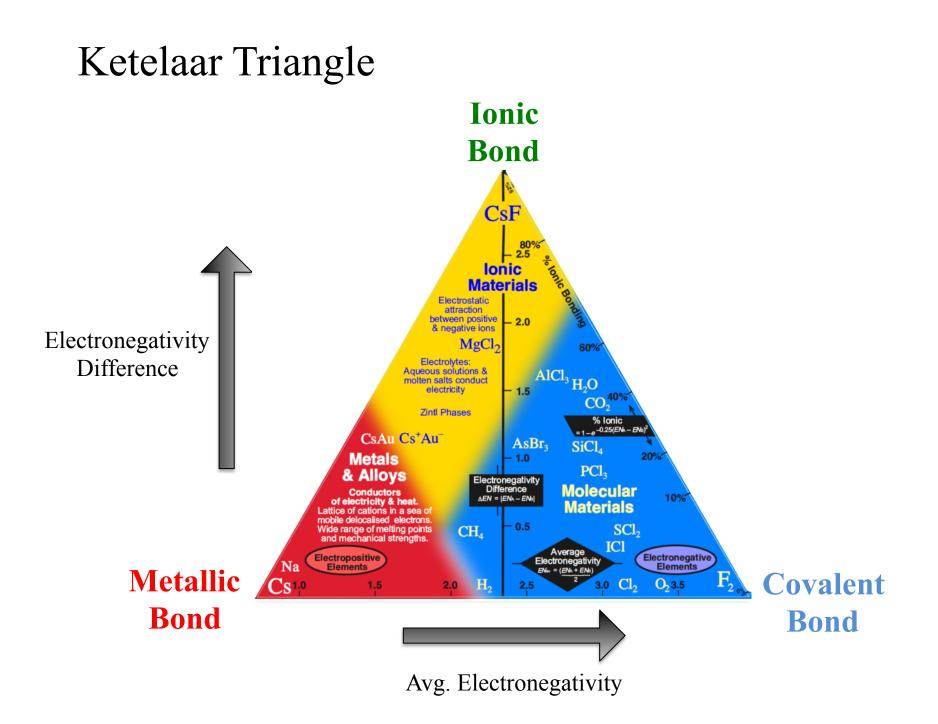

Lecture 7

Crystal structure and bonding thermodynamics

Reminder: Journal Club next Monday

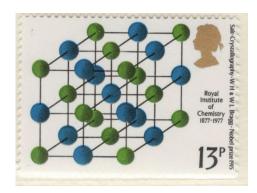
Quiz 1: Worth 3 extra points on homework #1.


- 1. Write Your Name
- 2. Based on this correlation diagram, indicate which shape (linear or bent) BeH_2 is expected to adopt.

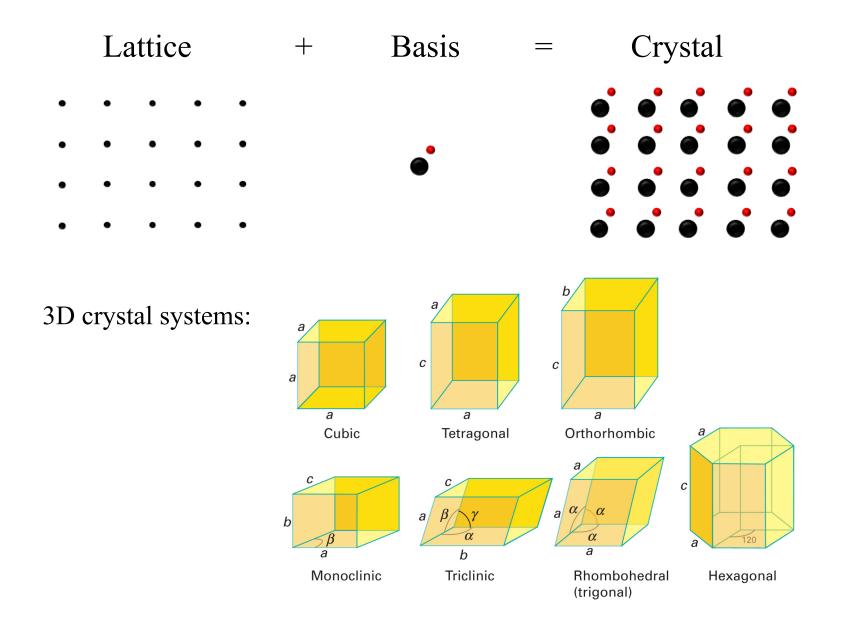
Bonding in solids

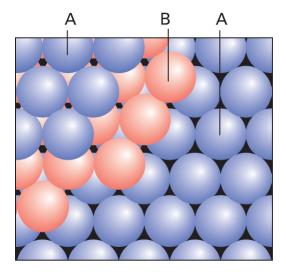
Bonds are distinguished based on the electron distribution functions in the molecules

		e ⁻ distribution	characteristics	examples	strength (eV/atom)
multi-elemental single-element solids	Covalent	Highest between pairs of nearest neighbors	Hard solids with low electrical conductivity	C, Si, Ge, H	4-8
	Metallic	Spread more uniformly (sea of e ⁻ s)	Close-packed crystals with high conductivity	Na, Li, Fe	1-9
	Van der Waals	Dipole interactions	Low melting point	Ar, polymers	0.02-0.3
	Ionic	Transfer of valence electrons between atoms	Low electrical conductivity, high ionic conductivity	NaCl, MgO, Ag ₂ S	5-10
	Hydrogen	H ⁺ interacting with lone pair of e ⁻ s	Molecular crystals	H ₂ O, DNA	0.1-0.4

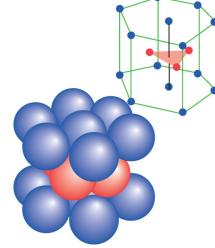


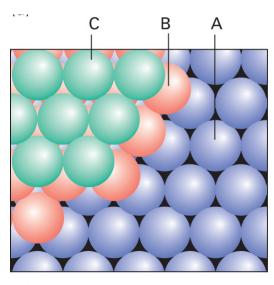
Arrangement of atoms in a solid


- 1611 Kepler suggests hexagonal symmetry of snowflakes is due to "regular packing of the constituent particles"
- 1665 Hooke suggests that crystals are composed of packed spheres
- 1913 W.H. and W.L. Bragg prove with X-ray diffraction that salt is composed of Na⁺ and Cl⁻ ions in a periodic lattice (Nobel prize in 1915)

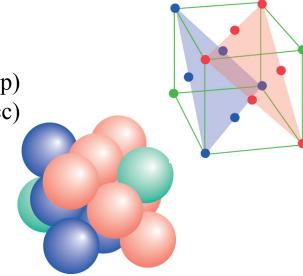


Crystal structure basics

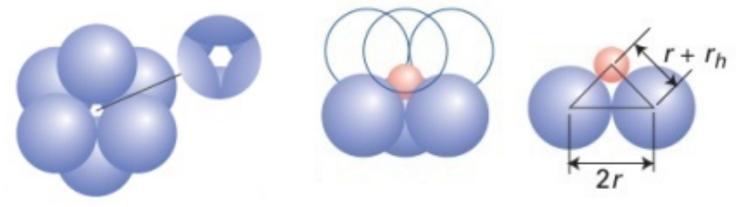


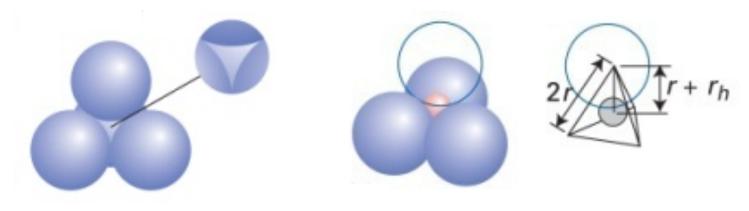

Close packing of spheres

• Atoms/ions treated as hard spheres



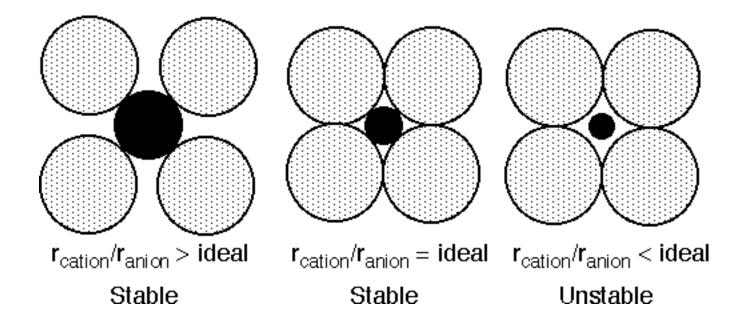
ABAB... hexagonal close-packed (hcp)

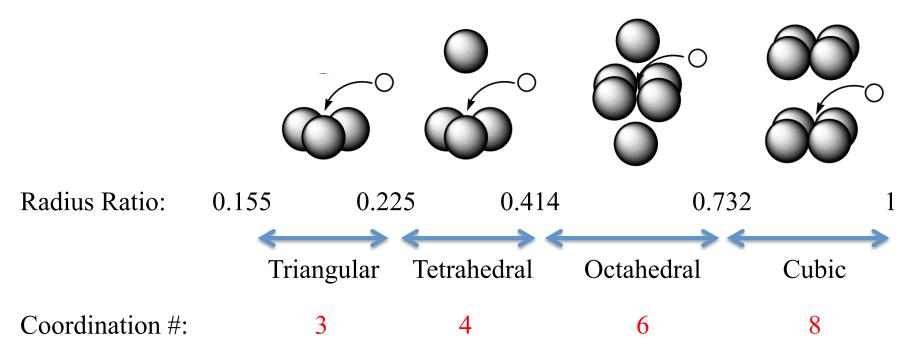

ABCABC... cubic close-packed (ccp) face-centered cubic (fcc)


Interstitials

Unoccupied spaces between spheres can be occupied by other smaller atoms

• Octahedral hole

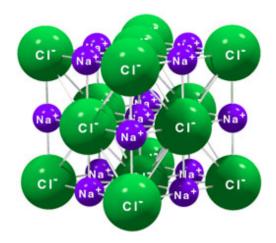

• Tetrahedral hole


Predicting structures of ionic compounds

• The radius ratio indicates the likely coordination numbers of the ions in a compound

Radius Ratio =
$$\frac{r_{\text{small}}}{r_{\text{large}}}$$
 (usually) = $\frac{r_{\text{cation}}}{r_{\text{anion}}}$

Radius ratio rules for ionic crystals



Example: Table salt, NaCl

Na⁺: 102 pm Cl⁻: 181 pm

$$\frac{r_{\rm Na+}}{r_{\rm Cl-}} = 0.56$$

Thermo 101

- First law: energy can neither be created nor destroyed
- Second law: entropy increases during spontaneous processes
- Third Law: entropy of a perfect crystal is 0 at T=0K

For this class:

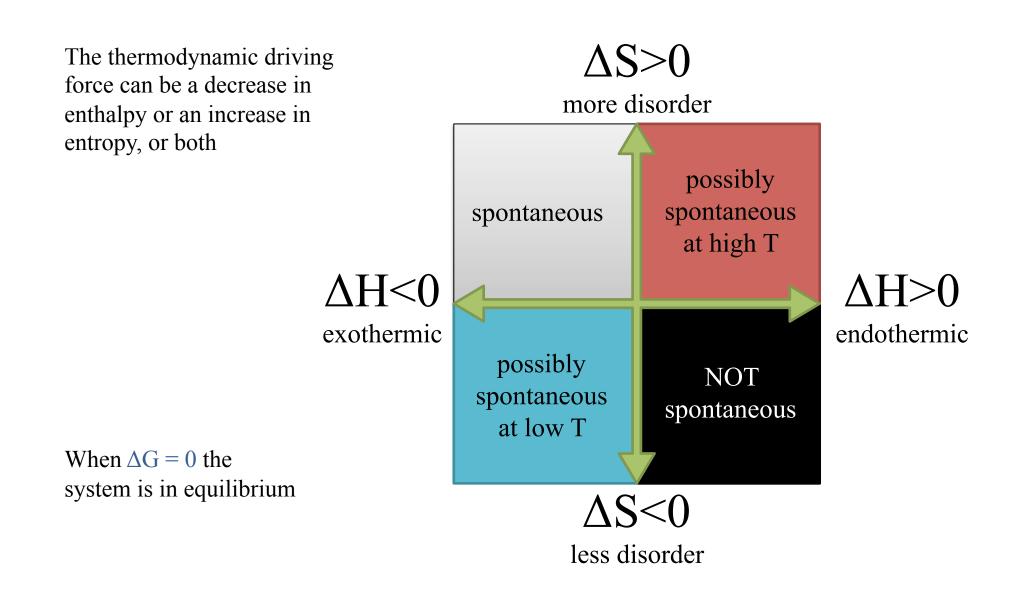
• A compound tends to adopt the crystal structure that corresponds to the lowest Gibbs free energy

$$G = H - TS = U + PV - TS$$

G = Gibbs free energy; H = enthalpy; S = entropy; U = internal energy

Reaction thermodynamics

- It is primarily changes in H, S, and G that are important in calculations of thermodynamic or chemical equilibria
 ΔH = heat absorbed or released by a process
 ΔS = change in the degree of disorder of the system
- For any isothermal, isobaric process: $\Delta G = \Delta H - T\Delta S$
- And for a reaction:


 $\Delta G_{rxn} = \Sigma G(products) - \Sigma G(reactants)$ $\Delta H_{rxn} = \Sigma H(products) - \Sigma H(reactants)$ $\Delta S_{rxn} = \Sigma S(products) - \Sigma S(reactants)$

Spontaneity

A process or reaction only proceeds spontaneously

when ΔG is negative

 $\Delta G = \Delta H - T \Delta S$

Standard states

- It is often more convenient to express free energy changes in terms of transformations of reactants and products from their standard states
- Standard state = equilibrium state at atmospheric pressure and the temperature in question
- Example: the standard Gibbs free energy of formation of a material $\Delta G_{f}^{o}(T)$ is the free energy change corresponding to the formation of a material from the elemental reactants in their standard states

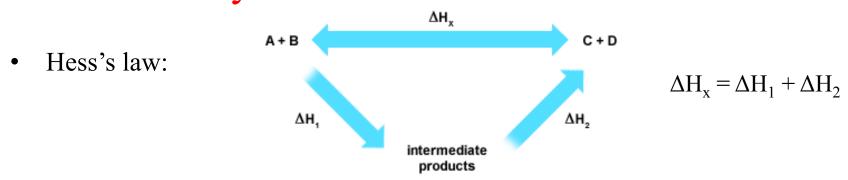
Si (s) + O₂ (g) \rightarrow SiO₂ (s) $\Delta G_f^{o}(Si(s), 300K) = 0$ $\Delta G_f^{o}(O_2(g), 300K) = 0$ $\Delta G_f^{o}(SiO_2(s), 300K) = -853.3 \text{ kJ/mol}$

 $\Delta G_{rxn}^{o}(300K) = \Delta G_{f}^{o}(SiO_{2}(s), 300K) - \Delta G_{f}^{o}(Si(s), 300K) - \Delta G_{f}^{o}(O_{2}(g), 300K)$ = -853.3 kJ/mol

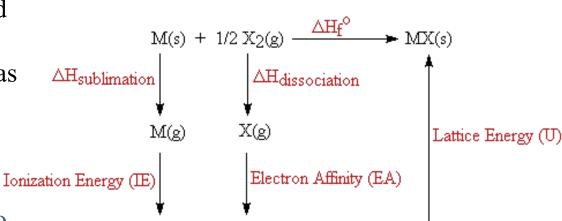
Energetics of ionic bonding

• Solid formation from a gas of ions:

 $M^+(g) + X^-(g) \rightarrow MX(s) \qquad \Delta G_{rxn} = \Delta H_{rxn} - T\Delta S_{rxn} \approx \Delta H_{rxn}$


This reaction is usually so exothermic ($\Delta H << 0$) that at and near room temperature the contribution of the entropy change to the change in Gibbs free energy can be neglected

• Lattice enthalpy: standard molar enthalpy change accompanying the formation of a gas of ions from the solid


 $MX(s) \rightarrow M^{+}(g) + X^{-}(g) \qquad \Delta H_{L}^{o} > 0$

The most stable crystal structure of the compound is that with the greatest lattice enthalpy

Born-Haber cycle

• Born-Haber cycle: a closed loop of reactions that includes lattice formation as one step

+ X-(g)

 $M^+(g)$

Enthalpy is a state property, so the sum of the enthalpy changes around a complete cycle is zero

Born-Haber cycle of KCl

kJ/mol

$$\begin{array}{c} K^{+}(g) + e^{-}(g) + CI(g) \\ 122 \\ K^{+}(g) + e^{-}(g) \\ + \frac{1}{2}CI_{2}(g) \\ K(g) + \frac{1}{2}CI_{2}(g) \\ K(g) + \frac{1}{2}CI_{2}(g) \\ R(g) + \frac{1$$

Born-Mayer equation

- Used to calculate lattice enthalpies from first principles
- Example: 1-D line of alternating singly-charged cations and anions

For a given ion, the potential due to Coulombic interactions is:

$$V = \sum \frac{q_1 q_i}{4\pi\varepsilon_0} \frac{1}{r_1 - r_i} = \frac{e^2}{4\pi\varepsilon_0} \left(-\frac{2}{d_0} + \frac{2}{2d_0} + \dots \right) = -\frac{2e^2}{4\pi\varepsilon_0 d_0} \ln(2)$$

For the whole line (multiply by N_A , divide by 2):

$$V = -\frac{N_A e^2}{4\pi\varepsilon_0 d_0} A$$

A=ln(2) is the Madelung constant for this particular geometry

Born-Mayer equation

• The attractive electrostatic force will be balanced by a repulsive force due to quantum interactions of the valence electrons of neighboring ions

$$V = -\frac{N_A e^2}{4\pi\varepsilon_0 d_0} A + B \exp\left(-\frac{d}{d_0}\right)$$

d = range of repulsive interaction B = magnitude of this interaction

• Using the fact that $dV/dd_0=0$ at the minimum, we find:

$$V = -\frac{N_A e^2}{4\pi\varepsilon_0 d_0} \left(1 - \frac{d}{d_0}\right) A$$

Lattice enthalpy for arbitrarily charged ions:

$$\Delta H_L = -V = \frac{N_A \left| z_A z_B \right| e^2}{4\pi\varepsilon_0 d_0} \left(1 - \frac{d}{d_0} \right) A$$

Consequences of lattice enthalpy

- Lattice enthalpies can explain trends in
 - Thermal stability
 - Oxidation state stability
 - Solubility
- First, the electrostatic parameter:

$$\Delta H_L \propto \frac{\left|z_A z_B\right|}{d_0} = \xi$$

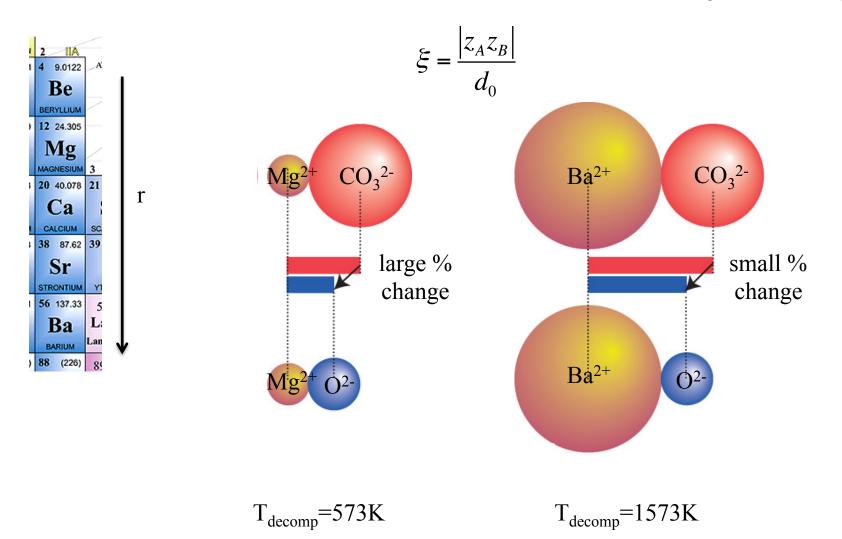
Highly charged, closely spaced ions form more stable lattices

Thermal stabilities of ionic solids

Decomposition reaction (ie trends in carbonate decomposition):

 $MCO_3(s) \rightarrow MO(s) + CO_2(g)$

Decomposition becomes favorable when


$$\Delta G_{rxn} = \Delta H_{rxn} - T\Delta S_{rxn} \le 0 \qquad T \ge \Delta H_{rxn} / \Delta S_{rxn}$$

In discussing trends, ΔS_{rxn} is essentially constant (dominated by CO₂ production)

$$\Delta H_{rxn} \approx \Delta H_{decomp} + \Delta H_{L}(MCO_{3},s) - \Delta H_{L}(MO,s)$$
large, constant
$$CO_{3}^{2-}(s) \rightarrow O^{2-}(g) + CO_{2}(g)$$

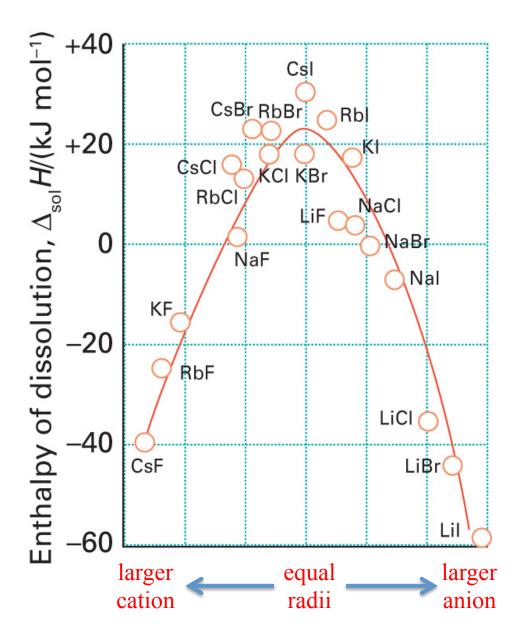
Thermal stabilities of ionic solids

• Which carbonate will be more stable, MgCO₃ or BaCO₃?

Stabilities of oxidation states

• The same argument is used to account for the fact that high oxidation states are stabilized by small anions

$$^{+1}_{MX(s) + 1/2X_2(g)} \xrightarrow{+2} MX_2(s)$$
 X=halogen


CuF₂ exists, CuI₂ does not:

F is smaller, thus the difference in lattice enthalpies is larger, and F is able to stabilize the higher oxidation state

Solubilities

 $MX(s) \rightarrow M^+(aq) + X^-(aq)$

- Dissolution is a complicated process, but lattice enthalpies and hydration enthalpies play important roles (don't forget about entropy!)
- Generally, the larger the difference in radii, the more soluble in water

