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e Only one session (10-13)
e Query optimization:
— Overview of query evaluation
— Estimating sizes of intermediate results
— A typical query optimizer
e Query tuning:
— Providing good access paths
— Rewriting queries
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How to evaluate a query:

« Rewrite the query to (extended)
relational algebra.

« Determine algorithms for computing
intermediate results in the cheapest
way.

« Execute the algorithms and you have
the result!
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"Rewrite the query to (extended)
relational algebra.”

e Can be done in many equivalent ways.
Some may be "more equal than
others”!

e Size of intermediate results of big
Importance.

e Queries with corellated subqueries do
not really fit into relational algebra.
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” Determine algorithms for computing
intermediate results in the cheapest way.”

e Best algorithm depends on the data:

— No access method (index, table scan,...)
always wins.

- No algorithm for join, grouping, etc. always
WINS.
e Query optimizer should make an
educated guess for a (near)optimal
way of executing the query.
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SELECT STATEMENT 1 1 10

SO0RT AGGREGATE 1
MELGE JOIN CALTESIAN 253 1 10
TABLE ACCEESE BY INDEX ROWID DEDADTMENTE 1 1 1
NESTED LOOPRS 11 1 5
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Access
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"EMPLOYEES" "MANAGER_ID" =
"DEPARTMENTS" "MANAGER_ID"

ﬂj Done

ﬂ Internet
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Schema:
e Sailors(sid, sname, rating, age)

- 40 bytes/tuple, 100 tuples/page, 1000
pages

e Reserves(sid, bid, day, rname)
- 50 bytes/tuple, 80 tuples/page, 500 pages
uery.

SELECT S.sname
FROM (Reserves NATURAL JOIN Sailors)
WHERE bid=100 AND rating>5
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e Simple logical query plan:

Tsname (Jb'id:lUUArating}E) (RESETUES X SG»?:IOTS))

e Physical query plan:
— Nested loop join.

— Selection and projection “on the fly”
(pipelined).

e Cost: Around 500*1000 I/Os.
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e New logical query plan (push selects):

Tsname (Jbid:l[](] (RESETUES) X Orating>5 (S(I‘?:ZOT‘S))

e Physical query plan:
— Full table scans of Reserves and Sailors.
— Sort-merge join of selection results

e Cost:

- 50041000 I/Os plus sort-merge of
selection results

— Latter cost should be estimated!
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e Another logical query plan:
Tsname (JT'ating>5 (Jb-zldzl[][) (RESETUES) X SQ?JO’T‘S))

e Assume there is an index on bid.

e Physical query plan:

— Index scan of Reserves.

— Index nested loop join with Sailors.

- Final select and projection “on the fly”.
e Cost:

— Around 1 I/O per matching tuple of
Reserves for index nested loop join.
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e In the previous examples, we gave
several equivalent queries.

e A systematic (and correct!) way of
forming equivalent relational algebra
expression is based on algebraic rules.

e Query optimizers consider a (possibly
quite large) space of equivalent plans
at run time before deciding how to
execute a given query.
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Problem session

For each of the following algebraic laws, consider whether it might be useful
for rewriting an algebraic expression to have smaller computation time:

1. oc(E1 U Ey) = (El)Udc(Eg).

2. 0C

( )
( )
3. oc(E1 — Ey) = 0¢(E1) —o¢(Ey).
( ) =0c(E1) X By if Eq has all attributes in C.
( ) = oc(Er) Noc(B).
6. mL(E1 > Ey) = mL(T(Luag,)nAg, (E1) X T(LUAE, AR, (E2)).
oc(E1)) =7r(oc(ma(E71))) where A = attributes mentioned in C.

8. 5(E1 Py Ez) = 5(E1) >y 5(E2)
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e Core problem: onx—-expressions,
consisting of equi-joins, selections, and
a projection.

e Subqueries either:

— Eliminated using rewriting, or
— Handled using a separate onx-expression.

e Grouping, aggregation, duplicate

elimination: Handled in a final step.
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e Example:
Trating,sname (Jra,tz'ng>5ﬁage:20 (S@?:lOTS))

e Without an index: Full table scan. (Well,
depends on the physical organization.)

e With index:

— Single index access path

— Multiple index access path

— Sorted index access path

— Index only access path (“covering index”)
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e Similar principle, but now many more
possibilities to consider.

e Common approach:

— Consider subsets of the involved relations,
and the conditions that apply to each
subset.

— Estimate the cost of evaluating the onx-
expression restricted to this subset.

- Need to distinguish between different forms
of the output (sorted, unsorted).

e Details in RG.
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e The sizes of intermediate results are
important for the choices made when
planning query execution.

e Time for operations grow (at least)
linearly with size of (largest) argument.

e The total size can even be used as a
crude estimate on the running time.
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e In the book a number of heuristics for
estimating sizes of intermediate results
are presented.

e This classical approach works well in
some cases, but is unreliable in
general.

e The modern approach is based on
maintaining suitable statistics
summarizing the data. (Focus of
lecture.)
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e Random sample of, say 1% of the
tuples. (NB. Should fit main memory.)

e The 1000 most frequent values of some
attribute, with tuple counts.

e Histogram with number of values in
different ranges.

e The "skew” of data values. (Not
discussed in this lecture.)
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Histogram

e Number of values/tuples in each of a
number of intervals. Widely used.

<11 11-17 18-22 23-30 31-41 > 42

e How to use a histogram to estimate
selectivity?
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o Off-line: Statistics only computed
periodically, often operator-controlled
(e.g. Oracle). Typically involves sorting
data according to all attributes.

e On-line: Statistics maintained
automatically at all times by the DBMS.
Focus of this lecture.
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e To get a sample of expected size 1% of
full relation:

— Add a new tuple to the sample with
probability 1%.

- If a sampled tuple is deleted or updated,
remember to remove from or update in
sample.
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e To estimate the size of a select
statement o-(R):

- Compute |o-(R")|, where R" is the random
sample of R.

— If the sample is 1% of R, the estimate is
100 |oc(R")], etc.

- The estimate is reliable if |o-(R")| is not too
small (the bigger, the better).
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e Suppose you want to estimate the size
of a join statement R 1 R» -

e You have random samples of 1% of
each relation.

e Question: How do you do the
estimation?
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e Compute |R} <t R5|, where R’1 and R’2
are samples of R1 and R2.

o If samples are 1% of the relations,

estimate Is
1002| R} i Rb)|
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Reservoir sampling (Vitter ‘85):

e Initial sample consists of s tuples.

e A tuple inserted in R is stored in sample
with probability s/(|R|+1).

e When storing a new tuple, it replaces a
randomly chosen tuple in existing

sample (unless sample has size < s due
to a deletion).
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A mystery. Suppose you are the database administrator of a large company.
One day your boss comes to you complaining that the following query takes
several hours to run, even though the end result is quite small.

SELECT Sales.amount, Events.type

FROM Sales, Events, Goods, Suppliers

WHERE Sales.date=Events.date
AND Sales.partno=Goods.partno AND Suppliers.sid=Goods.sid
AND Goods.category=’engine’ AND Suppliers.country=’DK’

The query plan looks reasonable:
(Tcategory="engine’ (G00dS) DX Ocountry="Dx’ (Suppliers)) >x (Sales 1 Events)

What do you do? Propose queries on the relations that could help shed light on
what the problem is? (Feedback on proposals, tests, etc. from teacher in class.)
Propose possible cures.

&2 [T University of Copenhagen



What can be done to improve the
performance of a query?

Key techniques:

e Denormalization

e Vertical/horizontal partitioning
e Aggregate maintenance

e Query rewriting (examples from SB p.
143-158, 195)

e Sometimes: Optimizer hints
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Examples from SB
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e SELECT DISTINCT ssnum
FROM Employee
WHERE dept="CLA’

e Problem: "DISTINCT"” may force a sort
operation.

e Solution: If ssnum is unique, DISTINCT
can be omitted.

e (SB discusses some general cases in
which there is no need for DISTINCT.)

& 1T University of Copenhagen



e SELECT ssnum
FROM Employee
WHERE dept IN
(SELECT dept FROM ResearchDept)

e Problem: An index on Employee.dept
may not be used.

e Alternative query:
SELECT ssnum

FROM Employee E, ResearchDept D
WHERE E.dept=D.dept
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e The dark side of temporaries:
SELECT * INTO temp
FROM Employee
WHERE salary > 300000;
SELECT ssnum
FROM Temp
WHERE Temp.dept = ‘study admin’

e Problems:
— Forces the creation of a temporary
— Does not use index on Employee.dept
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e SELECT ssnum

FROM Employee E1
WHERE salary =
(SELECT max(salary)
FROM Employee E2
WHERE E1l.dept=E2.dept)
Problem: Subquery
may be executed for
each employee (or at
least each
department)
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e Solution ("the light

side of temporaries”):

SELECT dept,
max(salary) as m

INTO temp

FROM Employee

GROUP BY dept;

SELECT ssnum

FROM Employee E, temp
WHERE salary=m AND
E.dept=temp.dept



e SELECT E.ssnum
FROM Employee E, Student S
WHERE E.name=S.name

e Better to use a more compact key:
SELECT E.ssnum

FROM Employee E, Student S
WHERE E.ssnum=S.ssnum
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e "Using optimizer hints” in Oracle.
e Example: Forcing join order.

SELECT /*+ORDERED */*
FROM customers c, order_items |, orders o
WHERE c.cust_last_name = 'Smith’ AND
o.cust_id = c.cust_id AND o.order_id = l.order_id;

e Beware: Best choice may vary
depending on parameters of the query,
or change over time! Should always
prefer that optimizer makes choice.
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e SELECT bond.id
FROM bond, deal
WHERE bond.interestrate=5.6
AND bond.dealid = deal.dealid
AND deal.date = '7/7/1997"

e Clustered index on interestrate, nonclustered
indexes on dealid, and nonclustered index on
date.

e In absence of accurate statistics, optimizer
might use the indexes on interestrate and
dealid.

e Better to use the (very selective) index on
date. May use force if necessary!
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e The database tuner should

- Be aware of the range of possibilities the
DBMS has in evaluating a query.

— Consider the possibilities for providing
more efficient access paths to be chosen by
the optimizer.

- Know ways of circumventing shortcomings
of query optimizers.
e Important mainly for DBMS
implementers:
- How to parse, translate, etc.
- How the space of query plans is searched.
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e On Thursday morning, we will go
through:
— ADBT exam, June 2006, question 2
— ADBT exam, June 2005, question 3.b+c
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