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(*) Some materials in this lecture note are borrowed from the textbook of Ashley H. Carter.
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The Second Law of Thermodynamics

Introduction

> The first law of thermodynamics can’t explain the followings.
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Something is missing! We need a second fundamental law
for a complete description of our world!




The Second Law of Thermodynamics

The Mathematical Concept of Entropy

> Let's define a new state variable, entropy(S).

The first law of thermodynamics for a reversible process (subscript r’ represents

‘reversible’),
dU =80, - W,
where 6Q, and oW, are inexact differential.
Here, OW
oW = PdV or P’” =dV

Here, dV is exact differential, and 1/P is called an integrating factor for dW,, an
inexact differential. Then, how about 6Q,?

5Qr — JS Clausius’s definition
T o of the entropy S
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The Mathematical Concept of Entropy

> Continue on.

dU =00Q. — oW =TdS —PdV| Gibbs Equation!

> Gibbs equation is one of the most important equations in
thermodynamics.
> Here are two questions regarding the Gibbs equation:
1. Is dS an exact differential or is S (entropy) a state variable?
2. Does Gibbs equation apply for irreversible process, as well as for
reversible process?

- We will learn the answers throughout this lecture!
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Irreversible Processes (Examples)
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The Second Law of Thermodynamics

Classical Statements of Second Law

following two famous statements of the second law:
» Clausius statement
“It is impossible to construct a device
that operates in a cycle and whose sole
effect is to transfer heat from a cooler body
to hotter body.”
» Kelvin-Planck statement
“It is impossible to construct a device that
operates in a cycle and produces no other
effect than the performance of work and

the exchange of heat with a single reservoir.”

> Historically, the impossibility of certain process was first introduced in the
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The Second Law of Thermodynamics

Carnot’'s Theorem

> First Proposition
“It is impossible to construct an engine that operates between two given
reservoirs and is more efficient than a reversible engine (or Carnot
engine) operating between the same two reservoirs.”
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The Second Law of Thermodynamics

Carnot’'s Theorem

> Second Proposition
“All engines that operate on the Carnot cycle between two given

reservoirs have the same efficiency, independent of working substance.”
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The Clausius Inequality and the Second Law

> The second law of thermodynamics leads to the inequality of Clausius
for both reversible and irreversible heat engines (or refrigerators).

=

> For Carnot (reversible) engines,
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The Clausius Inequality and the Second Law

10

> Forirreversible heat engines operating between the same T reservoirs
as for the Carnot (reversible) engine,

Wit < Weey —— QH — QL irr < QH — QL rev
Then,

QL irr = QL rev
Fraly f10_0n_ O,
T Ty T

> For both reversible and irreversible heat engines,

=

where equality is for reversible engines. Similarly, the inequality of
Clausius can be demonstrated for both rev. and irrev. refrigerators.
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The Clausius Inequality and the Second Law

> Consider the reversible processes A, B, and C.
> Applying the inequality of Clausius,

1—4 525 51 d 2

f20- () (2), A
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The Clausius Inequality and the Second Law

P 2

[[(F),- 1), C

1

> Continue on.

> So, (%j is independent of the path, or a point function.

> Define this point function as entropy, or S.

dsS = (SQ)
T Icv

> Then, the change in entropy can be evaluated as,

2 5Q
ST
l r rev
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The Clausius Inequality and the Second Law

> Consider reversible processes A & B
and irreversible process C. From the
inequality of Clausius,

WQ 1)) -
N )

> Because entropy is a point function,
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The Clausius Inequality and the Second Law

> As path C was an arbitrary irreversible process, in general,

> For areversible process, the second law is

o
r rev

> For an irreversible process, the second law is

dS > (g)
r irr

If any irreversible effects occur while the amount of heat(dQ) is transferred,
the change of entropy will be greater than for the reversible process.
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The Clausius Inequality and the Second Law
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> Interesting fact around the second law for our universe:

ds > % = ( (for 1solated system)

“The entropy of an isolated system increases in any irreversible
process and is unaltered in any reversible process. This is the
principle of increasing entropy.”

> This indicates that there is a direction for the sequence of natural
events.

The law of increasing entropy = The arrow of time
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Combined First and Second Laws

> Here are two questions regarding the Gibbs equation again:

dU =50, — W, =TdS — PdV

1. Is dS an exact differential or is S (entropy) a state variable?

2. Gibbs equation applies for irreversible process, as well as for

reversible process?
> Let’s consider the second question.
The first law in most general from,
dU =50 — W
From the second law for an irreversible process,

TdS =50, > 60 or 80. =50 +¢(s>0)

Then, substitute this into the first law for reversible process,

dU =80 —W. =30+¢&—W,
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Combined First and Second Laws
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> Continue on.

Comparing these two equations,
dU =0Q—-oW and dU =00+ &— W,
—> W =0, —¢

Here, £ is called lost work, associated with irreversibility.

Finally,
dU = 80— W = (80, — &)~ (W, — )= 80, — W, =TdS — PdV

This indicates that the Gibbs equation is applied to ANY process.

> Two interesting examples:
« Free expansion: 00,0W =0 but PdV ,TdS = finite

» Adiabatic stirring: 60 = 0 but 7dS = finite, PdV =0but ol #0
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Determining Entropy in Real System (extra topic)

> For simple substances, Q.M. & S.M. can be used to directly enumerate
microstates(statistical thermodynamics). — S =kInQ

> For complex substances, the Gibbs equation is used.

Reservoir

50 (ZF) Gibbs Equation (EOS for Entropy)
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2"d Law of Thermodynamics (extra topic)

[S ] : dS System — 5S in 5S out T 5S produced C‘E destroyed
\ J \ J \ )\ J
Y Y Y Y
accumulation transfers >0 (27 Law) =0 (2 Law)

Transfers of Entropy:

Work — 0 (reversible work modes only)

Heat — 57? (Irreversible work modes as heat)
Matter — sON

o
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2"d Law of Thermodynamics (extra topic)

[S]:dS. =85 -85, +65 55

System produced j_ \ destroyed |
Y Y Y Y
accumulation transfers >0 (27 Law) =0 (2 Law)

(Closed System)

Differential:

dS=@+dS’

T produced

Whole process 1 - 2:
2 5Q 2
State 1 State 2 S2 - S1 — L 7 "‘L o\ produced

(Compression stroke)
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2"d Law of Thermodynamics (extra topic)

[S]:dS. =85 -85, +65 55

System produced j_ \ destroyed |
Y Y Y Y
accumulation transfers >0 (27 Law) =0 (2 Law)

(Open System)

Differential:

dS=@+SéN+5S

T produced

Whole process 1 - 2:

2 2 2
State 1 State 2 SZ_S1:£%+LS&V+L5S

(Intake stroke)

produced
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