
LECTURE 6: MESSAGE-ORIENTED

COMMUNICATION II: MESSAGING IN

DISTRIBUTED SYSTEMS

1CA4006 Lecture Notes (Martin Crane 2018)Lecture 6: Messaging on Distributed Systems

Lecture Contents

• Middleware in Distributed Systems

• Types of Distributed Communications

– Remote Procedure Call (RPC):

• Parameter passing, Example: DCE

• Registration & Discovery in DCE

– Message Queuing Systems:

• Basic Architecture, Role of Message Brokers

– Example: IBM Websphere

• Advanced Message Queuing Protocol (AMQP)

– Example: Rabbit MQ

– Multicast Communications:

• Application Layer Messaging

• Epidemic Protocols

2CA4006 Lecture Notes (Martin Crane 2018)Lecture 6: Messaging on Distributed Systems

SECTION 6.1: MIDDLEWARE IN

DISTRIBUTED SYSTEMS

3CA4006 Lecture Notes (Martin Crane 2018)Lecture 6: Messaging on Distributed Systems

Role of Middleware
• Observation

– Role to provide common services/protocols in Distributed Systems

– Can be used by many different distributed applications

• Middleware Functionality

– (Un)marshalling of data: necessary for integrated systems

– Naming protocols: to allow easy sharing, discovery of resources

– Security protocols: for secure communication

– Scaling mechanisms, such as for replication & caching (e.g.

decisions on where to cache etc.)

– A rich set of comms protocols: to allow applications to

transparently interact with other processes regardless of location.

4CA4006 Lecture Notes (Martin Crane 2018)Lecture 6: Messaging on Distributed Systems

Classification of Middleware
• Classify middleware technologies into the following groups:

1. Bog-standard Sockets

• The basis of all other middleware technologies.

2. RPC – Remote Procedure Call (more later)

• RPCs provide a simple way to distribute application logic on separate hosts

App

Socket

TCP

IP

App

Socket

TCP

IP

Network

Client

Client

Stub

Network

Server

Stub

Server

5CA4006 Lecture Notes (Martin Crane 2018)Lecture 6: Messaging on Distributed Systems

Classification of Middleware (/2)
3. TPM - Transaction Processing Monitors:

• TPMs are a special form of MW targeted at distributed transactions.

4. DAM - Database Access Middleware:

• DBs can be used to share & communicate data between distributed

applications.

Application

Driver Manager

ODBC Driver

Network

Application

Driver Manager

JDBC Driver

Data

Source

DB

Data

Source

DB

Network Service DB

Service DB

Service DB

Transaction

Processing

Monitor

Network

Client

Client

Client

6CA4006 Lecture Notes (Martin Crane 2018)Lecture 6: Messaging on Distributed Systems

Classification of Middleware (/3)
5. Distributed Tuple:

• Distributed tuple spaces implement a distributed shared memory space.

6. DOT (Dist Object Technology) / OOM (Object-Oriented M/w):

• DOT extends the object-oriented paradigm to distributed applications.

TransactionClient

Javaspaces

Service Javaspaces

Service

Client
Write (Object)

Read (Object)

Take (Object)

Write (Object)

Notify (Object)

Object Services

Client

Object

Server

Object

Object

Broker

Object Bus

7CA4006 Lecture Notes (Martin Crane 2018)Lecture 6: Messaging on Distributed Systems

Classification of Middleware (/4)
7. MOM (Message Oriented Middleware):

• In MOM, messages are exchanged asynchronously between distributed

applications (senders and receivers).

8. Web services:

• Web services expose services (functionality) on a defined interface,

typically accessible through the web protocol HTTP.

Network

Non-blocking

Message Send

SENDING SYSTEM

Sending

Application

Receiving

Application

RECEIVING SYSTEM

Web Service
Service

Client

Internal

Service

Internal

Service

Middleware

Web Service

Internal

Service

Internal

Service

Middleware Network

8CA4006 Lecture Notes (Martin Crane 2018)Lecture 6: Messaging on Distributed Systems

Classification of Middleware (/5)
9. Peer-to-peer middleware:

• Have seen above how MW often follows particular architectural style.

• In P2P, each peer has equal role in comms pattern (eg routing, node mgmt)

• More on this later…

10. Grid middleware:

• Provides computation power services (registration, allocation, de-

allocation) to consumers.

Network

Computation

Consumer

Computation

Consumer

Computation

Provider

Computation

Consumer

Computation

Provider

Computation

Consumer

9CA4006 Lecture Notes (Martin Crane 2018)Lecture 6: Messaging on Distributed Systems

Summary of Communications

Middleware

10

• Essentially a range of types of communications middleware

• All can be used to implement others, all are suited to different cases

– All carry some payload from one side to another <with details>

– Some of these payloads are ‘active’ and some are ‘passive’

– Also differ in granularities and whether synchronous or not.

10CA4006 Lecture Notes (Martin Crane 2017)Lecture 6: Messaging on Distributed Systems CA4006 Lecture Notes (Martin Crane 2018)

SECTION 6.2: COMMUNICATION IN

DISTRIBUTED SYSTEMS

11CA4006 Lecture Notes (Martin Crane 2018)Lecture 6: Messaging on Distributed Systems

Terminology for Distributed

Communications
• Terminology for Distributed Communications

– Persistent Communications:

• Once sent, the “sender” stops executing.

• “Receiver” need not be in operation – communications system

buffers message as required until delivery can occur.

– Transient Communications:

• Message only stored as long as “sender” & “receiver” are

executing.

• If problems occur either deal with them (sender is waiting) or

message is simply discarded …

12CA4006 Lecture Notes (Martin Crane 2018)Lecture 6: Messaging on Distributed Systems

Persistence & Synchronicity in Communications

a) Persistent asynchronous communication

b) Persistent synchronous communication

13CA4006 Lecture Notes (Martin Crane 2018)Lecture 6: Messaging on Distributed Systems

Buffering

Persistence & Synchronicity in Communications (/2)

c) Transient asynchronous communication

d) Receipt-based transient synchronous communication

14CA4006 Lecture Notes (Martin Crane 2018)Lecture 6: Messaging on Distributed Systems

Persistence & Synchronicity in Communications (/3)

e) Delivery-based transient synchronous communication at message
delivery

f) Response-based transient synchronous communication

15CA4006 Lecture Notes (Martin Crane 2018)Lecture 6: Messaging on Distributed Systems

SECTION 6.3: REMOTE PROCEDURE

CALL (RPC)

16Lecture 6: Messaging on Distributed Systems CA4006 Lecture Notes (Martin Crane 2018)

Remote Procedure Call (RPC)
• Rationale: Why RPC?

• Distribution Transparency:

– Send/Receive don’t conceal comms at all – need to achieve access

transparency.

• Answer: Totally New ‘Communication’ System:

– RPC allows programs to communicate by calling procedures on other

machines.

• Mechanism

– When a process on machine A calls a procedure on machine B, calling

process on A is suspended,

– Execution of the called procedure takes place on B.

– Info ‘sent’ from caller to callee in parameters & comes back in result.

– No message passing at all is visible to the programmer.

– Application developers familiar with simple procedure model.

17CA4006 Lecture Notes (Martin Crane 2018)Lecture 6: Messaging on Distributed Systems

Basic RPC Operation
1. Client procedure calls client stub

2. Stub builds message, calls local OS.

3. OS sends message to remote OS.

4. Remote OS gives message to stub.

5. Stub unpacks parameters, calls server.

6. Server works, returns result to stub.

7. Stub builds message, calls local OS.

8. OS sends message to client’s OS.

9. Client OS gives message to client stub.

10. Stub unpacks result, returns to client.

18
18CA4006 Lecture Notes (Martin Crane 2015)Lecture 6: Messaging on Distributed Systems CA4006 Lecture Notes (Martin Crane 2018)

RPC: Parameter Passing

• Parameter marshalling

More than just wrapping parameters into a message:

– Client/server machines may have different data representations
(e.g. byte ordering)

– Wrapping parameter means converting value into byte sequence

– Client and server have to agree on the same encoding:

• How are basic data values represented (integers, floats, characters)?

• How are complex data values represented (arrays, unions)?

– Client and server need to properly interpret messages,
transforming them into machine-dependent representations.

19CA4006 Lecture Notes (Martin Crane 2018)Lecture 6: Messaging on Distributed Systems

RPC: Parameter Passing (/2)

• Assumptions Regarding RPC Parameter Passing:

– Copy in/copy out semantics: while procedure is executed, nothing
can be assumed about parameter values.

– All data to be operated on is passed by parameters. Excludes
passing references to (global) data.

• Conclusion

– Full access transparency cannot be realized

• Observation:

– A remote reference mechanism enhances access transparency:

Remote reference offers unified access to remote data

– Remote references can be passed as parameter in RPCs

20CA4006 Lecture Notes (Martin Crane 2018)Lecture 6: Messaging on Distributed Systems

RPC Example: Distributed Computing

Environment (DCE)
• Writing A Client and Server in DCE:

21CA4006 Lecture Notes (Martin Crane 2018)Lecture 6: Messaging on Distributed Systems

DCE Client to Server Binding

22CA4006 Lecture Notes (Martin Crane 2018)

• Registration & Discovery:

– Server registration enables client to locate server and bind to it.

– Server location is done in two steps:

1. Locate the server’s machine.

2. Locate the server on that machine.

Lecture 6: Messaging on Distributed Systems

SECTION 6.4: MESSAGE QUEUING

SYSTEMS

23Lecture 6: Messaging on Distributed Systems CA4006 Lecture Notes (Martin Crane 2018)

Message-Oriented Persistent Comms
• Rationale: Why Another Messaging System?:

• Scalability:

– “Transient” messaging systems, do not scale well geographically.

• Granularity:

– MPI supports messaging O(ms). Distributed message transfer can take minutes

• What about RPC?:

– In DS can’t assume receiver is “awake” => default “synchronous, blocking”

nature of RPC often too restrictive.

• How about Sockets, then?:

– Wrong level of abstraction (only “send” and “receive”).

– Too closely coupled to TCP/IP networks – not diverse enough

• Answer: Message Queueing Systems:

– MQS give extensive support for Persistent Asynchronous Communication.

– Offer medium-term storage for messages – don’t require sender/receiver to be

active during message transmission.
24CA4006 Lecture Notes (Martin Crane 2018)Lecture 6: Messaging on Distributed Systems

Message-Oriented Persistent Comms. (/2)
• Message Queuing Systems:

– Basic idea: applications communicate by putting messages into and
taking messages out of “message queues”.

– Only guarantee: your message will eventually make it into the receiver’s
message queue => “loosely-coupled” communications.

– Asynchronous persistent communication thro middleware-level queues.

– Queues correspond to buffers at communication servers.

• Four Commands:

Primitive Meaning

Put Append a message to a specified queue.

Get Block until the specified queue is nonempty, and remove the first message.

Poll Check a specified queue for messages, and remove the first. Never block.

Notify Install a handler to be called when a message is put into the specified queue.

25CA4006 Lecture Notes (Martin Crane 2018)Lecture 6: Messaging on Distributed Systems

Message-Queuing System Architecture

• Operation:

– Messages are “put into” a source queue.

– They are then “taken from” a destination queue.

– Obviously, a mechanism has to exist to move a message
from a source queue to a destination queue.

– This is the role of the Queue Manager.

• Function as message-queuing “relays” that interact with
distributed applications & each other.

• Not unlike routers, they support the idea of a DS “overlay
network”.

26CA4006 Lecture Notes (Martin Crane 2018)Lecture 6: Messaging on Distributed Systems

Role of Message Brokers

• Rationale:

Often need to integrate new/existing apps into a “single, coherent

Distributed Information System (DIS)”.

• Problem: different message formats exist in legacy systems

• Can’t “force” legacy systems into single, global message format.

• “Message Broker” allows us to live with different formats

• Centralized component that takes care of application heterogeneity

in an MQ system:

– Transforms incoming messages to target format

– Very often acts as an application gateway

– May provide subject-based routing capabilities ⇒ Enterprise

Application Integration

27CA4006 Lecture Notes (Martin Crane 2018)Lecture 6: Messaging on Distributed Systems

Message Broker Organization

• General organization of message broker in a MQS – also known
variously as an “interface engine”.

2-30

28CA4006 Lecture Notes (Martin Crane 2018)

Queuing layer allows source

Client to look up send queue

For destination client

To the source & Destination

client Message Broker

just looks like any other App
Lecture 6: Messaging on Distributed Systems

IBM’s WebSphere MQ
• Basic concepts:

– Application-specific messages are put into, removed from queues

– Queues reside under the regime of a queue manager

– Processes can put messages only in local queues, or thro an RPC

• Message transfer

– Messages are transferred between queues

– Message transfer btw process queues requires a channel

– At each endpoint of channel is a message channel agent

– Message channel agents are responsible for:

• Setting up channels using lower-level n/w comm facilities (e.g. TCP/IP)

• (Un)wrapping messages from/in transport-level packets

• Sending/receiving packets

29CA4006 Lecture Notes (Martin Crane 2018)Lecture 6: Messaging on Distributed Systems

IBM’s WebSphere MQ (/2)
• Supported Topologies are:

1. Hub/spoke topology (point-to-point queues):

• Apps subscribe to "their" QM.

• Routes to hub QM def’d in spoke QMs.

2. Distributed Publish/Subscribe:

• Apps subscribe to topics & publish messages to multiple receivers.

• 2 Topologies: Clusters and Trees:

Cluster: Cluster of QMs connected by channels. Published messages

sent to all connected QMs of the published topic.

Tree: Trees allow reducing number of channels between QMs.

30CA4006 Lecture Notes (Martin Crane 2018)Lecture 6: Messaging on Distributed Systems

IBM’s WebSphere MQ (/2)
• Principles of Operation:

– Channels are inherently unidirectional

– Automatically start MCAs when messages arrive

– Any network of queue managers can be created

– Routes are set up manually (system administration)

31CA4006 Lecture Notes (Martin Crane 2018)

General organization of IBM's WebSphere Message-Queuing System

Lecture 6: Messaging on Distributed Systems

IBM’s WebSphere MQ (/3)
• Routing: Using logical names, in combination with name resolution

to local queues, possible to route message to remote queue

– Sending message from one QM to another (possibly remote) QM, each

message needs destination address, so a transmission header is used

– MQ Address has two parts:

1. Part 1 is the Destination QM Name (say QM�)

2. Part 2 is the Name of the Destination Queue (i.e. QM�’s destination Queue)

– As each QM has unique name each QM knows each other by an Alias

32CA4006 Lecture Notes (Martin Crane 2018)

App linked to QMA can

Refer to a remote QMC

using local alias LA1

In QMA’s routing table

LA1 should go to SQ1

Message Transferred

To QMB. Uses its

table to find QMC

Lecture 6: Messaging on Distributed Systems

Advanced Message Queuing Protocol (AMQP)

• Why AMQP?

1. Lack of standardization:

• Little standardization in MOM products (mostly proprietary

solutions).

– E.g. 1: JMS Java- dependent, doesn’t specify wire protocol only an API.

=> different JMS providers not directly interoperable on wire level.

– E.g. 2: IBM Websphere clunky and expensive

2. Need for bridges1 for interoperability:

• To achieve interoperability between different queueing

systems, 3rd party vendors offer bridges.

• These complicate the architecture / topology, increase costs

while reduce performance (additional delay).

33CA4006 Lecture Notes (Martin Crane 2018)

1Entities that help in different stages of message mediation
Lecture 6: Messaging on Distributed Systems

AMQP (/2)
• Characteristics of AMPQ:

– What is it? Open protocol for enterprise messaging, supported by

industry (JP Morgan, Cisco, Microsoft, Red Hat, Microsoft etc.).

– Open/ Multi-platform / language messaging system.

– AMQP defines:

1. Messaging capabilities (called AMQP model)

2. Wire-level protocol for interoperability

– AMQP messaging patterns:

1. Request-response: messages delivered to a specific queue

2. Publish/Subscribe: messages delivered to a set of receiver queues

3. Round-robin: message distribution to set of receivers based on availability

• AMQP Model (simplified):

34CA4006 Lecture Notes (Martin Crane 2018)Lecture 6: Messaging on Distributed Systems

CA4006 Lecture Notes (Martin Crane 2018) 35

AMQP Example: Model

D
ir
e
ct

E
xc
h
a
n
g
e

F
a
n
-o
u
t

E
xc
h
a
n
g
e

36

#!/usr/bin/env ruby
encoding: utf-8
require "bunny"

conn = Bunny.new(:automatically_recover => false)
conn.start

ch = conn.create_channel
q = ch.queue("hello") # create a message queue called “hello”

ch.default_exchange.publish("Hello World!", :routing_key => q.name)
default_exchange is a direct exchange with no name
main advantage is every queue is automatically bound to it with routing key same as queue name
puts " [x] Sent 'Hello World!'"

conn.close # close off the connection

#!/usr/bin/env ruby
encoding: utf-8
require "bunny"

conn = Bunny.new(:automatically_recover => false)
conn.start # if conn fails, reconnect tried every 5 secs, this disables automatic connection recovery

ch = conn.create_channel
q = ch.queue("hello") # create a message queue with same name as above

begin
puts " [*] Waiting for messages. To exit press CTRL+C"
q.subscribe(:block => true) do |delivery_info, properties, body|

puts " [x] Received #{body}"
end

rescue Interrupt => _ # exception handling if Interrupt happens (i.e. if CTRL+C hit)
conn.close # close off the connection

exit(0)
end

Hello World

in RabbitMQ

CA4006 Lecture Notes (Martin Crane 2018)Lecture 6: Messaging on Distributed Systems

channel.basic_publish(exchange=‘ ‘,
routing_key='hello',
body='Hello World!')

RabbitMQ
• Afterwards should see something like this:

37CA4006 Lecture Notes (Martin Crane 2018)Lecture 6: Messaging on Distributed Systems

38

Work Queue In

CA4006 Lecture Notes (Martin Crane 2018)Lecture 6: Messaging on Distributed Systems

Work Queue In (/2)
• Afterwards should see something like this:

39CA4006 Lecture Notes (Martin Crane 2018)Lecture 6: Messaging on Distributed Systems

40

Publish-Subscribe In

CA4006 Lecture Notes (Martin Crane 2018)Lecture 6: Messaging on Distributed Systems

41

Topic-based Routing

Publish-Subscribe In

CA4006 Lecture Notes (Martin Crane 2018)Lecture 6: Messaging on Distributed Systems

CA4006 Lecture Notes (Martin Crane 2018) 42

Fibonacci Server Using RPC In

Lecture 6: Messaging on Distributed Systems

The RPC will work this:

• On startup, client creates anonymous exclusive callback Q

• For RPC request, Client sends a message with 2 properties:

reply_to (set to the callback queue) & correlation_id,

(a unique value for each request)

• The request is sent to an rpc_queue queue.

• RPC server awaits requests on that queue.

– When a request comes, it does the job & returns a message with

result to Client, using the queue from the reply_to field.

• Client awaits data on callback queue.

– When one comes, it checks the correlation_id property.

– If it matches the request’s value it returns the response to the

application.

SECTION 6.5: MULTICAST

COMMUNICATION

43Lecture 6: Messaging on Distributed Systems CA4006 Lecture Notes (Martin Crane 2018)

Multicast Communication
• Rationale: Often need to a Send-to-Many in Distributed Systems

• Examples:

– Financial services: Delivery of news, stock quotes etc

– E-learning: Streaming content to many students at different levels.

• Problem: IP Multicast is very efficient for bandwidth usage

• BUT key architectural decision: Add support for multicast in IP layer

and no wide area IP multicast support

• Solutions:

1. Application-Level Multicasting

– Nodes organize (e.g. with chord to build, maintain) into an overlay n/w,

– Can then disseminate information to members

2. Gossip-based data dissemination

– Rely on epidemic behaviour for data spreading
44CA4006 Lecture Notes (Martin Crane 2018)Lecture 6: Messaging on Distributed Systems

1. Application-Level Multicasting (ALM)
• Basics:

• In ALM, message sent over multicast tree created on overlay network

– Sender is the root of the tree which spans all the receivers

• A connection between two nodes may cross several physical links

=> ALM may incur more cost than network-level multicast (i.e. cross

same physical link more than once)

45CA4006 Lecture Notes (Martin Crane 2018)

Multicast on Chord Network1

1from Talia & Trunfrio, J. Parallel & Dist Computing Vol(70(12)) pp1254 - 1265, 2010

Lecture 6: Messaging on Distributed Systems

2. Epidemic Algorithms
• Essence:

• Epidemic algorithms used to rapidly spread info in large P2P

systems without setting up a multicast tree

• Assumptions:

– All updates for specific data item are done at a single node (i.e., no

write-write conflict)

– Can distinguish old from new data as data is time stamped or versioned

• Operation:

– Node receives an update, forwards it to randomly chosen peers (akin to

spreading a contagious disease)

– Eventually, each update should reach every node

– Update propagation is lazy

46CA4006 Lecture Notes (Martin Crane 2018)Lecture 6: Messaging on Distributed Systems

2. Epidemic Algorithms (/2)
• Glossary of Terms:

– Node is infected if it has an update & wants to send to others

– Node is susceptible if it has not yet been updated/infected

– Node is removed if it is not willing or able to spread its update or

can no longer send to others for some reason.

• We study two propagation models here:

– Anti-entropy

Each replica regularly chooses another randomly & exchanges state

differences, giving identical states at both afterwards.

– Gossiping:

A replica which has just been updated (i.e., has been infected), tells

other replicas about its update (infecting them as well).

47CA4006 Lecture Notes (Martin Crane 2018)Lecture 6: Messaging in Distributed Systems

2. Epidemic Algorithms (/3)
• Principal Operations of Anti-Entropy:

– A node �	selects another node � from the system at random.

• Push: � only sends its updates to �

• Pull: � only retrieves updates from �

• Push-Pull: � and � exchange mutual updates (after which they

hold the same information).

• Observations

– For push-pull it takes �(log	(�))	rounds to disseminate updates to

all	� nodes (round= when every node has initiated an exchange).

– Anti-Entropy is reliable but costly (each replica must regularly

choose another randomly)

48CA4006 Lecture Notes (Martin Crane 2018)Lecture 6: Messaging in Distributed Systems

2. Epidemic Algorithms (/4)
• Basic model of Gossiping:

– A server S having an update to report, contacts other servers.

– If a server is contacted to which update has already propagated, S stops

contacting other servers with probability � �
⁄ .

– i.e. increasing � ensures almost total ‘gossip’ propagation

• Observations

– If �	is fraction of servers unaware

of update, can show that with

many servers, the equation

	� = �� ��� ��� 			is satisfied

– Example: for 10,000 servers:

when � = 4, �	 < 	0.007

– If need 100% propagation, gossiping alone is not enough, maybe need

to run one round of anti-entropy.
49CA4006 Lecture Notes (Martin Crane 2018)Lecture 6: Messaging in Distributed Systems

2. Epidemic Algorithms (/5)
• The Deletion Problem in Epidemic Algorithms:

– Cannot remove old value from a server, expecting removal to propagate.

– Instead, mere removal will be undone in time using epidemic algorithms

• Solution: Must register removal as special update by inserting a death cert

• Next problem:

– When to remove a death certificate (it is not allowed to stay for ever)?

• Run a global algorithm to detect if removal is known everywhere, and then

collect the death certificates (looks like garbage collection) or

• Assume death certificates propagate in finite time, and associate max

lifetime for a certificate (can be done at risk of not reaching all servers)

– Note: It is necessary that a removal actually reaches all servers.

• Applications of Epidemic Algorithms:

– (Obviously) data dissemination

– Data aggregation: each node with value � � . Two nodes gossiping should reset

their variable to (�
�
+� �)/2. What final value will nodes possess?

50CA4006 Lecture Notes (Martin Crane 2018)Lecture 6: Messaging in Distributed Systems

Lecture Summary
• Middleware enables much functionality in DS

• Especially the many types of interaction/communications
necessary

• With rational reasons for every one!

– Remote Procedure Call (RPC) enables transparency

– But Message Queuing Systems necessary for persistent
communications

• IBM Websphere is ok but a bit old, clunky & tired at this stage?

• AMQP open source, more flexible, better Industrial support?

– Multicast Communications are often necessary in DS:

• Application Layer Messaging (ALM)

• Epidemic Protocols

51CA4006 Lecture Notes (Martin Crane 2018)Lecture 6: Messaging in Distributed Systems

