
1Database Tuning, Spring 2007

Lecture 6:
Query optimization,

query tuning

Rasmus Pagh

2Database Tuning, Spring 2007

Today’s lecture

• Only one session (10-13)
• Query optimization:

– Overview of query evaluation
– Estimating sizes of intermediate results
– A typical query optimizer

• Query tuning:
– Providing good access paths
– Rewriting queries

3Database Tuning, Spring 2007

Basics of query evaluation

How to evaluate a query:
• Rewrite the query to (extended)

relational algebra.
• Determine algorithms for computing

intermediate results in the cheapest
way.

• Execute the algorithms and you have
the result!

4Database Tuning, Spring 2007

Complications, 1

”Rewrite the query to (extended)
relational algebra.”

• Can be done in many equivalent ways.
Some may be ”more equal than
others”!

• Size of intermediate results of big
importance.

• Queries with corellated subqueries do
not really fit into relational algebra.

5Database Tuning, Spring 2007

Complications, 2

” Determine algorithms for computing
intermediate results in the cheapest way.”

• Best algorithm depends on the data:
– No access method (index, table scan,...)

always wins.
– No algorithm for join, grouping, etc. always

wins.

• Query optimizer should make an
educated guess for a (near)optimal
way of executing the query.

6Database Tuning, Spring 2007

7Database Tuning, Spring 2007

Motivating example (RG)

Schema:
• Sailors(sid, sname, rating, age)

– 40 bytes/tuple, 100 tuples/page, 1000
pages

• Reserves(sid, bid, day, rname)
– 50 bytes/tuple, 80 tuples/page, 500 pages

Query:
SELECT S.sname
FROM (Reserves NATURAL JOIN Sailors)
WHERE bid=100 AND rating>5

8Database Tuning, Spring 2007

Example, cont.

• Simple logical query plan:

• Physical query plan:
– Nested loop join.
– Selection and projection ”on the fly”

(pipelined).

• Cost: Around 500*1000 I/Os.

9Database Tuning, Spring 2007

Example, cont.

• New logical query plan (push selects):

• Physical query plan:
– Full table scans of Reserves and Sailors.
– Sort-merge join of selection results

• Cost:
– 500+1000 I/Os plus sort-merge of

selection results
– Latter cost should be estimated!

10Database Tuning, Spring 2007

Example, cont.

• Another logical query plan:

• Assume there is an index on bid.
• Physical query plan:

– Index scan of Reserves.
– Index nested loop join with Sailors.
– Final select and projection ”on the fly”.

• Cost:
– Around 1 I/O per matching tuple of

Reserves for index nested loop join.

11Database Tuning, Spring 2007

Algebraic equivalences

• In the previous examples, we gave
several equivalent queries.

• A systematic (and correct!) way of
forming equivalent relational algebra
expression is based on algebraic rules.

• Query optimizers consider a (possibly
quite large) space of equivalent plans
at run time before deciding how to
execute a given query.

12Database Tuning, Spring 2007

Problem session

13Database Tuning, Spring 2007

Simplification

• Core problem: σπ×−expressions,
consisting of equi-joins, selections, and
a projection.

• Subqueries either:
– Eliminated using rewriting, or
– Handled using a separate σπ×−expression.

• Grouping, aggregation, duplicate
elimination: Handled in a final step.

14Database Tuning, Spring 2007

Single relation access plans

• Example:

• Without an index: Full table scan. (Well,
depends on the physical organization.)

• With index:
– Single index access path
– Multiple index access path
– Sorted index access path
– Index only access path (”covering index”)

15Database Tuning, Spring 2007

Multi-relation access plans

• Similar principle, but now many more
possibilities to consider.

• Common approach:
– Consider subsets of the involved relations,

and the conditions that apply to each
subset.

– Estimate the cost of evaluating the σπ×−
expression restricted to this subset.

– Need to distinguish between different forms
of the output (sorted, unsorted).

• Details in RG.

16Database Tuning, Spring 2007

 Estimating sizes of relations

• The sizes of intermediate results are
important for the choices made when
planning query execution.

• Time for operations grow (at least)
linearly with size of (largest) argument.

• The total size can even be used as a
crude estimate on the running time.

17Database Tuning, Spring 2007

Classical approach: Heuristics

• In the book a number of heuristics for
estimating sizes of intermediate results
are presented.

• This classical approach works well in
some cases, but is unreliable in
general.

• The modern approach is based on
maintaining suitable statistics
summarizing the data. (Focus of
lecture.)

18Database Tuning, Spring 2007

Some possible types of statistics

• Random sample of, say 1% of the
tuples. (NB. Should fit main memory.)

• The 1000 most frequent values of some
attribute, with tuple counts.

• Histogram with number of values in
different ranges.

• The ”skew” of data values. (Not
discussed in this lecture.)

19Database Tuning, Spring 2007

< 11 11-17 18-22 23-30 31-41 > 42

Histogram

• Number of values/tuples in each of a
number of intervals. Widely used.

• How to use a histogram to estimate
selectivity?

20Database Tuning, Spring 2007

On-line vs off-line statistics

• Off-line: Statistics only computed
periodically, often operator-controlled
(e.g. Oracle). Typically involves sorting
data according to all attributes.

• On-line: Statistics maintained
automatically at all times by the DBMS.
Focus of this lecture.

21Database Tuning, Spring 2007

Maintaining a random sample

• To get a sample of expected size 1% of
full relation:
– Add a new tuple to the sample with

probability 1%.
– If a sampled tuple is deleted or updated,

remember to remove from or update in
sample.

22Database Tuning, Spring 2007

Estimating selects

• To estimate the size of a select
statement σC(R):
– Compute |σC(R’)|, where R’ is the random

sample of R.
– If the sample is 1% of R, the estimate is

100 |σC(R’)|, etc.
– The estimate is reliable if |σC(R’)| is not too

small (the bigger, the better).

23Database Tuning, Spring 2007

Estimating join sizes?

• Suppose you want to estimate the size
of a join statement .

• You have random samples of 1% of
each relation.

• Question: How do you do the
estimation?

24Database Tuning, Spring 2007

Estimating join sizes

• Compute , where R’1 and R’2
are samples of R1 and R2.

• If samples are 1% of the relations,
estimate is

25Database Tuning, Spring 2007

Keeping a sample of bounded
size

Reservoir sampling (Vitter ’85):
• Initial sample consists of s tuples.
• A tuple inserted in R is stored in sample

with probability s/(|R|+1).
• When storing a new tuple, it replaces a

randomly chosen tuple in existing
sample (unless sample has size < s due
to a deletion).

26Database Tuning, Spring 2007

Problem session

27Database Tuning, Spring 2007

Tuning

What can be done to improve the
performance of a query?

Key techniques:
• Denormalization
• Vertical/horizontal partitioning
• Aggregate maintenance
• Query rewriting (examples from SB p.

143-158, 195)
• Sometimes: Optimizer hints

28Database Tuning, Spring 2007

Examples from SB

29Database Tuning, Spring 2007

Query rewrite, example 1

• SELECT DISTINCT ssnum
FROM Employee
WHERE dept=’CLA’

• Problem: ”DISTINCT” may force a sort
operation.

• Solution: If ssnum is unique, DISTINCT
can be omitted.

• (SB discusses some general cases in
which there is no need for DISTINCT.)

30Database Tuning, Spring 2007

Query rewrite, example 2

• SELECT ssnum
FROM Employee
WHERE dept IN

(SELECT dept FROM ResearchDept)
• Problem: An index on Employee.dept

may not be used.
• Alternative query:

SELECT ssnum
FROM Employee E, ResearchDept D
WHERE E.dept=D.dept

31Database Tuning, Spring 2007

Query rewrite, example 3

• The dark side of temporaries:
SELECT * INTO temp
FROM Employee
WHERE salary > 300000;
SELECT ssnum
FROM Temp
WHERE Temp.dept = ’study admin’

• Problems:
– Forces the creation of a temporary
– Does not use index on Employee.dept

32Database Tuning, Spring 2007

Query rewrite, example 4

• SELECT ssnum
FROM Employee E1
WHERE salary =
(SELECT max(salary)
FROM Employee E2
WHERE E1.dept=E2.dept)

• Problem: Subquery
may be executed for
each employee (or at
least each
department)

• Solution (”the light
side of temporaries”):

SELECT dept,
max(salary) as m

INTO temp
FROM Employee
GROUP BY dept;

SELECT ssnum
FROM Employee E, temp
WHERE salary=m AND
E.dept=temp.dept

33Database Tuning, Spring 2007

Query rewrite, example 5

• SELECT E.ssnum
FROM Employee E, Student S
WHERE E.name=S.name

• Better to use a more compact key:
SELECT E.ssnum
FROM Employee E, Student S
WHERE E.ssnum=S.ssnum

34Database Tuning, Spring 2007

Hints

• ”Using optimizer hints” in Oracle.
• Example: Forcing join order.

• Beware: Best choice may vary
depending on parameters of the query,
or change over time! Should always
prefer that optimizer makes choice.

SELECT /*+ORDERED */ *
FROM customers c, order_items l, orders o
WHERE c.cust_last_name = ’Smith’ AND

o.cust_id = c.cust_id AND o.order_id = l.order_id;

35Database Tuning, Spring 2007

Hint example

• SELECT bond.id
FROM bond, deal
WHERE bond.interestrate=5.6

AND bond.dealid = deal.dealid
AND deal.date = ’7/7/1997’

• Clustered index on interestrate, nonclustered
indexes on dealid, and nonclustered index on
date.

• In absence of accurate statistics, optimizer
might use the indexes on interestrate and
dealid.

• Better to use the (very selective) index on
date. May use force if necessary!

36Database Tuning, Spring 2007

Conclusion

• The database tuner should
– Be aware of the range of possibilities the

DBMS has in evaluating a query.
– Consider the possibilities for providing

more efficient access paths to be chosen by
the optimizer.

– Know ways of circumventing shortcomings
of query optimizers.

• Important mainly for DBMS
implementers:
– How to parse, translate, etc.
– How the space of query plans is searched.

37Database Tuning, Spring 2007

Exercises

• On Thursday morning, we will go
through:
– ADBT exam, June 2006, question 2
– ADBT exam, June 2005, question 3.b+c

