Lecture 6:
Query optimization,
query tuning

Rasmus Pagh

:é IT University of Copenhagen Database Tuning, Spring 2007

e Only one session (10-13)
e Query optimization:
— Overview of query evaluation
— Estimating sizes of intermediate results
— A typical query optimizer
e Query tuning:
— Providing good access paths
— Rewriting queries

& 1T University of Copenhagen

How to evaluate a query:

« Rewrite the query to (extended)
relational algebra.

« Determine algorithms for computing
intermediate results in the cheapest
way.

« Execute the algorithms and you have
the result!

& 1T University of Copenhagen

"Rewrite the query to (extended)
relational algebra.”

e Can be done in many equivalent ways.
Some may be "more equal than
others”!

e Size of intermediate results of big
Importance.

e Queries with corellated subqueries do
not really fit into relational algebra.

& 1T University of Copenhagen

” Determine algorithms for computing
intermediate results in the cheapest way.”

e Best algorithm depends on the data:

— No access method (index, table scan,...)
always wins.

- No algorithm for join, grouping, etc. always
WINS.
e Query optimizer should make an
educated guess for a (near)optimal
way of executing the query.

& 1T University of Copenhagen

<} SOI. Commands - Microsoft Internet Explorer

File Edit \Wiew Favorites Tools

% — i
e Back ~ |) Iﬂ |EL| A Pl ! Search ‘-_?'_:(’ Favorites -62!
< .] e

Help

@@]

fddress iéjhttp:,l'p'l2?.D.D.1:BDEED,I'apex,I'F?p=4SDD:1003:333?608012056264::NO::: v 'Go Links **
. . L] N
ORACLE" Database Express Edition G O 7?7
Home Logout Help
Uzer: HR
Home = SOL > SOL Commands
[¥] Autocammit Display | 10 b l Save l [Run]
SELECT AVG(SALARY) ~
FROM (EMFLOYEES MNATURAL JOIN DEPARTHMENTS NATURAL JOIN LOCATIONS MNATURLL JOIN COUNTRIES)
WHERE COU'NTRY_NAI'IE=' Denmark'
W

Results Explain Describe Sawved SOL History

Query Plan

Operation Options Ohject Rows Time Cost
SELECT STATEMENT 1 1 10

SO0RT AGGREGATE 1
MELGE JOIN CALTESIAN 253 1 10
TABLE ACCEESE BY INDEX ROWID DEDADTMENTE 1 1 1
NESTED LOOPRS 11 1 5
MERGE JOIN CALTESIAN 107 1 4
INDEX FULL 3CAN COUMNTEY C ID PE 1 1 1
EUFFER SO0RT 107 1 8
TAELE ACCESS FULL EMPLOYEES 107 1 3
INDE: BANGE SCAN DEPARTMENTS TDHI1 2 1 0
EUFFER SORT 23 1 9
INDEX FAST FULL SCAN LOC CITY T 23 1 u]

* Lnindexed columns are shown in red

Bytes
26

26
E.575

286
2.033

1477
1477

Filter
Predicates '

"EMPLOYEES™DEPARTWEMT _ID"
=""DEPARTMENT_ID"

"COUMTRIES" "COUMTRY _MAME"
= 'Denmark’

"DEPARTHMENMTZ" "t AN AGER_ID"
15 MOT MULL

Access
Predicates

"EMPLOYEES" "MANAGER_ID" =
"DEPARTMENTS" "MANAGER_ID"

ﬂj Done

ﬂ Internet

& 1T University of Copenhagen

Database Tuning, Spring 2007 6

Schema:
e Sailors(sid, sname, rating, age)

- 40 bytes/tuple, 100 tuples/page, 1000
pages

e Reserves(sid, bid, day, rname)
- 50 bytes/tuple, 80 tuples/page, 500 pages
uery.

SELECT S.sname
FROM (Reserves NATURAL JOIN Sailors)
WHERE bid=100 AND rating>5

& 1T University of Copenhagen

e Simple logical query plan:

Tsname (Jb'id:lUUArating}E) (RESETUES X SG»?:IOTS))

e Physical query plan:
— Nested loop join.

— Selection and projection “on the fly”
(pipelined).

e Cost: Around 500*1000 I/Os.

& 1T University of Copenhagen

e New logical query plan (push selects):

Tsname (Jbid:l[](] (RESETUES) X Orating>5 (S(I‘?:ZOT‘S))

e Physical query plan:
— Full table scans of Reserves and Sailors.
— Sort-merge join of selection results

e Cost:

- 50041000 I/Os plus sort-merge of
selection results

— Latter cost should be estimated!

& 1T University of Copenhagen

e Another logical query plan:
Tsname (JT'ating>5 (Jb-zldzl[][) (RESETUES) X SQ?JO’T‘S))

e Assume there is an index on bid.

e Physical query plan:

— Index scan of Reserves.

— Index nested loop join with Sailors.

- Final select and projection “on the fly”.
e Cost:

— Around 1 I/O per matching tuple of
Reserves for index nested loop join.

& 1T University of Copenhagen

e In the previous examples, we gave
several equivalent queries.

e A systematic (and correct!) way of
forming equivalent relational algebra
expression is based on algebraic rules.

e Query optimizers consider a (possibly
quite large) space of equivalent plans
at run time before deciding how to
execute a given query.

& 1T University of Copenhagen

Problem session

For each of the following algebraic laws, consider whether it might be useful
for rewriting an algebraic expression to have smaller computation time:

1. oc(E1 U Ey) = (El)Udc(Eg).

2. 0C

()
()
3. oc(E1 — Ey) = 0¢(E1) —o¢(Ey).
() =0c(E1) X By if Eq has all attributes in C.
() = oc(Er) Noc(B).
6. mL(E1 > Ey) = mL(T(Luag,)nAg, (E1) X T(LUAE, AR, (E2)).
oc(E1)) =7r(oc(ma(E71))) where A = attributes mentioned in C.

8. 5(E1 Py Ez) = 5(E1) >y 5(E2)

2> [T University of Copenhagen Database Tuning, Spring 2007 12

e Core problem: onx—-expressions,
consisting of equi-joins, selections, and
a projection.

e Subqueries either:

— Eliminated using rewriting, or
— Handled using a separate onx-expression.

e Grouping, aggregation, duplicate

elimination: Handled in a final step.

& 1T University of Copenhagen

e Example:
Trating,sname (Jra,tz'ng>5ﬁage:20 (S@?:lOTS))

e Without an index: Full table scan. (Well,
depends on the physical organization.)

e With index:

— Single index access path

— Multiple index access path

— Sorted index access path

— Index only access path (“covering index”)

& 1T University of Copenhagen

e Similar principle, but now many more
possibilities to consider.

e Common approach:

— Consider subsets of the involved relations,
and the conditions that apply to each
subset.

— Estimate the cost of evaluating the onx-
expression restricted to this subset.

- Need to distinguish between different forms
of the output (sorted, unsorted).

e Details in RG.

& 1T University of Copenhagen

e The sizes of intermediate results are
important for the choices made when
planning query execution.

e Time for operations grow (at least)
linearly with size of (largest) argument.

e The total size can even be used as a
crude estimate on the running time.

& 1T University of Copenhagen

e In the book a number of heuristics for
estimating sizes of intermediate results
are presented.

e This classical approach works well in
some cases, but is unreliable in
general.

e The modern approach is based on
maintaining suitable statistics
summarizing the data. (Focus of
lecture.)

& 1T University of Copenhagen

e Random sample of, say 1% of the
tuples. (NB. Should fit main memory.)

e The 1000 most frequent values of some
attribute, with tuple counts.

e Histogram with number of values in
different ranges.

e The "skew” of data values. (Not
discussed in this lecture.)

& 1T University of Copenhagen

Histogram

e Number of values/tuples in each of a
number of intervals. Widely used.

<11 11-17 18-22 23-30 31-41 > 42

e How to use a histogram to estimate
selectivity?

é IT University of Copenhagen Database Tuning, Spring 2007 19

o Off-line: Statistics only computed
periodically, often operator-controlled
(e.g. Oracle). Typically involves sorting
data according to all attributes.

e On-line: Statistics maintained
automatically at all times by the DBMS.
Focus of this lecture.

& 1T University of Copenhagen

e To get a sample of expected size 1% of
full relation:

— Add a new tuple to the sample with
probability 1%.

- If a sampled tuple is deleted or updated,
remember to remove from or update in
sample.

& 1T University of Copenhagen

e To estimate the size of a select
statement o-(R):

- Compute |o-(R")|, where R" is the random
sample of R.

— If the sample is 1% of R, the estimate is
100 |oc(R")], etc.

- The estimate is reliable if |o-(R")| is not too
small (the bigger, the better).

& 1T University of Copenhagen

e Suppose you want to estimate the size
of a join statement R 1 R» -

e You have random samples of 1% of
each relation.

e Question: How do you do the
estimation?

& 1T University of Copenhagen

e Compute |R} <t R5|, where R’1 and R’2
are samples of R1 and R2.

o If samples are 1% of the relations,

estimate Is
1002| R} i Rb)|

& 1T University of Copenhagen

Reservoir sampling (Vitter ‘85):

e Initial sample consists of s tuples.

e A tuple inserted in R is stored in sample
with probability s/(|R|+1).

e When storing a new tuple, it replaces a
randomly chosen tuple in existing

sample (unless sample has size < s due
to a deletion).

& 1T University of Copenhagen

A mystery. Suppose you are the database administrator of a large company.
One day your boss comes to you complaining that the following query takes
several hours to run, even though the end result is quite small.

SELECT Sales.amount, Events.type

FROM Sales, Events, Goods, Suppliers

WHERE Sales.date=Events.date
AND Sales.partno=Goods.partno AND Suppliers.sid=Goods.sid
AND Goods.category=’engine’ AND Suppliers.country=’DK’

The query plan looks reasonable:
(Tcategory="engine’ (G00dS) DX Ocountry="Dx’ (Suppliers)) >x (Sales 1 Events)

What do you do? Propose queries on the relations that could help shed light on
what the problem is? (Feedback on proposals, tests, etc. from teacher in class.)
Propose possible cures.

&2 [T University of Copenhagen

What can be done to improve the
performance of a query?

Key techniques:

e Denormalization

e Vertical/horizontal partitioning
e Aggregate maintenance

e Query rewriting (examples from SB p.
143-158, 195)

e Sometimes: Optimizer hints

& 1T University of Copenhagen

Examples from SB

:{é IT University of Copenhagen Database Tuning, Spring 2007 28

e SELECT DISTINCT ssnum
FROM Employee
WHERE dept="CLA’

e Problem: "DISTINCT"” may force a sort
operation.

e Solution: If ssnum is unique, DISTINCT
can be omitted.

e (SB discusses some general cases in
which there is no need for DISTINCT.)

& 1T University of Copenhagen

e SELECT ssnum
FROM Employee
WHERE dept IN
(SELECT dept FROM ResearchDept)

e Problem: An index on Employee.dept
may not be used.

e Alternative query:
SELECT ssnum

FROM Employee E, ResearchDept D
WHERE E.dept=D.dept

& 1T University of Copenhagen

e The dark side of temporaries:
SELECT * INTO temp
FROM Employee
WHERE salary > 300000;
SELECT ssnum
FROM Temp
WHERE Temp.dept = ‘study admin’

e Problems:
— Forces the creation of a temporary
— Does not use index on Employee.dept

& 1T University of Copenhagen

e SELECT ssnum

FROM Employee E1
WHERE salary =
(SELECT max(salary)
FROM Employee E2
WHERE E1l.dept=E2.dept)
Problem: Subquery
may be executed for
each employee (or at
least each
department)

& 1T University of Copenhagen

e Solution ("the light

side of temporaries”):

SELECT dept,
max(salary) as m

INTO temp

FROM Employee

GROUP BY dept;

SELECT ssnum

FROM Employee E, temp
WHERE salary=m AND
E.dept=temp.dept

e SELECT E.ssnum
FROM Employee E, Student S
WHERE E.name=S.name

e Better to use a more compact key:
SELECT E.ssnum

FROM Employee E, Student S
WHERE E.ssnum=S.ssnum

& 1T University of Copenhagen

e "Using optimizer hints” in Oracle.
e Example: Forcing join order.

SELECT /*+ORDERED */*
FROM customers c, order_items |, orders o
WHERE c.cust_last_name = 'Smith’ AND
o.cust_id = c.cust_id AND o.order_id = l.order_id;

e Beware: Best choice may vary
depending on parameters of the query,
or change over time! Should always
prefer that optimizer makes choice.

& 1T University of Copenhagen

e SELECT bond.id
FROM bond, deal
WHERE bond.interestrate=5.6
AND bond.dealid = deal.dealid
AND deal.date = '7/7/1997"

e Clustered index on interestrate, nonclustered
indexes on dealid, and nonclustered index on
date.

e In absence of accurate statistics, optimizer
might use the indexes on interestrate and
dealid.

e Better to use the (very selective) index on
date. May use force if necessary!

& 1T University of Copenhagen

e The database tuner should

- Be aware of the range of possibilities the
DBMS has in evaluating a query.

— Consider the possibilities for providing
more efficient access paths to be chosen by
the optimizer.

- Know ways of circumventing shortcomings
of query optimizers.
e Important mainly for DBMS
implementers:
- How to parse, translate, etc.
- How the space of query plans is searched.

& 1T University of Copenhagen

e On Thursday morning, we will go
through:
— ADBT exam, June 2006, question 2
— ADBT exam, June 2005, question 3.b+c

& 1T University of Copenhagen

