
Lecture 6  Sharpening Filters

1. The concept of sharpening filter
2 First and second order derivatives2. First and second order derivatives
3. Laplace filter
4. Unsharp maskp
5. High boost filter
6. Gradient mask
7. Sharpening image with MatLab



Sharpening Spatial Filters

• To highlight fine detail in an image or to enhance detail 
that has been blurred, either in error or as a natural 
ff t f ti l th d f i i itieffect of a particular method of image acquisition.

• Blurring vs Sharpening• Blurring vs. Sharpening

• Blurring/smooth is done in spatial domain by pixel averaging in a 
i hb it i f i t tineighbors, it is a process of integration

Sh i i i t fi d th diff b th• Sharpening is an inverse process, to find the difference by the 
neighborhood, done by spatial differentiation.spatial differentiation.
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Derivative operator

• The strength of the response of a derivative 
operator is proportional to the degree ofoperator is proportional to the degree of 
discontinuity of the image at the point at which the 
operator is applied. 

• Image differentiation 
– enhances edges and other discontinuities (noise)
– deemphasizes area with slowly varying gray-level 

valuesvalues.
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Sharpening edge by First and second order derivatives

• Intensity function f =
f’

• First derivative f ’ =
f

• Second-order derivative 
f ’’

f f’’

f ’’ =
f-f

• f- f’’  =
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First and second order difference of 1D

• The basic definition of the first-order derivative of a one-
dimensional function f(x) is the difference
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First and Second-order derivative of 2D

• when we consider an image function of two variables, 
f(x, y), at which time we will dealing with partial 
d i ti l th t ti lderivatives along the two spatial axes.
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Discrete form of Laplacian
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Result Laplacian mask
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Laplacian mask implemented an extension of 
diagonal neighbors
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Other implementation of Laplacian masks

give the same result, but we have to keep in mind that 
when combining (add / subtract) a Laplacian-filtered 
i  ith th  i
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image with another image.



Effect of Laplacian Operator
• as it is a derivative operator,

– it highlights gray-level discontinuities in an image
it deemphasizes regions with slowly varying gray levels– it deemphasizes regions with slowly varying gray levels

• tends to produce images that have 
– grayish edge lines and other discontinuities, all superimposed on 

a darka dark, 
– featureless background.
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Correct the effect of featureless background

• easily by adding the original and Laplacian image.
• be careful with the Laplacian filter used• be careful with the Laplacian filter used
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Example

• a). image of the North 
pole of the moonpole of the moon

• b). Laplacian-filtered 
image with 

1 1 1

1 -8 1

1 1 1

• c). Laplacian image 
scaled for display 
purposes

• d). image enhanced by 
addition with original 
image
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Mask of Laplacian + addition

• to simply the computation, we can create a mask which 
do both operations, Laplacian Filter and Addition the 

i i l ioriginal image.
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Mask of Laplacian + addition
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Example
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Note
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Unsharp masking

)()()( yxfyxfyxf = ),(),(),( yxfyxfyxfs −=

sharpened image = original image – blurred imagesharpened image = original image – blurred image

• to subtract a blurred version of an image produces 
sharpening output image.
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Unsharp mask





High-boost filtering
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• generalized form of Unsharp masking
• A ≥ 1
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High-boost filtering

),(),()1(),( yxfyxfAyxf shb −−=
• if we use Laplacian filter to create sharpen image fs(x,y) 

with addition of original image
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High-boost Masks

A ≥ 1
if A = 1 it becomes “standard” Laplacian sharpeningif A = 1, it becomes standard  Laplacian sharpening
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Example
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Gradient Operator

• first derivatives are implemented using the 
magnitude of the gradientmagnitude of the gradient. ⎤⎡∂fmagnitude of the gradientmagnitude of the gradient.

⎥
⎥
⎥
⎤

⎢
⎢
⎢
⎡

∂
∂
∂

=⎥
⎦

⎤
⎢
⎣

⎡
=∇ f

x
f

G
Gxf

⎥
⎥
⎦⎢

⎢
⎣∂

⎦⎣
y
fGy

2
122 ][)f( +=∇=∇ GGmagf yx

2
1

22

⎥
⎥
⎤

⎢
⎢
⎡

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂
∂

+⎟
⎠
⎞

⎜
⎝
⎛
∂
∂

=
ff

commonly approx.

⎥⎦⎢⎣
⎟
⎠

⎜
⎝ ∂

⎟
⎠

⎜
⎝ ∂ yx

yx GGf +≈∇

26

the magnitude becomes nonlinear
yx



Gradient Mask

• simplest approximation, 2x2
z1 z2 z3

z4 z5 z6z4 z5 z6

z7 z8 z9
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Gradient Mask z1 z2 z3

z z z
• Roberts cross-gradient operators, 2x2
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Gradient Mask z1 z2 z3

z z z
• Sobel operators, 3x3
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the weight value 2 is to 
achieve smoothing by 
giving more important 
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to the center point



Example
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Example of Combining Spatial Enhancement Methods

• want to sharpen the 
original image and bring 
out more skeletal detail.

• problems: narrow 
dynamic range of gray 
level and high noiselevel and high noise 
content makes the 
image difficult toimage difficult to 
enhance
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Example of Combining Spatial Enhancement Methods

• solve : 
1. Laplacian to highlight fine detail
2. gradient to enhance prominent edges
3. gray-level transformation to increase the dynamic 

range of gray levelsrange of gray levels
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