Lecture 6: Survival Analysis

Dankmar Böhning

Southampton Statistical Sciences Research Institute University of Southampton

 $S^{3}RI$, 2 - 4 March 2015

-Outline

Introduction

Basic definitions

The hazard

◆□ → ◆聞 → < 差 → < 差 → 差 2/16</p>

A couple of questions and...

What makes survival data so special that their analysis needs a special treatment, even as long as a one-term course?

Why isn't it simply covered as a sub-topic in, let's say, regression analysis?

...a clarification

- Survival data subsume more than only times from birth to death for some individuals.
- Analysis of duration data, that is the time from a well-defined starting point until the event of interest occurs.

Examples

- how long patients survived after diagnosis or treatment
- the length of unemployment spells
- how long a marriage lasts
- how long PhD students need to finish writing their theses

and more...

Features

Survival data result from a dynamic process and we want to capture these dynamics in the analysis properly.

The observation scheme for duration data can be rather complex, leading to data that are somehow *cut*.

The basic functions

In the following we will assume that time is running continuously, and we therefore will describe duration by a <u>continuous</u> random variable, denoted by T.

<ロト<問ト<臣ト<臣ト 7/16

- ► T ≥ 0
- $f(t) \Rightarrow$ density function
- $F(t) \Rightarrow$ cumulative density function (cdf)
- $S(t) \Rightarrow$ survival function

Recall that...

- ► The density function f(t) describes how the total probability of 1 is distributed over the domain of T.
- The function f(t) itself is not a probability and can take values bigger than 1. But still one can derive basic properties from looking at the density.
- For regions where the density has large values the area under the curve over an interval of given length will be larger as compared to an interval of same length where the density is lower.
- Regions over which the density is high are regions where we expect to observe more data points than in regions with low densities.

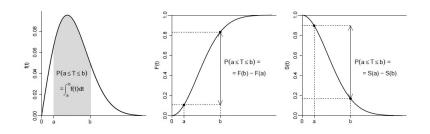
Recall that...

► The cdf F(t) is defined as F(t) := P(T ≤ t) which can be computed from the density as

$$F(t) = \int_0^t f(s) ds$$

- A cdf is an increasing function, even strictly increasing if the density f(t) > 0 everywhere.
- F(0) = 0 and $\lim_{t\to\infty} F(t) = 1$.
- There is a one-to-one link between f(t) and F(t) as F'(t) = f(t). Knowing one of the functions means, at least in principle, knowing the other (you may have to take the derivative or perhaps solve an ugly integral).

Recall that...


Instead of looking at the cdf, which gives the probability of surviving at most t time units, one prefers to look at survival beyond a given point in time. This is described by the survival function S(t):

$$S(t) = P(T > t) = 1 - P(T \le t) = 1 - F(t)$$

- Consequently, S(t) starts at 1 for t = 0 and then declines to 0 for t → ∞.
- It should be obvious that knowing any one of f(t), F(t) and S(t) allows to derive the other two functions.

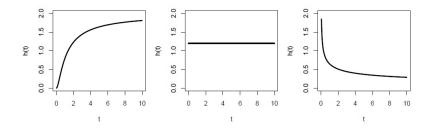
To summarize

 $\Pr(a \leq T \leq b)$

All the three functions introduced so far allowed to describe, in one way or another, how the survival times are distributed over the potential range.

The dynamic process

- Density, cdf and survival function look at the marginal distribution
- Conditioning on the survival experience so far, we have


$$\Pr(t < T \leq t + \Delta t \mid T > t)$$

Defining the Hazard Rate

$$h(t) = \lim_{\Delta t \to 0} \frac{\Pr(t < T \le t + \Delta t \mid T > t)}{\Delta t}$$

The hazard in more details

The basic information in the hazard is, first of all, its qualitative behavior.

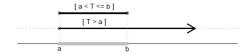
Some useful identities

$$h(t) = \frac{f(t)}{S(t)} \Rightarrow f(t) = h(t)S(t)$$

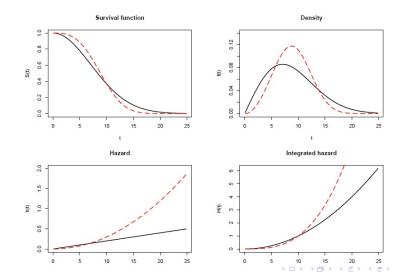
$$h(t) = [-\log S(t)]'$$

$$S(t) = \exp\left\{-\int_0^t h(s)ds\right\}$$

• Define the cumulative hazard H(t)


$$H(t) = \int_0^t h(s) ds \Rightarrow S(t) = exp\{-H(t)\} or \log S(t) = -H(t)$$

Lecture 6: Survival Analysis


By using the definition of conditional probabilities

$$\begin{aligned} \mathsf{Pr}(t < T \leq t + \Delta t \mid T > t) &= \frac{\mathsf{Pr}([t < T \leq t + \Delta t] \cap [T > t])}{\mathsf{Pr}(T > t)} \\ &= \frac{\mathsf{Pr}(t < T \leq t + \Delta t \mid T > t)}{\mathsf{Pr}(T > t)} \end{aligned}$$

It may be helpful to sketch this relation graphically

An example

≡ 16/36

Survival Analysis: Non-Parametric Estimation

Dankmar Böhning

Southampton Statistical Sciences Research Institute University of Southampton

 $S^{3}RI$, 2 - 4 March 2015

-Outline

General Concepts

Non-Parametric Estimation (no censoring)

Non-Parametric Estimation (including censoring)

Few remarks before starting

- Each subject has a beginning and an end anywhere along the time line of the complete study.
- In many clinical trials, subjects may enter or begin the study and reach end-point at vastly differing points.
- Each subject is characterized by
 - 1. Survival time
 - 2. Status at the end of the survival time (event occurrence or censored)

3. The study group they are in.

-General Concepts

Censoring

- The total survival time for that subject cannot be accurately determined.
 - A subject drops out, is lost to follow-up, or required data are not available
 - The study ends before the subject had the event of interest occur, i.e., they survived at least until the end of the study,

<ロト<問ト<臣ト<臣ト 4/15

• There is no knowledge of what happened thereafter.

-General Concepts

Censoring

Right censoring: the period of observation expires, or an individual is removed from the study, before the event occurs.

- Left censoring: the initial time at risk is unknown.
- Interval censoring: both right and left censored

Non-Parametric Estimation (no censoring)

Estimation

- Random variable T with cdf F(t)
- ► S(t) = 1 F(t)
- With no censored observations:

$$\hat{S}(t) = 1 - \hat{F}(t)$$

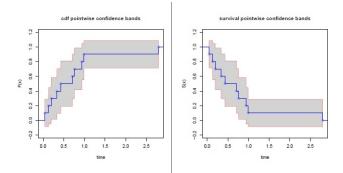
• To estimate F(t) at each time t:

data t₁,..., t_n
 parameter of interest θ = F(t) = Pr(T ≤ t)

$$\hat{\theta} = \frac{\#obs. \le t}{n} = \frac{\sum_{i=1}^{n} \mathcal{I}_{(0,t_i)}(t)}{n}$$

Non-Parametric Estimation (no censoring)

Confidence intervals


Confidence interval for F(t):

$$\hat{ heta} \mp z_{lpha/2} \sqrt{rac{\hat{ heta}(1-\hat{ heta})}{n}}$$

Confidence interval for S(t):

$$1-\hat{ heta}\mp z_{lpha/2}\sqrt{rac{\hat{ heta}(1-\hat{ heta})}{n}}$$

Non-Parametric Estimation (no censoring)

Non-Parametric Estimation (including censoring)

Estimation

- To estimate the proportions θ_i
 - ▶ n_i = # of individuals at risk at the beginning of the *i*-th interval
 - $d_i = \#$ of individuals experiencing the event

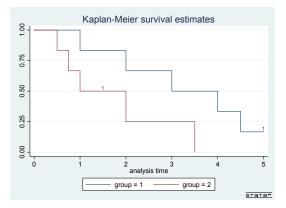
$$\hat{\theta}_i = \frac{n_i - d_i}{n_i}$$

Kaplan Meier estimator

$$\hat{S}(t) = \prod_{i:t_i \leq t} \frac{n_i - d_i}{n_i}$$

• It reduces to $1 - \hat{F}(t)$ with no censored observations

<ロト<部ト<差ト<差ト 9/15


└─Non-Parametric Estimation (including censoring)

Example

Subject	Group	Survival	# surviving	Event	# surviving	Cumulative	
		time	at risk		after event	survival	
		in the interval				rate	
1	1	1	6	1	5	$1 \times \frac{5}{6}$	
2	1	2	5	1	4	$1 \times \frac{5}{6} \times \frac{4}{5}$	
3	1	3	4	1	3	$1 \times \frac{5}{6} \times \frac{4}{5} \times \frac{3}{4}$	
4	1	4	3	1	2	$1 \times \frac{5}{6} \times \frac{4}{5} \times \frac{3}{4} \times \frac{2}{3}$	
5	1	4.5	2	1	1	$1 \times \frac{5}{6} \times \frac{4}{5} \times \frac{3}{4} \times \frac{2}{3} \times \frac{1}{2}$	
6	1	5		0		0 5 4 5 2	
7	2	0.5	6	1	5	$1 \times \frac{5}{6}$	
8	2	0.75	5	1	4	$1 \times \frac{5}{6} \times \frac{4}{5}$	
9	2	1	4	1	3	$1 \times \frac{5}{6} \times \frac{4}{5} \times \frac{3}{4}$	
10	2	1.5		0		0 5 4	
11	2	2	2	1	1	$1 \times \frac{5}{6} \times \frac{4}{5} \times \frac{3}{4} \times \frac{1}{2}$	
12	2	3.5	1	1	0	$1 \times \frac{5}{6} \times \frac{4}{5} \times \frac{3}{4} \times \frac{1}{2}$	

-Non-Parametric Estimation (including censoring)

Example

<ロ> < 母> < 量> < 量> < 量> = 11/15

-Non-Parametric Estimation (including censoring)

Understanding KM analysis

- The lengths of the horizontal lines represent the survival duration for that interval.
- The interval is terminated by the occurrence of the event of interest.
- The vertical distances between horizontal lines illustrate the change in the cumulative probability.
- The KM curve is a step-wise estimator, not a smooth function.

<ロト<日、<日、<日、<日、<日、<日、<日、<日、<日、<日、<12/15

- What about estimate of point survival?
- Which is the effect of censoring?

-Non-Parametric Estimation (including censoring)

Comparison of KM estimates

- It is simple to visualize the difference between two survival curves.
- The difference must be quantified in order to assess statistical significance.
- Methods
 - log-rank test \Rightarrow Most sensitive to consistent difference
 - Wilcoxon test \Rightarrow Most sensitive to early differences
 - hazard ratio \Rightarrow gives relative event rate in the groups

-Non-Parametric Estimation (including censoring)

Time	Group 1 Event	Group 2 Event	Group 1 At Risk	Group 2 At Risk	Group 1 Expected	Group 2 Expected
0.5	0	1	6	6	0.50	0.50
0.75	0	1	6	5	0.55	0.45
1	1	1	6	4	1.20	0.80
2	1	1	5	2	1.43	0.57
3	1	0	4	1	0.80	0.20
3.5	0	1	3	1	0.75	0.25
4	1	0	3	0	1.00	0.00
4.5	1	0	2	0	1.00	0.00

Log-Rank test: Example

The logrank test statistic is constructed by computing the observed and expected number of events in one of the groups at each observed event time and then adding these to obtain an overall summary across all time points where there is an event.

$$\chi^2 = 3.07$$
; *p* - *value* = 0.0798

<ロト<問ト<臣ト<臣ト 14/15

Non-Parametric Estimation (including censoring)

What to avoid

- \blacktriangleright Compare mean survival \Rightarrow Censoring makes this meaningless
- ► Overinterpret the tail of a survival curve ⇒ There are generally few subjects in tails
- ► Compare proportions surviving at a fixed time ⇒ Fine for description, not for hypothesis testing

Cox Proportional Hazards Regression for Survival Data

Cox Proportional Hazards Regression for Survival Data

Dankmar Böhning

Southampton Statistical Sciences Research Institute University of Southampton

 $S^{3}RI$, 2 -4 March 2015

< <>>

Cox Proportional Hazards Regression for Survival Data $_$ Outline

Some simple distributions

The Cox PH model

Model diagnostics

□ > < @ > < \(\bar{B}\) > < \(\bar{B}\) > \(\bar{B}\) > \(\bar{B}\) > \(\bar{B}\) > \(\bar{B}\) > \(\bar{B}\) = \(\bar{D}\) \(\bar{D}\) \(\bar{D}\) = \(\bar{D}\) \(\bar{D}\) = \(\bar{D}\) \(\bar{D}\) = \(\bar\) = \(\bar\) = \(\bar{D}\) = \(\bar{D}\) = \(\bar{D}\) = \

Cox Proportional Hazards Regression for Survival Data

Survival distributions

- Survival analysis focuses on the distribution of survival times.
- Although there are well known methods for estimating unconditional survival distributions, most interesting survival modeling examines the relationship between survival and one or more predictors.
- In principle, every distribution on R⁺ can serve to characterize survival data.

<ロト < 団 > < 臣 > < 臣 > 三 2000 3/11

- Constant hazard
- Gompertz distribution
- Weibull distribution

Survival distributions

Modeling of survival data usually employs the hazard function

$$h(t) = \lim_{\Delta t \to 0} \frac{\Pr(t < T \le t + \Delta t \mid T > t)}{\Delta t}$$

• Constant hazard: $h(t) = \lambda \Rightarrow S(t) = e^{-\lambda t}$

• Gompertz: $h(t) = ae^{bt}, a > 0, b > 0 \Rightarrow S(t) = e^{\frac{a}{b}[1-e^{bt}]}$

<ロト<問ト<言ト<言ト 4/11

• Weibull: $h(t) = \lambda a t^{a-1} \Rightarrow S(t) = e^{-\lambda t^a}$

Regression-like model

A parametric model based on the exponential distribution may be written as

$$\log h_i(t) = \beta_0 + \beta_1 x_{i1} + \dots + \beta_p x_{ip}$$

log-baseline hazard

The constant β_0 represents a kind of log-baseline hazard

The Cox model

The Cox model leaves the baseline hazard function $\beta_0(t) = \log h_0(t)$ unspecified

$$\log h_i(t) = \beta_0(t) + \beta_1 x_{i1} + \dots + \beta_p x_{ip}$$

The model is semiparametric, because while the baseline hazard can take any form, the covariates enter the model linearly.

- The baseline hazard does not depend on covariates, but only on time
- The covariates are time-constant
- Proportional hazard assumption follows

The hazard ratio

For two observations i and j, the hazard ratio

$$\frac{h_i(t)}{h_j(t)} = \frac{h_0(t) \exp(\beta_1 x_{i1} + \dots + \beta_p x_{ip})}{h_0(t) \exp(\beta_1 x_{j1} + \dots + \beta_p x_{jp})}$$
$$= \frac{\exp(\beta_1 x_{i1} + \dots + \beta_p x_{ip})}{\exp(\beta_1 x_{j1} + \dots + \beta_p x_{jp})}$$
$$= \exp\left(\sum_{l=1}^p \beta_l(x_{il} - x_{jl})\right)$$

<ロ> < @ > < E > < E > E 2960 7/11

is independent of time *t*. Consequently, the Cox model is a proportional hazards model.

- The Cox PH model

The hazard ratio: an example

Only one covariate: Treatment

- $x_i = 1 \Rightarrow \mathsf{Placebo}$
- $x_j = 0 \Rightarrow \text{Treatment}$
- ▶ Hazard ratio is then exp(β_1)
- We expect that hazard is larger in the placebo group, i.e. the hazard ratio is expected grater than 1.

<ロト < 団 > < 臣 > < 臣 > 三 8/11

Time-constant covariates

- Not changing over time (e.g. gender)
- Values are set at time t = 0
- Variables unlikely to change are often considered time-constant
- Other variables are sometimes treated as time independent
- Time-dependent covariates are allowed, but PH assumptions is not satisfied (an extended Cox model is needed)

- The Cox PH model

Robustness

- Because of the model form, the estimated hazards are always non-negative
- We can estimate fixed effects and compute the hazard ratio even though the baseline hazard is left unspecified

<ロト < 団 > < 目 > < 目 > 目 2000 10/11

Checking proportional hazards

 Test and graphical diagnostic for PH may be based on scaled Schoenfeld residuals

- Influential observations
- Nonlinearity

Survival Analysis in STATA

Dankmar Böhning

Southampton Statistical Sciences Research Institute University of Southampton

 $S^{3}RI$, 2 - 4 March 2015

<ロ> <@> < E> < E> E 296

Outline

Introduction

Coding

Kaplan-Meier

PH Cox model

Survival Analysis - Stata

Aim

Illustrate how to use Stata to

- prepare survival data for analysis
- estimate hazard and survival functions

Data manipulation

A *manipulation* of the data is needed to facilitate summary and analysis.

help st

The st commands are	
stset	Declare data to be survival-time data
stdescribe	Describe survival-time data
stsum	Summarize survival-time data
stvary	Report whether variables vary over time
stfill	Fill in by carrying forward values of covariates
stgen	Generate variables reflecting entire histories
stsplit	Split time-span records
stjoin	Join time-span records
stbase	Form baseline dataset
sts	Generate, graph, list, and test the survivor and cumulative hazard functions
stir	Report incidence-rate comparison
stci	Confidence intervals for means and percentiles of survival time
strate	Tabulate failure rate
stptime	Calculate person-time
stmh	Calculate rate ratios with the Mantel-Haenszel method
stmc	Calculate rate ratios with the Mantel-Cox method
stcox	Fit Cox proportional hazards model
estat concordance	Calculate Harrell's C
estat phtest	Test Cox proportional-hazards assumption
stphplot	Graphically assess the Cox proportional-hazards assumption
stcoxkm	Graphically assess the Cox proportional-hazards assumption
streg	Fit parametric survival models
stcurve	Plot survivor, hazard, or cumulative hazard function
stpower	Sample-size, power, and effect-size determination for survival studies
stpower cox	Sample size, power, and effect size for the Cox proportional hazards model
stpower exponential	Sample size and power for the exponential test
stpower logrank	Sample size, power, and effect size for the log-rank test
sttorc	Convert survival-time data to case-control data
sttoct	Convert survival-time data to count-time data
st *	Survival analysis subroutines for programmers

Assumptions

- Continuous time survival data
- Single failure data, i.e. one record per unit
- No complications such as truncation and/or missing values

<ロト < 団 > < 臣 > < 臣 > 王 2000 5/34

Data do not need to be weighted

Data structure

Data have a very simple structure

- One row per unit (e.g. subject)
- The survival time and the censoring status must be included as variables (1= failure, 0 = otherwise)

Covariates (explanatory variables) could be included

Data description

de				
ontains data obs: vars: size:	228 10	Users∖user' (99.9% of me		idattica\Southampton\SC_Epidem\lung.dta 28 Jan 2013 11:16
/ariable name		display format	value label	variable label
inst time ge sex ohecog ohkarno oatkarno nealcal vtloss	byte int byte byte byte byte int byte	%8.0g %8.0g %8.0g %8.0g %8.0g %8.0g %8.0g %8.0g %8.0g %8.0g %8.0g		Institution code Survival time in days censoring status 0-censored, 1=dead Age in years Male=1 Female=2 ECGG performance score (0=good 5=dead) Karnofsky performance score a fade0-0=good=100) rated by physicia Karnofsky performance score as rated by patient Calories consumed at meals weight loss in last sk months

stset

stset declares the data in memory to be st data

- Main
 - Time variable \Rightarrow survival time
 - Failure variable \Rightarrow censoring status
- Options
 - Origin time expression sets when a subject becomes at risk
 - Enter time expressions specifies when a subject first comes under observation
 - Exit time expression specifies the latest time under which the subject is both under observation and at risk.

<ロト < 回 ト < 直 ト < 直 ト 三 2000 8/34

stset in practice

stset - De	clare data to	be survival-time dat	a	_ _ ×
Main if	Weights	Options Advanced		
Time variabl	e:	Multiple-rec	cord ID variable:	
Failure ev	ent	Failure values		
status	Tidule.	-	».	
Clear all	how st setting i settings	nformation		
00			ОК	Cancel Submit

□ ▶ < ॑ ▷ < ≧ ▶ < ≧ ▶ < ≧ ▶ < ≧ ▶ < ≧ ♥ ○
 9/34

stset in practice

ain if Weights	5 Options Advanced	
Specify when subject I	becomes at risk	
Origin variable:	Origin values:	Origin time expression:
	*	
	t time observed minus 1 (rare)	Rescale time value:
Carat alter a bir at		
Specify when subject f Enter variable:	Enter values:	Enter time expression:
[¥	
Specify when subject (exits study (default is exit at failure)	
Exit variable:	Exit values:	Exit time expression:
[[•	
Exit variable:	Exit values:	Exit time expression:

<ロト < 昂ト < 言ト < 言ト 言 10/34

Coding

stset: example

. stset ti	me, failure(status)
obs. time	re event: status != 0 & status < . interval: (O, time] r before: failure
	total obs. exclusions
165	obs. remaining, representing failures in single record/single failure data total analysis time at risk, at risk from t = 0 earliest observed entry t = 0 last observed exit t = 1022

- Coding

Using stset

New variables in the data, why? Which is your meaning? Should you use them?

Variables	
Name	Label
inst	Institution code
time	Survival time in days
status	censoring status 0=censored, 1=dead
age	Age in years
sex	Male=1 Female=2
phecog	ECOG performance score (0=good 5=dead)
phkarno	Karnofsky performance score (bad=0-good=100) ı
patkarno	Karnofsky performance score as rated by patient
mealcal	Calories consumed at meals
wtloss	Weight loss in last six months
_st	
_d	
_t	
_t0	
· ·	• III

<ロト < 回 > < 目 > < 目 > 目 2/34

- Coding

Using stset

- _st is a binary variable indicating cases included (1) or excluded (0) from the analysis
- _d is a censoring indicator
- _t is the survival time
- _t0 is the time at which units are observed to be at risk

<ロト < 回 > < 目 > < 目 > 目 2000 13/34 Coding

$Using \ {\tt stset}$

. de _*						
variable name	storage type	display format	valu labe		iable label	
_st _d _t _t0	byte byte int byte	%8.0g %8.0g %10.0g %10.0g				
. sum _*						
Variable	0	bs	Mean	Std. Dev.	Min	Max
st d t t0	2		1 236842 5.2325 0	0 .4481588 210.6455 0	1 0 5 0	1 1 1022 0

Summary statistics

You must stset your data before using

- stdescribe produces a summary of the st data
- stsum summarizes survival-time data

failure _d: analysis time _t:					
ategory	total	mean	– per subj min	ect — median	max
no. of subjects no. of records	228 228				1
(first) entry time (final) exit time		0 305.2325	0 5	0 255.5	0 1022
subjects with gap time on gap if gap time at risk	0 0 69593	305.2325		255.5	1022
failures	165	.7236842			1
. stsum failure _d: analysis time _t:					
time at ri	incidence isk rate	no. of subjects	25%	Survival time 50%	75
total 69	.0023709	228	170	310	59

Kaplan-Meier

- Simple single-spell type
- Right censoring
- No left censoring (truncation)

< □ > < □ > < □ > < ⊇ > < ⊇ > < ⊇ > 16/34 Survival Analysis - Stata

-Kaplan-Meier

sts

Survival times are treated as observations on a continuous variable

- sts list
- ▶ sts graph
- sts test
- sts generate

-Kaplan-Meier

sts list

Summarize survival-time data
Describe survival-time data
Report incidence-rate comparison
Tabulate Mantel-Laenzel rate ratios
Tabulate Mantel-Cor rate ratios
Person-time, incidence rates, and SMR
Tabulate failure rates and rate ratios
Create survivor, hazard, and other variables
List survivor and cumulative hazard functions
Test equality of survivor functions
Life tables for survival data
Ch for means and percentiles of survival time

sts I	ist - List the survivor or cumu	ative hazard function	×
Main	if/in Options		
Fur	nction		Survival settings
۲	List Kaplan-Meier estimate of the	survivor function	
~	List Kaplan-Meier estimate of the		
0	List Nelson-Aalen estimate of the	cumulative hazard function	
Ē	Separate on different groups of s Adjust the estimates to zero value		v
	Stratify on grouping variables		<u>×</u>
e G		OK	Cancel Submit

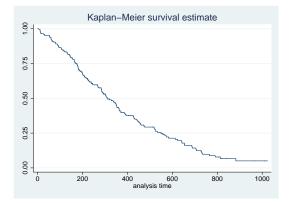
– Kaplan-Meier

sts list: example

. sts li	st						
analy	failure sis time		tatus ime				
тіте	Beg. Total	Fail	Net Lost	Survivor Function	Std. Error	[95% Con	f. Int.]
5	228	1	0	0.9956	0.0044	0.9693	0.9994
11	227	3	0	0.9825	0.0087	0.9539	0.9934
12	224	3 1 2 1		0.9781	0.0097	0.9481	0.9908
13	223		0	0.9693	0.0114	0.9367	0.9852
15				0.9649	0.0122	0.9311	0.9823
26	220			0.9605	0.0129	0.9255	0.9793
30	219	1		0.9561	0.0136	0.9200	0.9762
31	218	12112112211221		0.9518	0.0142	0.9146	0.9730
53	217	2		0.9430	0.0154	0.9038	0.9665
54	215			0.9386	0.0159	0.8985	0.9632
59	214			0.9342	0.0164	0.8932	0.9598
60	213			0.9254	0.0174	0.8828	0.9530
61	211			0.9211	0.0179	0.8776	0.9495
62	210			0.9167	0.0183	0.8725	0.9460
65	209			0.9079	0.0192	0.8622	0.9390
71	207			0.9035	0.0196	0.8572	0.9354
79	206			0.8991	0.0199	0.8521	0.9318
81	205	2	0	0.8904	0.0207	0.8420	0.9245
88	203	2	0	0.8816	0.0214	0.8321	0.9172
92	201			0.8772	0.0217	0.8271	0.9135
93	199			0.8728	0.0221	0.8221	0.9098
95	198		0	0.8640	0.0227	0.8122	0.9023
105	196	1	1	0.8596	0.0230	0.8073	0.8985
107	194			0.8507	0.0236	0.7974	0.8909
110	192			0.8463	0.0239	0.7925	0.8871
116	191			0.8418	0.0242	0.7876	0.8833
118	190			0.8374	0.0245	0.7827	0.8794
122	189			0.8330	0.0247	0.7778	0.8755
131	188			0.8285	0.0250	0.7729	0.8717
-more-							

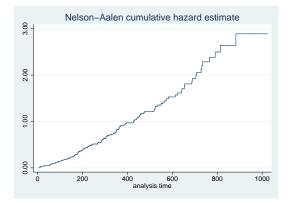
<ロト < 回 ト < 直 ト < 直 ト 三 19/34

-Kaplan-Meier

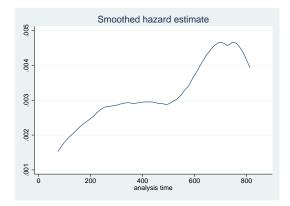

sts graph

Kaplan-Meier survivor function Kaplan-Meier failure function Nelson-Aalen cumulative hazard function Smoothed hazard estimate Survivor and cumulative hazard functions

lain	if/in	At-risk table	Options	Plot	CI plot	Add plots	Yaxis	X axis	Titles	Legend	Overall	
Fun	ction										Surviva	settings
•	Graph Ka	aplan-Meier sun	vivor funct	on								
_		aplan-Meier fail.										
_		elson-Aalen cur		zard fur	nction							
0	Graph sn	noothed hazard	estimate									
	Make se	parate calculati	ons by ara	up								
_	uping va			-								
									Ŧ			
	Show plo	ots on separate	graphs									
0	Adjust th	e estimates to z	ero values	of spec	ified varia	bles:						
									-			
	Stratify o	n grouping varia	ables									
E Sh	now point	wise confidenc	e bands									
) 🖬								OK		Cancel	Submi


□ > < @ > < ≥ > < ≥ > < ≥ > < ≥
 20/34

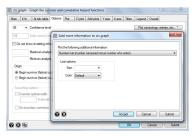
sts graph: example


<ロト < 回 ト < 臣 ト < 臣 ト 三 21/34

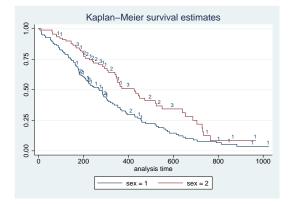
sts graph: example

<ロ > < 部 > < 言 > < 言 > 言 22/34

sts graph: example



<ロ > < 回 > < 画 > < 画 > < 画 > < 画 > < 画 > < 画 > 23/34


Kaplan-Meier

sts graph: stratification

Andth Geogh Adee Meer Anno Andtha Graph Adee Meer Anno Andtha Graph Adee Meer Anno Anno Anno Anno Anno Anno Anno Ann	tings
Orach Alexie-Nami alexie-	
© Gaph Halam-Aden cundiates haves function © Gaph made administer 22 Main sepande calculates by group Groups studies:	
Graph smoothed hazard estimate Kinde separate calculators by group Grouping variables:	
Make reparate calculations by group Grouping variables:	
Grouping variables:	
rex 💌	
Show plots on separate graphs	
Adjust the estimates to zero values of specified variables	
v	
Stratily on grouping variables	
Show pointwise confidence bands	

sts graph: stratification

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Kaplan-Meier

sts test

ain if/in Options			
/ariables:		Survival setting	s
Perform test:			
Log-rank	Cox	Wilcoxon	
Tarone-Ware	Peto-Peto-Prentic	ce .	
Fleming-Harrington (S)	(time-1)^p [(1-S(time-1)]^q):		
0÷ p	p 🗘 0		
0 y p			
Test trend of the survi	vor function across three or r	more ordered groups	
		more ordered groups	
Test type		more ordered groups	
Test type O Unstratified	vor function across three or r	more ordered groups	
Test type	vor function across three or r	more ordered groups	
Test type Onstratified	vor function across three or r	more ordered groups	-
Test type Unstratified Stratified on variables:	vor function across three or r		-

– Kaplan-Meier

sts test

. sts t	est sex			
ana	failure _d: ysis time _t:			
Log-rai	nk test for equa	lity of sur	vivor functio	<u>ms</u>
sex	Events observed	Events expected		
1 2	112 53	91.58 73.42		
Total	165	165.00		
	chi2(1) = Pr>chi2 =	10.33 0.0013		
. sts t	est sex, wilcox	on		
anal	failure _d: ysis time _t:			
Wilcox	on (Breslow) tes	t for equal	ity of surviv	vor functions
sex	Events observed	Events expected	sum of ranks	
1 2	112 53	91.58 73.42	3148 -3148	
Total	165	165.00	0	
	chi2(1) = Pr>chi2 =			

= 27/34

<.≣.⊁

 $\exists \rightarrow$

PH Cox model

stcox

ndependent variables: age sex "I Ft model without covariates	Survival settings
Options Strate ID variables: Shared fraitly ID variable: w Offset variable: w	Method to handle ted failures Breslow Fron East magnal likelihood East magnal likelihood

Cox proportional hazards model Test proportional-hazards assumption Graphically assess proportional-hazards assumption

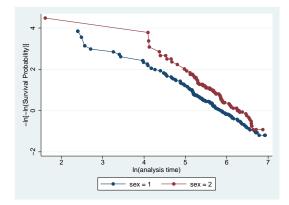
Kaplan-Meier versus predicted survival

Parametric survival models

Plot survivor, hazard, or cum. hazard after estimation

stcox: options for model checking

stcox - Fit Cox proportional hazards mode Model Time varying by/fr/in SE/Robust F	el
Generate new variables	
Partial martingale residuals:	Cumulative baseline hazard:
Baseline hazard contributions:	Baseline survivor function:
Estimated log-fraities:	
Partial efficient score residuals: (e.g., esr*)	
Schoenfeld residuals: (e.g., sch*)	
Scaled Schoenfeld residuals: (e.g., sca*)	
201	OK Cancel Submit


stcox: example

. stcox sex a	ge,sch(global	^) SCa(IOCal)					
	ure _d: stat ime _t: time						
Iteration 0: Iteration 1: Iteration 2: Iteration 3: Refining estin Iteration 0:	log likelih log likelih log likelih mates:	a = -743.0 a = -743.0 a = -743.0 a = -743.0	9465 7965 7965				
Cox regressio	n Breslow	method for t	ies				
No. of subject No. of failur	ts = es =	228 165	ies	Number	of ob		228
No. of subject No. of failur	ts = es =	228	ies				
Cox regression No. of subjec No. of failur Time at risk Log likelihoon	ts = es = = 6	228 165 9593	ies		2(2)		14.08
No. of subjec No. of failur Time at risk	ts = es = = 6	228 165 9593	ies z	LR chi	2(2) chi2		14.08
No. of subjec No. of failur Time at risk Log likelihoo	ts = es = d = -743.0	228 165 9593 7965 Std. Err.		LR chi Prob > P> z	2(2) chi2	= = Conf.	14.08 0.0009 Interval]

stphplot: model checking

📄 stph	plot - Lo	g-log plo	t of sur	vival					
Main	if	Options	Plot	Add plots	Yaxis	X axis	Titles	Legend	Overall
		Cox mode Cox model	s					Sur	vival settings
Indepo sex	andent va Adjust esti	iriable:							
Adju ag	ustment va e	ariables:							•
		-		idjustment v tment variat					
00	•					OK		Cancel	Submit

stphplot: model checking

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

estat phtest: model checking

📄 estat - Postestimation stat	istics
Main if/in	
Reports and statistics: (subcon	imand)
Harrell's C index (concordance Proportional-hazards assumpting Information criteria (ic) Summarize estimation sample Covariance matrix estimates (it	on test based on Schoenfeld residuals (phtest) E (summarize)
Options	estat phtest - Test proportional-hazards assumption
	Main Scatterplot Smoothed line Yaxis Xaxis Titles Legend Overall Time-scaling function Iminus Kaplan-Meier product-limit estimate Iminus Natural logarithm Iminus Rank of analysis time Use variable containing a monotone transformation of analysis time:
004	Plot smoothed, scaled Schoenfeld residuals versus time Covariate Bandwidth for the smooth
	Test proportional-hazards assumption separately for each covariate

estat phtest: model checking

at phtest, deta	i1			
Test of propor	tional-hazards a	ssumption		
Time: Time				
	rho	chi2	df	Prob>chi2
sex age	0.12535 -0.02090	2.52 0.07	1 1	0.1125 0.7851
global test		2.65	2	0.2659