
Chapter 7

Lecture 7: graphical models and belief
propagation

Weds, Feb. 23, 2010 (revised to fix bug found during class). MIT EECS course 6.869, Bill Freeman and
Antonio Torralba

7.1 Graphical models

In the last lecture, we went over Bayesian inference for the problem of color perception. Such probabilis-
tic formulations are useful for many problems in vision, but often the relationships between the variables
and observations are much more complicated and we require new tools for describing these relationships
and for inferring hidden variables from observations.

Today we study graphical models and belief propagation. Probabilistic graphical models describe
joint probability distributions in a way that allows us to reason about them and calculate with them even
when we’re modeling very complicated situations. These things are pervasive in vision, because we
often have such complicated situations and we need a framework to reason about the entire system while
taking advantage of the modularity of its components. Belief propagation lets us efficiently estimate the
states of unobserved variables in the system, for example, given these image observations, what is my
estimate of the pose of the person?

Today’s topic is the subject of an entire course, 6.438, although, of course, 6.438 covers things in
much more depth than we’ll treat things in today’s lecture. In this lecture, we’re just talking about
the framework and the algorithm, but we’ll use this machinery in various other parts of the course, for
tracking, segmentation, and many image interpretation tasks. The goal of this lecture is to expose you
to these graphical models, and to teach you the belief propagation algorithm. There will be a homework
problem about belief propagation on the problem set after the color one.

A probabilistic graphical model is a graph that describes a class of probability distributions that
shares a common structure. The graph has nodes, drawn as circles, indicating the variables of the joint
probability. And it has edges, drawn as lines connecting some nodes to others. (For now, we’ll restrict
our attention to a type of graphical model called undirected, so the edges are line segments, not arrows).
The edges indicate the conditional independence structure of the nodes of the graph. If two nodes have a
line between them, then they are not conditionally independent. If there is not a line between two nodes,
then those variables are independent, conditioning on intervening nodes in any path between them in the
graph. Let’s go through this with some examples. See the text in the caption of each example figure.

1

Figure 7.1: Here’s the world’s simplest probabilistic graphical model. This “graph” tells us something
about the structure of a class of probability functions on x1. In this case, all it tells us is that they can
have any functional form, P (x1) = φ1(x1).

Figure 7.2: Another very simple graphical model. Here, the lack of a line connecting x1 with x2 indicates
a lack of statistical dependence between these two variables. Conditioned on knowing the values of all
the neighbors of x1 and x2–in this case there are none–x1 and x2 are statistically independent. So the
class of joint probabilities that respects this graphical model looks like this: P (x1, x2) = φ1(x1)φ2(x2).

Figure 7.3: Let’s add a line between these two variables. By that, we mean that there may be a direct
statistical dependency between them. That’s all we know about the class of probability distributions
depicted here, so all we can write about the joint probability is P (x1, x2) = φ12(x1, x2)

Figure 7.4: Finally, a non-trivial graph with a little structure. This graph structure means that if we
condition on the variable x2, then x1 and x3 are independent. So the joint probability of these three
variables is restricted to have a special structure. A celebrated theorem, the Hammersly-Clifford theorem,
tells us what that structure is: a product of functions of all the “cliques” of the graph. A clique is
a group of variables where each is connected to every other variable in the clique. So by drawing
this graph, we are refering to a family of joint probabilities which have the form, P (x1, x2, x3) =
φ12(x1, x2)φ23(x2, x3). Later in the lecture, we’ll exploit that structure of the joint probability to let us
perform inference efficiently.

Figure 7.5: Here’s a conundrum: what do we mean by this graph? There are no conditional indepen-
dencies show in this graph, so again we’re forced to describe this with the most general joint probability
function, P (x1, x2, x3) = φ123(x1, x2, x3). Suppose you wanted to specify that the structure of the joint
probability was P (x1, x2, x3) = φ12(x1, x2)φ23(x2, x3)φ13(x1, x3), how would you do it? The kind
of graphs we’re working with now, which let us describe conditional independence structure, are called
undirected graphical models. There are other types of graphical models that make it easy to display such
a factorization.

Figure 7.6: A factor graph (most often used in coding theory) makes displaying such a factorization
of the posterior probability easy. Factor graphcs explicitly draw out the factors in a factorization of the
joint probability. The square nodes are function nodes; they connect to variables that are the arguments
of those functions. So the factor graph shown here depicts the family of joint probabilities over x1, x2,
and x3 having the form P (x1, x2, x3) = f1(x1, x3)f2(x1, x2)f3(x2, x3).

Figure 7.7: While we’re describing other graphical model types, there is a 3rd type of graphical model
that’s commonly used. Directed graphical models describe factorizations of the joint probability into
products of conditional probability distributions. Each node in a directed graph contributes a well-
specified factor in the joint probability: the probability of its variable, conditioned all the variables
originating arrows pointing into it. So for this graph, P (x1, x2, x3) = P (x2)P (x1|x2)P (x3|x2). Again,
that’s a more restrictive joint probability for the 3 variables than the most general class of distributions
possible.

Figure 7.8: Typically in a graphical model, we’ll have both observed and unobserved variables. Here’s
a simple “Markov chain” structure that has 3 observed variables, the shaded y variables above, and
3 unobserved variables, the x variables below. It’s a chain because the variables form a linear se-
quence. It’s Markov because the hidden variables have the Markov property: conditioned on x2,
variable x3 is independent of node x1. The joint probability of all the variables shown here is
P (x1, x2, x3, y1, y2, y3) = φ12(x1, x2)φ23(x2, x3)ψ1(y1, x1)ψ2(y2, x2)ψ3(y3, x3). We can also write
this as P (x1, x2, x3|y1, y2, y3) = 1

P (~y)φ12(x1, x2)φ23(x2, x3)ψ1(y1, x1)ψ2(y2, x2)ψ3(y3, x3).

Figure 7.9: For vision applications, we sometimes have 1-d structures, such as the Markov chain
shown above. But a very common graphical model structure is a Markov random field, such as
is shown here. Then the joint probability over all the variables factorizes into a form like this,
P (~x|~y) = 1

P (~y)

∏
(i,j) φij(xi, xj)

∏
i ψi(xi, yi), where the first product is over spatial neighbors i and

j.

Figure 7.10: Node numbering for this simple belief propagation example.

7.2 Inference in graphical models

Typically, we make many observations of the variables of some system, and we want to find the the state
of some hidden variable, given those observations. As we discussed regarding point estimates, we may
want the value of the hidden variable that maximizes the posterior distribution (MAP estimate), or the
mean value (MMSE estimate), or some other point estimate. For the purpose of this derivation, let’s
assume we want to find posterior mean value of our hidden variables, and therefore we’ll compute the
marginal probability at each node (from which it is simple to derive the mean). In other words, given
P (~x|~y), compute P (xi|~y), where i is the hidden node where you want to find the marginal, then the
mean.

7.2.1 Simple example

Let’s work through this for a simple example, which will give us an intuition for the general cases.
Consider the three-node Markov chain of Fig. 7.4. Let’s marginalize the joint probability to find the
marginal probability at node 1, P (x1|~y). We have

P (x1|~y) =
∑
x2

∑
x3

P (x1, x2, x3|~y) (7.1)

Here’s the important point: If we knew nothing about the structure of the joint probabilityP (x1, x2, x3|~y),
that would require |x|3 computations in the double-sum over all x2 states and all x3 states. (We’re denot-
ing the number of states of any of the x variables as |x|). In the more general case, for a Markov chain
of N nodes, we would need |x|N summations to compute the desired marginal at any node of the chain.
Such a computation very quickly becomes intractable.

But watch what happens when we exploit the known structure of the joint probability of the variables
in the chain. Substituting the known structure of the joint probability into the marginalization equation,
Eq. (7.2), gives

P (x1|~y) =
1

P (~y)

∑
x2

∑
x3

φ12(x1, x2)φ23(x2, x3)ψ1(y1, x1)ψ2(y2, x2)ψ3(y3, x3) (7.2)

This next step shows the main idea of belief propagation. Because of the modular structure of the joint
probability, not every variable is coupled to every other one and we can pass the summations through
variables it doesn’t sum over. This gives the same marginalization result, but computed much more
efficiently (it’s a small difference for this short chain, but will make a huge difference for longer ones).
To make subsequent notation simpler, let’s number the nodes as follows: x1, x2 and x3 are nodes 1, 2, 3,

respectively. y1, y2 and y3 are nodes 4, 5, and 6. We can write

P (x1|~y) =
1

P (~y)

∑
x2

∑
x3

φ12(x1, x2)φ23(x2, x3)ψ1(y1, x1)ψ2(y2, x2)ψ3(y3, x3) (7.3)

=
1

P (~y)
ψ1(y1, x1)

∑
x2

φ12(x1, x2)ψ2(y2, x2)
∑
x3

φ23(x2, x3)ψ3(y3, x3) (7.4)

=
1

P (~y)
ψ1(y1, x1)

∑
x2

φ12(x1, x2)ψ2(y2, x2)
∑
x3

φ23(x2, x3)m63(x3) (7.5)

=
1

P (~y)
ψ1(y1, x1)

∑
x2

φ12(x1, x2)ψ2(y2, x2)m32(x2) (7.6)

=
1

P (~y)
ψ1(y1, x1)m21(x1) (7.7)

Factorizing the double-sum as we did in Eq. (7.4) reduces the number of terms summed from order |x|3
to order |x|2, and in the case of a length N chain, from order |x|N to order |x|2, a huge computational
savings! Clearly, this type of factorization is an important thing to do.

If you wanted to find the marginal probability at a second node, you can write out the sums over vari-
ables needed for that node, pass the sums through factors in the joint probability that they don’t operate
on, and come up with an efficient series of partial sums analogous to Eq. (7.4) in the marginalization to
find P1(x1). If you go through that exercise, you’ll find that many of the partial sums we just did would
need to be recomputed (this is more relevant in a more realistic graphical model with more nodes). For
example, to find the marginal probability at node 2, we would compute

P (x2|~y) =
1

P (~y)

∑
x1

∑
x3

φ12(x1, x2)φ23(x2, x3)ψ1(y1, x1)ψ2(y2, x2)ψ3(y3, x3) (7.8)

=
1

P (~y)
ψ2(y2, x2)

∑
x1

ψ1(y1, x1)φ12(x1, x2)
∑
x3

φ23(x2, x3)ψ3(y3, x3) (7.9)

This again requires the partial sum,
∑

x3
φ23(x2, x3)ψ3(y3, x3) that we saw in Eq. (7.4) for P (x1|~y). It

would be nice to have an automatic procedure for identifying those computations that will be needed for
other marginalizations to let us cache them efficiently. Belief propagation does that for us by identifying
those reusable partial sums as “messages”.

Definition In belief propagation for finding the marginal probability at every node, a message is a
re-usable partial sum for the marginalization calculations.

The sums that can be re-used involve marginalization over the states of one node, leaving unsummed
the states of some second node. We call that partial sum a message from the first node to the second.
The subsequent lines, Eqs. (7.5) through (7.7), is just a re-naming of the partial sums to define messages
and their arguments. (This identification of partial sums as messages is just for bookkeeping, and if
you’re uncomfortable with these “messages”, you can always substitute the phrase “re-usable partial
sum”). We re-write every partial sum as a message from the node of the variable being summed over
to the node of the variable that’s left, not being summed over. For example, in Eq. (7.5), we identify
ψ3(y3, x3) = m63(x3) as a message from node 6 (y3) to node 3 (x3), a function of the states of the
variable x3. Similarly, we write

m32(x2) =
∑
x3

ψ23(x2, x3)m63(x3) (7.10)

Figure 7.11: Summary of the messages (partial sums) for this simple belief propagation example.

and
m21(x1) =

∑
x2

ψ12(x1, x2)m52(x2)m32(x2) (7.11)

Then, finishing the renaming of the partial sums as messages, we have, for the desired marginal proba-
bility

P (x1|~y) =
1

P (~y)
m41(x1)m21(x1) (7.12)

7.3 Belief propagation (BP)

We won’t derive the general case; you can find that in several good sources describing belief propagation
[]. But we hope the simple example above makes these general rules make sense and seem intuitive. It
is straightforward to verify, for any specific graphical model without loops, that these rules lead to the
equivalent partial sum calculations needed in computing the marginal probability at any node.

The first step (which may or may not be needed for your graphical model) is to convert the graphical
model into one with pairwise potentials. This can be done by augmenting the state of some nodes
to encompass several nodes, until the remaining nodes only need pairwise potential functions in their
factorization of the joint probability.

7.3.1 Message-passing rule

The arguments of messages are always the state of the node that the message is going to.
To compute the message from node j to node i:

1. Multiply together all messages coming in to node j, except for the message from node i back to
node j (we ignore that one in this calculation).

2. Multiply by the compatibility function ψij(xi, xj).

3. Marginalize over the variable xj .

These steps are summarized in this equation to compute the message from node j to node i:

mji(xi) =
∑
xj

ψij(xi, xj)
∏

k∈η(j)\i
mkj(xj) (7.13)

where η(j)\i means “the neighbors of node j except for node i”.

Figure 7.12: To pass a message from node j to node i. (To avoid index overload, we give numerical labels
to the depicted neighbor nodes k of node j.)

Figure 7.13: Depiction of belief propagation message passing rules, showing vector and matrix shapes.

Figure 7.14: To compute the marginal probability at node i, we multiply together all the incoming mes-
sages at that node: Pi(xi) =

∏
j∈η(i)mji(xi). (To avoid index overload, we give numerical labels to the

depicted neighbor nodes j of node i.)

7.3.2 Marginal probability

The marginal probability at a node is the product of all incoming messages at that node:

Pi(xi) =
∏
j∈η(i)

mji(xi) (7.14)

7.3.3 Comments

Some comments

• We’re rearranging sums in the marginalization computation to exploit structure in the joint prob-
ability distribution. If there is no structure in the joint pdf, you need to be concerned with every
state of every other node when you marginalize out any node. If there is structure, you can assume
many factors are constant in the summation over the states of a node.

• Belief propagation follows the “nosey neighbor rule” (from Brendan Frey, U. Toronto). Every
node is a house in some neighborhood. The nosey neighbor says (as he/she passes the message to
you): “given everything I’ve heard, here’s what I think is going on inside your house.” That whole
metaphor made much more sense to me after I started having teenaged children.

• The BP algorithm implies a computational structure. There are little computers attached to each
node, and they perform these products and sums locally. Of course, you can also run the algorithm
with a centralized processor, as well.

• When do we invoke the BP update rule, Eq. (7.13)? Whenever all the incoming messages to a
node are valid. If there are no incoming messages to a node, then its outgoing message is always
valid. This lets us start the algorithm.

7.3.4 Message update sequence

A node can send a message whenever all the incoming messages it needs have been computed. Two
natural message passing protocols are consistent with that: depth-first update, and parallel update. In
depth-first update, one node is arbitrarily picked as the root. Messages are then passed from the leaves
of the tree (leaves, relative to that root node) up to the root, then back down to the leaves. In parallel

(a) (b) (c)

Figure 7.15: Example of synchronous parallel update schedule for BP message passing. Whenever
any node has the required incoming messages needed to send an outgoing message, it does. (a) At the
first iteration, only the leaf nodes have the needed incoming messages to send an outgoing message
(by definition, leaf nodes have no links other than the one on which they’ll be sending their outgoing
message, so they have no incoming messages to wait for). (b) second iteration, (c) third iteration. By
the third iteration, every edge has messages computed in both directions, and we can now compute the
marginal probability at every node in the graph.

update, at each turn, every node sends every outgoing message for which it has received all the necessary
incoming messages. Figure ?? depicts the flow of messages for the parallel, synchronous update scheme.

We are efficiently re-using messages with the BP algorithm. It takes only twice the number of
computations to calculate the marginal probability at every node as it does to calculate the marginal
probability at a single node. A single message-passing sweep through all the nodes lets us calculate the
marginal at any node (using the depth-first update rules to calculate the marginal at the root node). A
second sweep from the root node back to all the leaf nodes calculates all the messages needed to find the
marginal probability at every node.

7.3.5 Numerical example

Let’s work though a numerical example. To make the arithmetic easy, let’s solve for the marginal proba-
bilities in the graphical model of two-state (0 and 1) random variables shown in Fig. 7.16. That graphical
model has 3 hidden variables, and one variable observed to be in state 0. The compatibility matrices are
given in the arrays below (for which the state indices are 0, then 1, reading from left to right and top to
bottom).

ψ12(x1, x2) =

(
1.0 0.9
0.9 1.0

)
(7.15)

ψ23(x2, x3) =

(
0.1 1.0
1.0 0.1

)
(7.16)

φ2(x2, y2) =

(
1.0 0.1
0.1 1.0

)
(7.17)

Note we haven’t taken care to normalize the joint probability, so we’ll need to normalize each
marginal probability at the end. (remember P (x1, x2, x3, y2) = φ2(x2, y2)ψ23(x2, x3)ψ12(x1, x2),
which should sum to 1 after summing over all states.)

We can tell what results to expect from looking at the problem (then we can verify that BP is doing
the right thing). Node x2 wants very much to look like y2 = 0, while x1 has a mild preference to look
like x2. So we expect the marginal probability at node x2 will be heavily biased toward x2 = 0, and that

Figure 7.16: Details of numerical example.

node x1 will have a mild preference for state 0. x3 strongly wants to be the opposite of x2, so it will be
biased toward the state x3 = 1.

Let’s see what belief propagation gives us. We’ll follow the parallel, synchronous update scheme for
calculating all the messages. The leaf nodes can send messages in along their edges without waiting for
any messages to be updated. For the message from node 1, we have

m12(x2) =
∑
x1

ψ12(x1, x2) (7.18)

=
∑
x1

(
1.0 0.9
0.9 1.0

)
(7.19)

=

(
1.9
1.9

)
(7.20)

= k

(
1
1

)
(7.21)

For numerical stability, we typically normalize messages so their entries sum to 1, or so their maximum
entry is 1, then remember to renormalize the final marginal probabilities to sum to 1. Here, we’ve
normalized the messages for simplicity, (absorbing the normalization into a constant, k) and because our
joint probability is not properly normalized, anyway.

The message from node 3 to node 2 is

m32(x2) =
∑
x3

ψ32(x2, x3) (7.22)

=
∑
x2

(
0.1 1.0
1.0 0.1

)
(7.23)

=

(
1.1
1.1

)
(7.24)

= k

(
1
1

)
(7.25)

We have a non-trivial message from observed node y2 (node 4) to the hidden variable x2:

m42(x2) =
∑
x4

φ2(x2, y2) (7.26)

=
∑
x2

δ(y2, 0)

(
1.0 0.1
0.1 1.0

)
(7.27)

=

(
1.0
0.1

)
(7.28)

where δ(y2, 0) is zero unless y2 = 0.
Now we just have two messages left to compute before we have all messages computed (and therefore

all node marginals computed from simple combinations of those messages). The message from node 2
to node 1 uses the messages from nodes 4 to 2 and 3 to 2:

m21(x1) =
∑
x2

ψ12(x1, x2)m42(x2)m32(x2) (7.29)

=
∑
x2

(
1.0 0.9
0.9 1.0

)(
1.0
0.1

)
. ∗
(

1
1

)
=

(
1.09
1.0

)
(7.30)

The final message is that from node 2 to node 3 (since y2 is observed, we don’t need to compute the
message from node 2 to node 4). That message is:

m23(x3) =
∑
x2

ψ23(x2, x3)m42(x2)m12(x2) (7.31)

=
∑
x2

(
0.1 1.0
1.0 0.1

)(
1.0
0.1

)
. ∗
(

1
1

)
=

(
0.2
1.01

)
(7.32)

Now that we’ve computed all the messages, let’s look at the marginals of the three hidden nodes. The
product of all the messages arriving at node 1 is just the one message, m21(x1), so we have (introducing
constant k to normalize the product of messages to be a probability distribution)

P1(x1) = km21(x1) =
1

2.09

(
1.09
1.0

)
(7.33)

As we knew it should, node 1 shows a slight preference for state 0.
The marginal at node 2 is proportional to the product of 3 messages. Two of those are trivial mes-

sages, but we’ll show them all for completeness:

P2(x2) = km12(x2)m42(x2)m32(x2) (7.34)

= k

(
1
1

)
. ∗
(

1.0
0.1

)
. ∗
(

1
1

)
(7.35)

=
1

1.1

(
1.0
0.1

)
(7.36)

As expected, a strong bias for being in state 0.
Finally, for the marginal probability at node 3, we have

P3(x3) = km23(x3) =
1

1.21

(
0.2
1.01

)
(7.37)

As predicted, this variable is biased toward being in state 1.
By running belief propagation within this tree, we have computed the exact marginal probabilities at

each node, reusing the intermediate sums across different marginalizations, and exploiting the structure
of the joint probability to perform the computation efficiently. If nothing were known about the joint
probability structure, the marginalization cost would grow exponentially with the number of nodes in the
network. But if the graph structure corresponding to the joint probability is known to be a chain or a tree,
then the marginalization cost only grows linearly with the number of nodes, and is quadratic in the node
state dimensions.

7.4 MAP

Instead of summing over the states of other nodes, we are sometimes interested in finding the argmax
over those states. The argmax operator passes through constant variables just as the summation sign did,
and we have an alternate version of the belief propagation algorithm with the summation (of multiplying
the vector message products by the node compatibility matrix) with argmax. This is called the “max-
product” version of belief propagation, and it computes an MAP estimate of the hidden states. (****
expand this and give an example****.)

Figure 7.17: A loopy graph

7.5 Loopy belief propagation

The BP message update rules only work to give the exact marginals when the topology of the network is
that of a tree or a chain. You can see that, even for a simple 4-node network with one loop (Fig. 7.17),
we can’t perform the same trick of passing summations over past other variables to get a computational
cost that is linear in the number of nodes. If nodes 1 through 4 have pairwise connections, with node 4
connecting back to node 1, the marginal probability at node 1 is given below, after which we have passed
through what sums we could and defined some partial sums as messages.

P1(x1) =
∑
x2

∑
x3

∑
x4

φ12(x1, x2)φ23(x2, x3)φ34(x3, x4)φ41(x4, x1) (7.38)

P1(x1) =
∑
x2

φ12(x1, x2)
∑
x3

φ23(x2, x3)
∑
x4

φ34(x3, x4)φ41(x4, x1) (7.39)

P1(x1) =
∑
x2

φ12(x1, x2)
∑
x3

φ23(x2, x3)m4→1,3(x3, x1) (7.40)

P1(x1) = m21(x1) (7.41)

Note that this computation requires partial sums that will be cubic in |x|, the cardinality of the state
dimension. To see this, consider the partial sum over the states of node x4,

∑
x4
φ34(x3, x4)φ41(x4, x1).

Each sum over the states of x4 must be repeated |x|2 times, once for each possible state configuration
of x3 and x1. In general, one can show that exact computation of marginal probabilities for graphs with
loops depends on a graph-theoretic quantity known as the treewidth of the graph. For many graphical
models of interest in vision, such as 2-d Markov Random Fields related to images, these quantities can
be intractably large.

But the message update rules are described locally, and one might imagine that it is a useful local
operation to perform, even without the global guarantees of ordinary BP. It turns out that is true. Here is
the algorithm: loopy belief propagation algorithm

• convert graph to pairwise potentials

• initialize all messages to all ones, or to random values between 0 and 1.

• run BP update rules until convergence

One can show that fixed points of the belief propagation algorithm (message configurations where
the messages don’t change with a message update) correspond to minima of a well-known approximation
from the statistical physics community known as the Bethe free energy. In practise, the solutions found
by the loopy belief propagation algorithm are often quite good.

Since we have guarantees for BP fixed points, we are free to modify the BP update rules provided
they give us the same fixed points. One such modification is that of “dampening”.

The damped message at belief propagation message update iteration k, m̄k
ji(xi), is a weighted com-

bination of the message that would be sent from the BP algorithm at iteration k, and the damped message
that was sent at iteration k − 1:

m̄k
ji(xi) = αmk

ji(xi) + (1− α)mk−1
ji (xi) (7.42)

7.5.1 Other algorithms for approximate inference in loopy graphical models

Approximate inference (marginalization) algorithms for Markov networks with loops is a thriving re-
search field. A few of the other methods that are used, in addition to Loopy Belief Propagation:

• graph cuts

• iterated conditional modes

• Gibbs sampling

Figure 7.18: Image data for hand contour.

Figure 7.19: Function to be optimized by belief propagation.

7.6 Vision applications of 1-d inference

The figures from this section are from a nice NIPS paper by Yair Weiss,

Interpreting images by propagating Bayesian beliefs, by Yair Weiss
in: M.C. Mozer, M.I. Jordan and T. Petsche, editors,
Advances in Neural Information Processing Systems 9 908-915 (1997).
http://www.cs.huji.ac.il/˜yweiss/nips96.pdf

They show how to use belief propagation to integrate the local evidence for figure/ground over a 1-d
Markov chain. The local evidence is very weak, but the integrated figure/ground signal is quite robust.

xs

Figure 7.20: BP results for figure/ground computation (and comparison with Hopfield network in (c).)

