

Lecture 7: Introduction to HFSS-IE

ANSYS HFSS for Antenna Design

HFSS-IE: Integral Equation Solver Introduction

HFSS-IE: Technology

- An Integral Equation solver technology in the HFSS desktop
 - A 3D Method of Moments (MoM) Integral Equation technique
 - Efficient Solution Technique for Open Radiation and Scattering Analysis
 - Only surfaces are meshed and solved

$$E(r) = j \frac{\eta}{k_0} \left(\nabla \nabla \bullet + k_0^2 \right) \iint_S J(r') G(r - r') \, dS'$$

- Hybrid IE and FEM solution can be used to leverage most efficient techniques from either method simultaneously
- Physical optics, high frequency solver also included within HFSS-IE design type

HFSS-IE: Applications

 Antenna design, antenna placement, Radar Cross Section, S-parameter extraction, EMI/EMC Analysis, Efficient analysis of electrically large structures

3

Adaptive mesh

HFSS-IE: Advantage •

- Automated results with accuracy
 - Effective utilization of automated adaptive meshing technique from HFSS to ensure accuracy
 - Employs Adaptive Cross Approximation (ACA) technique
 - Compression is independent of mesh creation leads to efficient results with minimal user interaction. Robust and invariant to problem description.
 - Employs Multilevel Fast Multipole Method (MLFMM)
 - Decomposes geometry into boxes and then solves the fields based on a physics decomposition. Efficient for models with low complexity and geometric dynamic range.
- Utilization of results from HFSS or HFSS-IE as a linked source excitation

HFSS-IE: User Interface

- Implemented as a design type in the HFSS desktop
 - Shares same modeler interface and similar analysis setup
 - Minimal user training required for existing users of HFSS

Return Los

-2.60

-5.00

-7.50 T-10.00

Choice of Solution Methods

Antenna Geometry

- Solution to geometry using either FEM or IE
- Both solution yield the same results
 - FEM solution requires an air volume surrounding antenna, IE solution does not
 - Integral equation solution would be most efficient when geometry is primarily metal

- scattering Currents solved only on surface mesh
- Efficiency is achieved when structure is primarily metal

- Efficiently handles complex material and geometries
- Volume based mesh and field solutions
- Fields are explicitly solved throughout entire volume

Antenna Placement on Commercial Aircraft @ 2.45GHz

Solver	Memory (GB)	CPU
HFSS-IE	94.3	2 hours

5

6

Adaptive mesh

• HFSS-IE: Advantage

- Automated results with accuracy
 - Effective utilization of automated adaptive meshing technique from HFSS to ensure accuracy
 - Employs Adaptive Cross Approximation (ACA) technique
 - Compression is independent of mesh creation leads to efficient results with minimal user interaction
 - Employs Multilevel Fast Multipole Method (MLFMM)
 - Decomposes geometry into boxes and then solves the fields based on a physics decomposition
- Utilization of results from HFSS or HFSS-IE as a linked source excitation

HFSS-IE: User Interface

- Implemented as a design type in the HFSS desktop
 - Shares same modeler interface and similar analysis setup
 - Minimal user training required for existing users of HFSS

HFSS-IE Solvers

- HFSS IE Solver:
 - > ACA Solver:
 - Is an algebraic method without physics consideration
 - > MLFMM Solver:
 - MLFMM solver decomposes geometry into boxes
 - Fields in these boxes are solved based on a physics decomposition
- Factors that influence efficiency of MLFMM relative to ACA:
 - Feature size variation
 - High complexity and geometric dynamic range cause longer simulation
 - Aspect ratio of bounding box of model
 - High aspect ratio results in longer simulation
- In general ACA is more robust and invariant to problem description
 - When in doubt use ACA

IE Solution Setup						
General Options Advanced Expression Cache Defaults						
Initial Mesh Options						
☑ Do Lambda Refinement						
Lambda Target: 0.1 🔽 Use Default Value						
Use Free Space Lambda						
Adaptive Options						
Maximum Refinement Per Pass: 30 %						
Minimum Number of Passes: 3						
Minimum Converged Passes: 2						
Solver Types						
• Use IE Solver						
Use ACA Solver						
C Use MLFMM Solver						
O Use PO Solver						
Use Defaults						
OK Cancel						

HFSS-IE Solvers

Boeing X-48 Blended Wing Body (BWB) 361 incident angle in Phi

- @ 150 MHz, 0.9M matrix unknowns
- ACA Performance

Time: 2:28:15

Memory: 97.3 GB

MLFMM Performance

Time: 1:20:39

Memory: 51.7 GB

8

* Automatic adaptive meshing for accuracy can result in large elements variation. An example could be a small antenna on an aircraft

9

HFSS-IE, Physical Optics Solver Introduction

Asymptotic solver for extremely large problems

- Included in HFSS-IE
- Solves electrically huge problems
- Currents are approximated in illuminated regions
 - Set to zero in shadow regions
- No ray tracing or multiple "bounces"

• Target applications:

- Large reflector antennas and antenna placement
- RCS of large objects such as satellites
- Option in solution setup for HFSS-IE.
- Sourced by incident wave excitations
 - Plane waves or linked HFSS designs as a source

IE Solution Setup					
General Options Advanced Expression Cache Defaults					
Initial Mesh Options					
I Do Lambda Refinement					
Lambda Target: 0.1 Use Default Value					
Use Free Space Lambda					
Adaptive Options					
Maximum Refinement Per Pass: 30 %					
Minimum Number of Passes: 3					
Minimum Converged Passes: 2					
Solver Types					
C Use IE Solver					
O Use ACA Solver					
C Use MLEMM Solver					
• Use PO Solver					
Use Defaults					
OK Cancel					

RCS of PEC Sphere

- Highlights capabilities and limitation of physical optics
- Creeping wave effects not accounted for by PO
- When electrical size of sphere becomes large, full wave solution converges with physical optics solution

Fighter Aircraft RCS using PO

	Mesh #	RAM	Elapsed Time
10GHz	5.03 million	15.4 G	27.5 minutes
18GHz	16.19 million	50.6G	174.5 minutes

May 6, 2015 12 © 2015 ANSYS, Inc.

ANSYS[®]

HFSS-IE: Offers Advanced Features for Antenna Design

- Advanced solver technology
 - ACA Solver robust Method for Efficient Solution
 - MLFMM solver efficient for structures with low complexity New in R16
 - Hybrid FEM-IE solver takes advantage of strengths from both FEM and IE technologies
- Advanced Functionally
 - Layered Impedance Boundary Condition
 - Spatially Dependent Boundary Conditions New in HFSS 2014
 - Data-Link Source Excitations
 - HFSS to HFSS-IE
 - HFSS-IE to HFSS-IE New in HFSS 2014
 - High Loss Impedance Boundaries New in HFSS 2014
 - Anisotropic Impedance Boundary New in HFSS 2014
 - Curvilinear Mesh Elements New in HFSS 2014
- High Performance Computing
 - Scalable Multi-Threading
 - Distributed Parametric and Frequency Sweeps
 - Distributed meshing for hybrid solutions
 - Distributed memory solution for large scale simulations
 - Hybrid solution supports distributed FE-BI and IE-Regions New in HFSS 2014
 - Hierarchical distributed solutions New in HFSS 2014

- Output quantities
 - Network Parameters
 - Antenna trace characteristics (Beamwidth, SLLs)
 - Near fields and far fields
- Design automation
 - Parametric modeling
 - Parametric sweeps
 - Optimizations
 - Sensitivity and statistical analysis

This page intentionally left blank