

Chemical Lifetimes of atmospheric compounds
(average for total atmosphere)

Compound	Chemical lifetime
Tropospheric O ₃	3-18 days **
Carbon monoxide (CO)	57 days*
Methane (CH ₄)	8.4 years **
SF ₆	3200 years **
Toluene (traffic, anthropog.)	2 days*
monoterpenes (α-pinene)	1.6 hours*
CFCs (sprays, cooling, anthropog.)	45-1700 years **

* [OH] = 1.0×10^6 molecules cm⁻³ at room temperature assumed ** IPCC, 2001

		Rate, Tg CH ₄ yr $^{-1}$; best estimate and range of uncertainty
	Sources natural	160 (75-290)
	Wetlands	100(75-250) 115(55-150)
- Pro-	Termites	20 (10-50)
	Other	25 (10-90)
	Sources, anthropogenic	375 (210-550)
	Natural gas	40 (25–50)
	Livestock (ruminants)	85 (65-100)
	Rice paddies	60 (20-100)
	Other	190 (100–300)
	Sinks	515 (430-600)
-6-	Tropospheric oxidation by OH	445 (360-530)
	Stratosphere	40 (30–50)
	Soils	30 (15-45)
	Accumulation in atmosphere	37 (35-40)

	Source, Tg N yr ⁻¹
Fossil fuel combustion	21
Biomass burning	12
Soils	6
Lightning	3
NH_3 oxidation	3
Aircraft	0.5
Transport from stratosphere	0.1

Sources (Tg N yr⁻¹)	17.7 (6.7 – 36.6)	
Oceans	3 (1 - 5)	Natural:
Atmosphere (NH ₃ oxidation)	0.6 (0.3 - 1.2)	9.6 (4.6 – 15.9)
Tropical soils (forest, savannah)	4 (2.7 – 5.7)	
Temperate soils (forest, grassland)	2 (0.6 – 4)	
Agricultural soils	4.2 (0.6 - 14.8)	Anthropogenic:
Livestock (cattle, feedlots)	2.1 (0.6 – 3.1)	
Biomass burning	0.5 (0.2 - 1.0)	8.1 (2.1 – 20.6)
Industrial	1.3 (0.7 – 1.8)	-
Sink (Tg N yr ⁻¹) (stratosphere)	12.3 (9 – 16)	
Photolysis and oxidation		
Accumulation/ trend (Tq N vr ⁻¹)	3.9 (3.1 – 4.7)	

Global budget of CO			
· · · · · · · · · · · · · · · · · · ·	Range of estimates (Tg CO yr $^{-1}$)		
Sources	1800-2700		
Fossil fuel combustion/industry	300550		
Biomass burning	300-700		
Vegetation	60-160		
Oceans	20-200		
Oxidation of methane	400-1000		
Oxidation of other hydrocarbons	200-600		
Sinks	2100-3000		
Tropospheric oxidation by OH	1400-2600		
Stratosphere	~ 100		
Soil uptake	250-640		
	· · · · · · · · · · · · · · · · · · ·		

	Tg O ₃ yr ⁻¹	
SOURCES	3400-5700	
Chemical production	3000-4600	
HO ₂ + NO	(70 %)	
$CH_3O_2 + NO$	(20 %)	
RO ₂ + NO	(10 %)	
Transport from Stratosphere	400-1100	
SINKS	3400-5700	
Chemical loss	3000-4200	
O(¹ D) + H ₂ O	(40 %)	
$HO_2 + O_3$	(40 %)	
OH + O ₃	(10 %)	
others	(10 %)	
Dry deposition	500-1500	

• • <mark>•</mark>	Nunexposed	ro	sols: s	o <mark>uic</mark>	es 📡
ActV Spitkings Det WD 200 kv 20 4000s SE 81	Aerosoltyp		Yearly production	n Tg/year	2010 200
Gaspar, 2004	Mineral dust		2980		Mineral dust
	Sea salt		10100		Vlasenko, PSI, CH
	Vulcano dust		30		
	Primary biological particles		50		
200 nm	Soot		200		
a		Prin larg n Soot	ary particles are ger and observed ormally above 1 μm		ollen ww.wikipedia.org

Secondary aerosol sources: Oxidation products by gas phase chemistry

Precursors	Yearly production in Tg/year
Dimethylsulfid (DMS) from algae	12.4
SO ₂ from volcanos	20
Biogenic VOCs	11-270 (could be higher up to 1000)
SO ₂ (antropogenic) from fossil fuels	ca. 50
NO _x (antropogenic) from fossil fuels	22
Antropogenic VOCs	ca. 2

Energy production - fuel: composition Diesel: about 75% paraffines, kerosine about 25% aromatics + Octane Regular gasoline: 43% aromatics (e.g. benzene) 29% alkanes (e.g. octane) 18% alkenes (e.g. propene) Mass aromatics (e.g. benzene) 26% alkanes (e.g. octane) 21% alkenes (e.g. propene) The more reactive the substance, the more energetic it is in the combustion

Isoprene ar	hemic terpenes rea	cal r	eacti ozone and N	ONS 10 ₃		
	Compound Isoprene	Chem. lifetime 2.5 h	Class Isoprene			
	<i>α-pinene Limonene</i> β-caryophyllene	2.3 h 50 min 1-2 min	Monoterpene Monoterpene Sesquiterpene			
<u>Consequenc</u>	Consequences:					
Isoprene and monoterpenes are transported at least partially to the free troposphere, in convective cells at the equator up to the tropopause.						
Sesquiterper	Sesquiterpenes are not. They even stay in the vicinity of the emission site.					
All contribute	All contribute to secondary organic aerosol formation.					

