slide credit: CS231n
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h0 fW h1 fW h2 fW h3

x3

y

… 

x2x1W

RNN: Computational Graph: Many to One

hT

Can also have other configurations 
e.g. one to many! Just define 
appropriate computational graph.Slide credit: CS231n
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Backpropagation through time
Loss

Forward through entire sequence to 
compute loss, then backward through 
entire sequence to compute gradient

Slide credit: CS231n
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Truncated Backpropagation through time
Loss

Run forward and backward 
through chunks of the 
sequence instead of whole 
sequence

Slide credit: CS231n
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Truncated Backpropagation through time
Loss

Carry hidden states 
forward in time forever, 
but only backpropagate 
for some smaller 
number of steps

Slide credit: CS231n
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Truncated Backpropagation through time
Loss

Slide credit: CS231n
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Long Short Term Memory (LSTM) Recurrent Networks

Unrolled Vanilla RNN

Figure credit: https://colah.github.io/posts/2015-08-Understanding-LSTMs/

https://colah.github.io/posts/2015-08-Understanding-LSTMs/
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Long Short Term Memory (LSTM) Recurrent Networks

Unrolled Vanilla RNN Unrolled LSTM

Different computation to 
obtain ht

Figure credit: https://colah.github.io/posts/2015-08-Understanding-LSTMs/

https://colah.github.io/posts/2015-08-Understanding-LSTMs/
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Long Short Term Memory (LSTM) Recurrent Networks

“Cell state” flows through entire 
sequence. At each timestep, will 
be able to modify the cell state. 

Figure credit: https://colah.github.io/posts/2015-08-Understanding-LSTMs/

https://colah.github.io/posts/2015-08-Understanding-LSTMs/
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Long Short Term Memory (LSTM) Recurrent Networks

“Cell state” flows through entire 
sequence. At each timestep, will 
be able to modify the cell state. 

Gates (sigmoid + elementwise multiplication) 
control passing of information. 

Sigmoid output of 1 = let everything through; 
output of 0 = let nothing through. 

Figure credit: https://colah.github.io/posts/2015-08-Understanding-LSTMs/

https://colah.github.io/posts/2015-08-Understanding-LSTMs/
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Long Short Term Memory (LSTM) Recurrent Networks

Concatenate

Fully connected layer

“Forget” gate

Figure credit: https://colah.github.io/posts/2015-08-Understanding-LSTMs/

https://colah.github.io/posts/2015-08-Understanding-LSTMs/
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Long Short Term Memory (LSTM) Recurrent Networks

“Input” gate Fully connected layer

Fully connected layerNew “candidate” 
values that could 
be added to modify 
cell state

Figure credit: https://colah.github.io/posts/2015-08-Understanding-LSTMs/

https://colah.github.io/posts/2015-08-Understanding-LSTMs/
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Long Short Term Memory (LSTM) Recurrent Networks

New cell state

Forget
gate

Previous
cell state

Input
gate

New candidate
values

Figure credit: https://colah.github.io/posts/2015-08-Understanding-LSTMs/

https://colah.github.io/posts/2015-08-Understanding-LSTMs/
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Long Short Term Memory (LSTM) Recurrent Networks

New LSTM 
layer output ht

“Output” gate Fully connected layer

Current cell 
state

Figure credit: https://colah.github.io/posts/2015-08-Understanding-LSTMs/

https://colah.github.io/posts/2015-08-Understanding-LSTMs/
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Long Short Term Memory (LSTM) Recurrent Networks

Unrolled Vanilla RNN Unrolled LSTM

Figure credit: https://colah.github.io/posts/2015-08-Understanding-LSTMs/

https://colah.github.io/posts/2015-08-Understanding-LSTMs/
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Long Short Term Memory (LSTM) Recurrent Networks

Unrolled Vanilla RNN Unrolled LSTM

Usage of a “cell state” in the LSTM that is 
modified through addition allows improved 
gradient flow through longer sequences. 

Figure credit: https://colah.github.io/posts/2015-08-Understanding-LSTMs/

https://colah.github.io/posts/2015-08-Understanding-LSTMs/
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Long Short Term Memory (LSTM) Recurrent Networks

Unrolled Vanilla RNN Unrolled LSTM

Usage of a “cell state” in the LSTM that is 
modified through addition allows improved 
gradient flow through longer sequences. 

Figure credit: https://colah.github.io/posts/2015-08-Understanding-LSTMs/

LSTM often used over Vanilla RNN in practice.

https://colah.github.io/posts/2015-08-Understanding-LSTMs/
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Long Short Term Memory (LSTM) Recurrent Networks

Unrolled Vanilla RNN Unrolled LSTM

Usage of a “cell state” in the LSTM that is 
modified through addition allows improved 
gradient flow through longer sequences. 

LSTM often used over Vanilla RNN in practice.

Will also see other variants e.g. GRUs with 
different gating operations.

Figure credit: https://colah.github.io/posts/2015-08-Understanding-LSTMs/

https://colah.github.io/posts/2015-08-Understanding-LSTMs/
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Long Short Term Memory (LSTM) Recurrent Networks

Unrolled Vanilla RNN Unrolled LSTM

Can have multi-layer RNNs and LSTMs, where the {h} outputs of 
one layer form the input sequence for the next layer. One or two 
layers is common.

Figure credit: https://colah.github.io/posts/2015-08-Understanding-LSTMs/

https://colah.github.io/posts/2015-08-Understanding-LSTMs/
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Harutyunyan et al.
- Benchmarked LSTMs vs logistic regression on common prediction tasks 

using MIMIC-III data
- In-hospital mortality, decompensation, length-of-stay, phenotype 

classification

Harutyunyan et al. Multitask learning and benchmarking with clinical time series data. 2019.

- Used a subset of 17 clinical 
variables from MIMIC-III
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Harutyunyan et al.

- Logistic regression models
- Use hand-engineered feature vector to represent a time-series: min, max, 

mean, std dev, etc. of each feature in several subsequences (full series, first 
10% of series, first 50%, last 10%, etc.)

- If feature does not occur in subsequence (missing data), impute with mean 
value from training set

- Categorical variables had meaningful numeric values -> no change
- Zero-mean unit-variance standardization of all features

Harutyunyan et al. Multitask learning and benchmarking with clinical time series data. 2019.
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Harutyunyan et al.

- LSTM models
- Bucket time series into regularly spaced intervals, take the value (or last value, 

if multiple) of each variable in the interval to create observation xt
- Encode categorical variables using a one-hot vector (vector of 0s with a 1 in 

the observed position). 
- If variable is missing in a time bucket, impute using most recent observed 

measurement if it exists, and mean value from training set otherwise
- Concat the values of each clinical variable with a binary mask indicating 

presence or not (i.e., missing and needed to impute) to form full observation 
feature vector xt

Harutyunyan et al. Multitask learning and benchmarking with clinical time series data. 2019.
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Harutyunyan et al.: in-hospital mortality
- Input: Time-series data for first 48 hours of ICU stay
- Output: binary classification of in-hospital mortality

Figure credit: Harutyunyan et al. Multitask learning and benchmarking with clinical time series data. 2019.
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Harutyunyan et al.: in-hospital mortality
- Input: Time-series data for first 48 hours of ICU stay
- Output: binary classification of in-hospital mortality

Figure credit: Harutyunyan et al. Multitask learning and benchmarking with clinical time series data. 2019.

Many-to-one 
LSTM
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Harutyunyan et al.: decompensation
- Input: Time-series data from beginning of stay until prediction time (every 

hour)
- Output: Binary classification of mortality in the next 24 hours

Figure credit: Harutyunyan et al. Multitask learning and benchmarking with clinical time series data. 2019.
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Harutyunyan et al.: decompensation
- Input: Time-series data from beginning of stay until prediction time (every 

hour)
- Output: Binary classification of mortality in the next 24 hours

Figure credit: Harutyunyan et al. Multitask learning and benchmarking with clinical time series data. 2019.

Could model 
using either 

many-to-one or 
many-to-many 

LSTM
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Harutyunyan et al.: decompensation
- Input: Time-series data from beginning of stay until prediction time (every 

hour)
- Output: Binary classification of mortality in the next 24 hours

Figure credit: Harutyunyan et al. Multitask learning and benchmarking with clinical time series data. 2019.

Could model 
using either 

many-to-one or 
many-to-many 

LSTM

Closely related to 
in-hospital mortality
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Harutyunyan et al.: length-of-stay
- Input: Time-series data from beginning of stay until prediction time (every 

hour)
- Output: remaining time spent in ICU. Model as classification problem: ICU 

stays < 1 day, each of 7 days, between 1-2 weeks, > 2 weeks

Figure credit: Harutyunyan et al. Multitask learning and benchmarking with clinical time series data. 2019.
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Harutyunyan et al.: length-of-stay
- Input: Time-series data from beginning of stay until prediction time (every 

hour)
- Output: remaining time spent in ICU. Model as classification problem: ICU 

stays < 1 day, each of 7 days, between 1-2 weeks, > 2 weeks

Figure credit: Harutyunyan et al. Multitask learning and benchmarking with clinical time series data. 2019.

Can model problem in 
different ways, e.g. directly 
regress LOS value, or 
predict meaningful 
category of extended LOS 
(>7 days)
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Harutyunyan et al.: phenotypes
- Input: Time-series data corresponding to entire ICU stay
- Output: Multilabel classification of the presence of 25 acute care 

conditions (merged from ICD codes) in stay record 

Figure credit: Harutyunyan et al. Multitask learning and benchmarking with clinical time series data. 2019.
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Harutyunyan et al.: phenotypes
- Input: Time-series data corresponding to entire ICU stay
- Output: Multilabel classification of the presence of 25 acute care 

conditions (merged from ICD codes) in stay record 

Figure credit: Harutyunyan et al. Multitask learning and benchmarking with clinical time series data. 2019.

Q: Why do we 
formulate this as 

a multi-label 
classification 

task?
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Harutyunyan et al.: phenotypes
- Input: Time-series data corresponding to entire ICU stay
- Output: Multilabel classification of the presence of 25 acute care 

conditions (merged from ICD codes) in stay record 

Figure credit: Harutyunyan et al. Multitask learning and benchmarking with clinical time series data. 2019.

Q: Why do we 
formulate this as 

a multi-label 
classification 

task?

A: Comorbidities 
(co-occurring conditions)
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Harutyunyan et al.: phenotypes
- Input: Time-series data corresponding to entire ICU stay
- Output: Multilabel classification of the presence of 25 acute care 

conditions (merged from ICD codes) in stay record 

Figure credit: Harutyunyan et al. Multitask learning and benchmarking with clinical time series data. 2019.

Q: Why do we 
formulate this as 

a multi-label 
classification 

task?

Q: What loss 
function should 

we use?

A: Comorbidities 
(co-occurring conditions)
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Harutyunyan et al.: phenotypes
- Input: Time-series data corresponding to entire ICU stay
- Output: Multilabel classification of the presence of 25 acute care 

conditions (merged from ICD codes) in stay record 

Figure credit: Harutyunyan et al. Multitask learning and benchmarking with clinical time series data. 2019.

Q: Why do we 
formulate this as 

a multi-label 
classification 

task?

Q: What loss 
function should 

we use?

A: Comorbidities 
(co-occurring conditions)

A: Multiple binary 
cross-entropy losses
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Harutyunyan et al.: logistic regression vs LSTMs

Figure credit: Harutyunyan et al. Multitask learning and benchmarking with clinical time series data. 2019.

Found better performance overall for LSTMs (S) vs logistic regression (LR). Also introduced 
more sophisticated variants and multi-task training (joint training of all tasks together).
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Harutyunyan et al.: logistic regression vs LSTMs

Figure credit: Harutyunyan et al. Multitask learning and benchmarking with clinical time series data. 2019.

Found better performance for 
phenotyping acute vs chronic 
conditions -- makes sense!

Found better performance overall for LSTMs (S) vs logistic regression (LR). Also introduced 
more sophisticated variants and multi-task training (joint training of all tasks together).
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Summary:
● Introduction to EHRs
● EHR prediction tasks
● Recurrent neural networks and LSTMs

Next:

- More on EHR data
- More on feature representations and model interpretability


