Lecture 7 Infrared spectroscopy

February 12, 2019

First Midterm Exam

- When: Wednesday, 2/20
- When: 7-9 PM (please do not be late)
- Where: Painter 3.02!!!
- What: Covers material through Thursday's lecture
- Remember: Homework problems!!
- Practice: Old exams are posted on the web site
- Please...bring pencils, an eraser and a calculator only and no phones**Do a good job!!!**

Early Exam Announcement

- Early Exam on 2/20 @ 5- 7PM in FNT 1.104
- Prior approval is required to take the exam early
- Note that the doors to FNT lock automatically at 5PM You MUST be on time and need to stay for the duration of the exam. You may not exit the exam room before 7 PM
- No Office Hours will be held on the day after the mid-term exams. (@/21, 3/28, 4/25

Chemistry 328

Mr Hooke says:

• The position (frequency) of the absorption of a stretching vibration depends on

- the strength of the vibrating bond (*direct*) and
- the masses of the atoms (*inverse*)
- The stronger the bond and the lighter the atoms connected by that bond, the higher the frequency (wavenumber) of the vibration
- The intensity of absorption depends primarily on the polarity of the vibrating bond

The energy of electromagnetic radiation

$$c = \lambda \upsilon \qquad \overline{\upsilon} = \frac{1}{\lambda}$$

- (nu-bar) represents wavenumber, the number of wavelengths in 1 cm
 - This is a unit of frequency!
 - units are 1/cm or cm⁻¹ (Kaysers)

$$E = h\nu = h\frac{c}{\lambda} = hc\overline{\upsilon}$$

10 microns (micrometers) = 1000 cm^{-1}

Infrared Absorption Frequencies

Stretching vibrations (multiple bonds)Structral unitFrequency, cm⁻¹

1620-1680

2100-2200

 $-C \equiv N$

2240-2280

IR Group Correlation Tables

IR Group Correlation Tables

 Characteristic IR absorptions for some of the functional groups we deal with most often

Bond	Frequency (cm ⁻¹)	Intensity
0-Н	3200-3650	strong and broad
N-H	3100-3500	medium
C-H	2850-3300	medium to strong
C=O	1630-1810	strong
C=C	1600-1680	weak
C-O	1050-1250	strong

Hydrocarbon	Vibration	Frequency (cm -1)	Intensity
<u>Alkane</u>			
C-H	stretching	2850 - 3000	strong
CH ₂	bending	1450	medium
CH ₃	bending	1375 and 145	0 weak to medium
<u>Alkene</u>			
C-H	stretching	3000 - 3100	weak to medium
C=C	stretching	1600 - 1680	weak to medium
<u>Alkyne</u>			
C-H	stretching	3300	medium to strong
C≡C	stretching	2100-2250	weak

IR spectrum of decane

IR spectrum of cyclohexene

Fingerprint region

Infrared spectrum of 1-octyne

Infrared spectroscopy

IR

Summary

- IR measures vibrational transitions
- Can be described by classical oscillator theory
 - Frequency proportional to [bond strength/mass]^{1/2}
- Characteristic Group Frequencies
 - OH and C=O are particularly easy to identify
- Know how to read the chart...cm⁻¹??
- Practice at the online sites...nmr, IR..Excellent!!

Practice Problems & Tutorials

- <u>https://nb.khanacademy.org/science/organic-</u> <u>chemistry/spectroscopy-jay/infrared-spectroscopy-</u> <u>theory/v/ir-spectra-practice</u>
- <u>https://www2.chemistry.msu.edu/faculty/reusch/virtt</u> <u>xtjml/questions/Spectroscopy/irmsprb/infrared.htm</u>
- <u>https://webspectra.chem.ucla.edu/</u>
- <u>https://chemistry.boisestate.edu/richardbanks/organi</u> <u>c/mc/vol8/mcquestions317h.htm</u>
- <u>https://www.masterorganicchemistry.com/2016/11/2</u>
 <u>9/ir-spectroscopy-some-simple-practice-problems/</u>
- <u>https://www2.chemistry.msu.edu/faculty/reusch/virttxtjml/spectr</u> <u>py/infrared/infrared.htm</u>
 Chemistry 328N

UV-visible Spectroscopy

UV/Visible Spectroscopy

Most UV/visible spectrophotometers cover from

 200 to 400 nm (the near ultraviolet) and
 400 nm (violet light) to 700 nm (red light)

Region of Spectrum	Wavelength (nm)	Energy (kcal/mol)
ultraviolet	200-400	71.5 - 143
visible	400-700	40.9 - 71.5

C-C bond Disassociation energy ~ 95Kcal/mol

UV/Vis Spectroscopy

 UV-Vis spectral data are plotted as absorbance (A) versus wavelength (nm)

UV spectrum of 2,5-dimethyl-2,4-hexadiene

UV/Vis Spectroscopy

Transmission: a quantitative measure of the extent to which a compound absorbs ultraviolet-visible radiation at a particular wavelength

%Transmission (T) =
$$\left[\frac{I}{I_0}\right] \times 100$$

Where:

10 is the intensity radiation incident on the sample

is the intensity transmitted through the sample

UV/Vis Spectroscopy

 Absorbance: a quantitative measure of the extent to which a compound absorbs ultravioletvisible radiation at a particular wavelength

Where:

Absorbance (A) = log
$$\frac{I_0}{I}$$

Chemistry 328N

I₀ is the intensity radiation incident on the sample

I is the intensity transmitted through the sample

 Beer-Lambert law
 Beer-Lambert law: the relationship between absorbance, concentration, and length of the sample tube

Beer-Lambert Law: $A = \varepsilon c l$

- A = absorbance
- $c = concentration (mol \cdot liter^{-1})$
- l = length of the sample tube (cm)
- $\varepsilon = \text{molar absorptivity (liter mol⁻¹ cm ⁻¹).}$ Experimental values of ε range from 0 to 10⁶

Some Quantitative Relationships Please read: Pages 904-908

Origin of UV-Vis Absorbance - MO Theory

$\Delta E = 65 \text{ Kcal/mole}$

Antibonding

Bonding

