
Lecture 7: Instruction Set Architecture

CSE 30: Computer Organization and Systems Programming

Winter 2014
Diba Mirza

Dept. of Computer Science and Engineering
University of California, San Diego

Outline
1.  Steps in program translation
2.  Hardware/Software Interface Preliminaries

1.  Instruction Set Architecture
1.  General ISA Design (Architecture)
2.  Architecture vs. Micro architecture
3.  Different types of ISA: RISC vs CISC

2.  Assembly programmer’s view of the system
1.  Registers: Special and general purpose
2.  Assembly and machine code (program translation detail)
3.  Layout of ARM instructions in memory

3.  Steps in program execution
4.  Basic Types of ARM Assembly Instructions

Steps in program translation

Program in C

Helloworld.c

Code Time

Program:
Text file stored on
computers hard disk
or some secondary
storage

Compile Time

Compiler Hardware

Executable:
Program in machine code
+Data in binary

1000110001100010000000000000000
1000110011110010000000000000100
1010110011110010000000000000000
1010110001100010000000000000100

Run Time

Compile time: What does gcc do?

% gcc hello.c

hello.c

gcc
a.out

4

“Source”
Program in C

#include <stdio.h>
void func1(int a, char *b)
{
 if(a > 0)
 { *b = ‘a’; }
}
int main()
{…..
 func1();
 printf(“\abc”);
}

“Executable”:
Equivalent program
in machine
language

0000 1001 1100 0110
1010 1111 0101 1000
1010 1111 0101 1000
0000 1001 1100 0110
1100 0110 1010 1111
0101 1000 0000 1001
0101 1000 0000 1001
1100 0110 1010 1111 !

Steps in gcc

v The translation is actually done in a number of
steps

hello.c
a.out

5

gcc

hello.s
Assembler(as)

Linker
(ld)

hello.o

Compiler
(cpp)

Steps in gcc
v  Ask compiler to show temporary files:
% gcc –S hello.c (gives hello.s – assembly code)
% gcc –c hello.c (gives hello.o – object module)
% gcc –o prog_hello hello.c (gives prog_hello.o - named
executable)

hello.c
a.out

6

gcc
hello.s

as

cpp

cc1

ld hello.o

Include code written by others
v  Code written by others (libraries) can be included
v  ld (linkage editor) merges one or more object files with the

relevant libraries to produce a single executable

hello.c
a.out

7

gcc

hello.s
as

cpp

cc1

ld

Library files
e.g. math.o:
the math
library

hello.o

Assembly Language

A.  Is the binary representation of a program.

B.  A symbolic representation of machine
instructions

C.  A set of instructions that the machine can
directly execute

8

Machine vs Assembly Language

§  Machine Language: A particular set of instructions
that the CPU can directly execute – but these are
ones and zeros

§  Assembly language is a symbolic version of the
equivalent machine language
§  each statement (called an Instruction), executes

exactly one of a short list of simple commands
§  Unlike in C (and most other High Level Languages),

each line of assembly code contains at most 1
instruction

§  Instructions are related to operations (e.g. =, +, -, *)
in C or Java

Steps in program translation

Program in C

Code Time Compile Time

Compiler Assembler

Instruction
Set
Architecture

Hardware

What makes programs run fast?
1.  Algorithm
2.  Compiler Translation to Machine code
3.  ISA and hardware implementation

What is the Instruction Set Architecture?

11

•  Agreed-upon interface between all the software that runs
on the machine and the hardware that executes it

•  Primitive set of instructions a particular CPU implements

I/O system Processor Memory

Compiler

Operating

System

Application

Digital Design

Circuit Design

Instruction Set
 Architecture

General ISA Design Aspects

12

1.  Everything about h/w that is visible to the s/w and can be

manipulated by it via basic machine instructions.
 Example: Registers: How many? What size?

 Memory: How to access contents?

2.  The set of basic machine instructions:

A.  What they are
B.  How they change the system state
C.  How they are encoded in binary

CPU

Bank of registers:
Small and fast storage location

Memory

Is the ISA different for different CPUs?
§  Different CPUs implement different sets of instructions.

§  Examples: ARM, Intel x86, IBM/Motorola PowerPC
(Macintosh), MIPS, Inter IA32 …

§  Two styles of CPU design:
§  RISC (Reduced Instruction Set Computing)
§  CISC (Complex Instruction Set Computing)

RISC versus CISC (Historically)
§  Complex Instruction Set Computing e.g x86

§  Larger instruction set
§  More complicated instructions built into hardware
§  Variable length
§  Multiple clock cycles per instruction

§  Reduced Instruction Set Computing e.g. ARM
§  Small, highly optimized set of instructions
§  Memory accesses are specific instructions
§  One instruction per clock cycle
§  Instructions are of the same size and fixed format

A = A*B

RISC

LOAD A, eax!
LOAD B, ebx!
PROD eax, ebx!
STORE ebx, A!

CISC

MULT B, A!

RISC vs CISC

RISC
§  More work for compiler
§  More RAM used to store

instructions
§  Easier to debug: more

reliable processors
§  Easier to optimize

§  One clock cycle per
instruction

CISC
•  Less work for compiler
•  Fewer instructions to store
•  Harder to maintain and debug

High level Language to Assembly Assembly to Machine Language
A One-to-Many Many-to-Many
B Many-to-Many One-to-One
C One-to-Many One-to-One
D One-to-One One-to-One

 
For a program written in a high-level-language, the
conversion from ____ to _____ will be __________ for

different target processors

Translations
§  High-level language program (in C)

 swap (int v[], int k)
 { int temp;
 temp = v[k];
 v[k] = v[k+1];
 v[k+1] = temp;
 }

§  Assembly language program (for MIPS)
 swap: sll $2, $5, 2
 add $2, $4, $2
 lw $15, 0($2)
 lw $16, 4($2)
 sw $16, 0($2)
 sw $15, 4($2)
 jr $31

§  Machine (object, binary) code (for MIPS)
 000000 00000 00101 0001000010000000
 000000 00100 00010 0001000000100000

. . .

C compiler

assembler

one-to-many

one-to-one

Architecture vs Micro-architecture

Architecture:
v  Parts of processor design needed to write programs in

assembly
v  What is visible to s/w
 E.g Number of registers

Micro-Architecture:
v  Detail of how architecture is implemented
 E.g Core frequency of the processor
 Aside: Processor Speed:

 Intel Core i7: 1.8 GHz
 1.8 billion cycles per second
 Each instruction takes some number of cycles

The Assembly Programmer’s View of the machine

§  Registers: (Very) Small amount of memory inside the CPU
§  Each ARM register is 32 bits wide

§  Groups of 32 bits called a word in ARM

Registers

CPU Memory

Stack

Address

Data

Instructions

Instructions

Data

r0

r1

r2

r3

r4

r5

r6

r7

r8

r9

r10

r11

r12

r15 (pc)
cpsr

r13 (sp)

r14 (lr)

The ARM Register Set

General Purpose Registers

Special Purpose Registers

Assembly Variables: Registers

§  Unlike HLL like C or Java, assembly cannot
use variables
§  Why not? Keep Hardware Simple

§  Data is put into a register before it is used
for arithmetic, tested, etc.

§  Manipulated data is then stored back in main
memory.

§  Benefit: Since registers are directly in
hardware, they are very fast

C, Java Variables vs. Registers
§  In C (and most High Level Languages)

variables declared first and given a type
§  Example:
int fahr, celsius;
char a, b, c, d, e;

§  Each variable can ONLY represent a value of
the type it was declared as (cannot mix and
match int and char variables).

§  In Assembly Language, the registers have no
type; operation determines how register
contents are treated

Which one of the following is an optimization
that is typically done by ARM compilers?

A.  Put the address of frequently used data in registers

B.  Put the value of frequently used data in registers

C.  Put as much data as possible in the registers

D.  Put as few program data in the registers

E.  Registers are not available to the programmer/compiler –
they are only used internally by the processor to fetch and
decode instructions

Layout of instructions in memory

swap (int v[], int k)

{ int temp;

 temp = v[k];

 v[k] = v[k+1];

 v[k+1] = temp;
}

0x4000 Swap: mov r2, r5

0x4004 add r4, r2, #1

0x4008 ldr r10, [r6,r2]

0x400c ldr r11, [r6,r4]

0x4010 mov r1, r10

0x4014 str r11,[r6,r2]

0x4018 str r1, [r6,r4]

0x401c bx lr

Machine Instructions

A.  Can be thought of as numbers.

B.  Are commands the computer performs.

C.  Were what people originally wrote programs
using.

D.  All of the above.

26

Machine Instructions

A.  Can be thought of as numbers.

B.  Are commands the computer performs.

C.  Were what people originally wrote programs
using.

D.  All of the above.

27

Steps in program execution

PC:0x4000
CPU

Memory Stack

Instructions

Data

0x4000 Swap: mov r2, r5

0x4004 add r4, r2, #1

0x4008 ldr r10, [r6,r2]

0x400c ldr r11, [r6,r4]

0x4010 mov r1, r10

0x4014 str r11,[r6,r2]

0x4018 str r1, [r6,r4]

0x401c bx lr

Assembly Language

A.  Is in binary.

B.  Allows languages to be designed for their
specific uses.

C.  Has one line for every machine language
instruction.

29

Basic Types of Instructions
1.  Arithmetic: Only processor and registers involved

1.  compute the sum (or difference) of two registers, store the
result in a register

2.  move the contents of one register to another

2.  Data Transfer Instructions: Interacts with memory
1.  load a word from memory into a register
2.  store the contents of a register into a memory word

3.  Control Transfer Instructions: Change flow of execution
1.  jump to another instruction
2.  conditional jump (e.g., branch if registeri == 0)
3.  jump to a subroutine

31

High Level Language
Program

Assembly Language
Program

Compiler

Machine Interpretation

Machine Language
Program

Assembler

temp = v[k];
v[k] = v[k+1];
v[k+1] = temp;

How to Speak Computer

How to Speak Computer

32

High Level Language
Program

Assembly Language
Program

Compiler
lw $15, 0($2)
lw $16, 4($2)
sw $16, 0($2)
sw $15, 4($2)

Machine Interpretation

Machine Language
Program

Assembler

temp = v[k];
v[k] = v[k+1];
v[k+1] = temp;

How to Speak Computer

33

High Level Language
Program

Assembly Language
Program

Compiler
lw $15, 0($2)
lw $16, 4($2)
sw $16, 0($2)
sw $15, 4($2)

Machine Interpretation

Machine Language
Program

Assembler
1000110001100010000000000000000
1000110011110010000000000000100
1010110011110010000000000000000
1010110001100010000000000000100

temp = v[k];
v[k] = v[k+1];
v[k+1] = temp;

How to Speak Computer

34

High Level Language
Program

Assembly Language
Program

Compiler
lw $15, 0($2)
lw $16, 4($2)
sw $16, 0($2)
sw $15, 4($2)

Machine Interpretation

Machine Language
Program

Assembler
1000110001100010000000000000000
1000110011110010000000000000100
1010110011110010000000000000000
1010110001100010000000000000100

temp = v[k];
v[k] = v[k+1];
v[k+1] = temp;

