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Basic Types of ARM Instructions 
1.  Arithmetic:  Only processor and registers involved 

1.  compute the sum (or difference) of two registers, store the 
result in a register 

2.  move the contents of one register to another 
 

2.  Data Transfer Instructions: Interacts with memory 
1.  load a word from memory into a register 
2.  store the contents of a register into a memory word 

3.  Control Transfer Instructions: Change flow of execution 
1.  jump to another instruction 
2.  conditional jump (e.g., branch if registeri == 0) 
3.  jump to a subroutine 



ARM Addition and Subtraction 

§  Syntax of Instructions: 
1  2, 3, 4 
where: 
1) instruction by name  
2) operand getting result (“destination”) 
3) 1st operand for operation (“source1”) 
4) 2nd operand for operation (“source2”) 

§  Syntax is rigid (for the most part): 
§  1 operator, 3 operands 
§  Why? Keep Hardware simple via regularity 



Addition and Subtraction of Integers 

§  Addition in Assembly 
§  Example:  ADD r0,r1,r2 (in ARM) 
 Equivalent to: a = b + c  (in C) 

where ARM registers r0,r1,r2 are associated 
with C variables a, b, c  

§  Subtraction in Assembly 
§  Example:  SUB r3, r4, r5 (in ARM) 
 Equivalent to: d = e - f  (in C) 

where ARM registers r3,r4,r5 are associated 
with C variables d, e, f  



Setting condition bits 

§  Simply add an ‘S’ following the arithmetic/
logic instruction 
§  Example:  ADDS r0,r1,r2 (in ARM) 
This is equivalent to r0=r1+r2 and set the 
condition bits for this operation 
  



What is the min. number of assembly 
instructions needed to perform the following ? 

       a = b + c + d - e; 
 

A.  Single instruction 
B.  Two instructions 
C.  Three instructions 
D.  Four instructions 
 
Assume the value of each variable is stored in a 
register. 
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Addition and Subtraction of Integers 

§  How do the following C statement? 
  a = b + c + d - e; 

§  Break into multiple instructions 
§  ADD r0, r1, r2  ; a = b + c 
§  ADD r0, r0, r3  ; a = a + d 
§  SUB r0, r0, r4  ; a = a - e 

§  Notice: A single line of C may break up into 
several lines of ARM. 

§  Notice: Everything after the semicolon on 
each line is ignored (comments) 



Addition and Subtraction of Integers 

§  How do we do this? 
§  f = (g + h) - (i + j); 

§  Use intermediate temporary register 
ADD r0,r1,r2   ; f = g + h 

ADD r5,r3,r4   ; temp = i + j 

SUB r0,r0,r5   ; f =(g+h)-(i+j) 



Immediates 
§  Immediates are numerical constants. 
§  They appear often in code, so there are ways 

to indicate their existence 
§  Add Immediate: 

§  f = g + 10 (in C) 
§   ADD r0,r1,#10 (in ARM) 
§  where ARM registers r0,r1 are associated 

with C variables f, g  
§  Syntax similar to add instruction, except 

that last argument is a #number instead of a 
register. 



Arithmetic operations: Addressing Modes 

1.  Register Direct Addressing: Operand values are 
in registers: 
v ADD r3, r0, r1; r3=r0+r1 

2.  Immediate Addressing Mode: Operand value is 
within the instruction 
v ADD r3, r0, #7; r3=r0+7 
v The number 7 is stored as part of the instruction 

3.  Register direct with shift or rotate (more next 
lecture) 
v  ADD r3, r0, r1, LSL#2; r3=r0+ r1<<2 
 



What is a likely range for immediates in 
the immediate addressing mode 

A.  0 to (232-1) 

B.  0 to 255 

 



What is a likely range for immediates in 
the immediate addressing mode 

A.  0 to (232-1) 

B.  0 to 255  Immediates are part of the instruction 
(which is a total of 32 bits). Number of bits 
reserved for representing immediates is 8 bits 



Add/Subtract instructions 

1.  ADD   r1, r2, r3;   r1=r2+r3 
2.  ADC   r1, r2, r3;   r1=r2+r3+ C(arry Flag) 
3.  SUB    r1, r2,r3;    r1=r2-r3 
4.  SUBC r1, r2, r3;   r1=r2-r3 +C -1 
5.  RSB    r1, r2, r3;  r1= r3-r2; 
6.  RSC    r1, r2, r3;  r1=r3-r2 +C -1 

 



Integer Multiplication 

v Paper and pencil example (unsigned): 
 Multiplicand  1000   
 Multiplier  x1001        
    1000       
      0000 

      0000     
          +1000                         
   01001000   

v m bits x n bits = m + n bit product 



Multiplication 

§  Example: 
§  in C:  a = b * c; 
§  in ARM: 

let b be r2; let c be r3; and let a be r0 and r1 (since it may be up to 64 bits) 

 MUL r0, r2, r3  ; b*c only 32 bits stored 

 
Note: Often, we only care about the lower half of the product. 
      
 SMULL r0,r1,r2,r3 ; 64 bits in r0:r1 



Multiply and Divide 
§  There are 2 classes of multiply - producing  32-bit and 64-bit results 
§  32-bit versions on an ARM7TDMI will execute in 2 - 5 cycles 

§  MUL r0, r1, r2  ; r0 = r1 * r2 
§  MLA r0, r1, r2, r3  ; r0 = (r1 * r2) + r3 

§  64-bit multiply instructions offer both signed and unsigned versions 
§  For these instruction there are 2 destination registers 

§  [U|S]MULL r4, r5, r2, r3  ; r5:r4 = r2 * r3 
§  [U|S]MLAL r4, r5, r2, r3  ; r5:r4 = (r2 * r3) + r5:r4 

§  Most ARM cores do not offer integer divide instructions 
§  Division operations will be performed by C library routines or inline shifts 



Logical Operations operate on 

A.  Bits 

B.  Instructions 

C.  Numbers 

D.  Strings 
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Logical Operators 

v Basic logical operators: 
v AND 
v OR 
v XOR 
v BIC (Bit Clear)  

v In general, can define them to accept >2 inputs, 
but in the case of ARM assembly, both of these 
accept exactly 2 inputs and produce 1 output 

v Again, rigid syntax, simpler hardware 
20 



Logical Operators 
v Truth Table: standard table listing all possible 
combinations of inputs and resultant output for each 

v Truth Table for AND, OR and XOR 

  A    B      A AND B     A OR B   A XOR B  A BIC B  
 0  0 !!
!0!  1!
!1  0!
!1  1!

0!
1!

1!

1!

0!

0!

0!
1!

0!
1!

1!

0!

0!
0!

1!

0!
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Bitwise Logic Instruction Syntax 
v Syntax of Instructions: 

1  2, 3, 4 
where: 
1) instruction by name  
2) operand getting result (“destination”) 
3) 1st operand for operation (“source1”) 
4) 2nd operand for operation (“source2”) 

v Syntax is rigid (for the most part): 
v 1 operator, 3 operands 
v Why? Keep Hardware simple via regularity 
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Bitwise Logic Operations 
v Bitwise AND in Assembly 

v Example:  AND  r0,r1,r2 (in ARM) 
 Equivalent to:  r0 = r1 & r2  (in C) 

v Bitwise OR in Assembly 
v Example:  ORR  r3, r4, r5 (in ARM) 
 Equivalent to:  r3 = r4 | r5  (in C) 

v Bitwise XOR in Assembly 
v Example:  EOR  r0,r1,r2 (in ARM) 
 Equivalent to:  r0 = r1 ^ r2 (in C) 

v Bitwise Clear in Assembly 
v Example:  BIC  r3, r4, r5 (in ARM) 
 Equivalent to:  r3 = r4 & (!r5)  (in C) 
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    Bit wise operations 

          r0:  01101001 
          r1:  11000111 

          __________ 
ORR r3, r0,r1; r3:   11101111 
AND r3,r0,r1;  r3:    01000001 
EOR r3,r0,r1;  r3:    10101110 
BIC  r3, r0, r1; r3:    00101000 
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v Note that ANDing a bit with 0 produces a 0 at the 
output while ANDing a bit with 1 produces the 
original bit. 

v This can be used to create a mask. 
v Example: 

   1011 0110 1010 0100 0011 1101 1001 1010 
   0000 0000 0000 0000 0000 1111 1111 1111 

v The result of ANDing these: 
   0000 0000 0000 0000 0000 1101 1001 1010 

Uses for Logical Operators 

mask:!

mask last 12 bits!
25 



Uses for Logical Operators 
v Similarly, note that ORing a bit with 1 
produces a 1 at the output while ORing a bit 
with 0 produces the original bit. 

v This can be used to force certain bits of a 
string to 1s. 

v For example, 0x12345678 OR 0x0000FFF 
results in 0x1234FFFF (e.g. the high-order 16 
bits are untouched, while the low-order 16 bits 
are forced to 1s). 
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Invert bits 0-2 of x 

A.  x AND 00000111 

B.  x OR 00000111 

C.  x MOVN 00000111  

D.  x XOR 00000111 
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Invert bits 0-2 of x 

A.  x AND 00000111 

B.  x OR 00000111 

C.  x MOVN 00000111  

D.  x XOR 00000111 
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Uses for Logical Operators 
v Finally, note that BICing a bit with 1 resets 
the bit (sets to 0) at the output while BICing 
a bit with 0 produces the original bit. 

v This can be used to force certain bits of a 
string to 0s. 

v For example, 0x12345678 OR 0x0000FFFF 
results in 0x12340000 (e.g. the high-order 16 
bits are untouched, while the low-order 16 bits 
are forced to 0s). 
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 Find the 1's complement of x 

A.  x XOR 00000000 

B.  x XOR 11111111 
 
C.  x XOR 11111110 

D.  x BIC 11111111 
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 Find the 1's complement of x 

A.  x XOR 00000000 

B.  x XOR 11111111 
 
C.  x XOR 11111110 

D.  x BIC 11111111 
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Assignment Instructions 

v Assignment in Assembly 
v Example:   MOV r0,r1  (in ARM) 
 Equivalent to:  a = b   (in C) 

where ARM registers r0, r1  are associated with C 
variables a & b 
 

v Example:   MOV r0,#10  (in ARM) 
 Equivalent to: a = 10    (in C) 
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Assignment Instructions 

v MVN – Move Negative – moves one’s 
complement of the operand into the register. 

v Assignment in Assembly 
v Example:   MVN r0,#0  (in ARM) 
 Equivalent to:  a = -1   (in C) 

where ARM registers r0 are associated with C 
variables a 

Since ~0x00000000 == 0xFFFFFFFF 
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Shifts and Rotates 
v  LSL – logical shift by n bits – multiplication by 2n 

v  LSR – logical shift by n bits – unsigned division by 2n 

v  ASR – arithmetic shift by n bits – signed division by 2n  

v  ROR – logical rotate by n bits – 32 bit rotate 

… 0 C 

… 0 C 

… C 

… C 
34 



01101001 << 2 

A.  00011010 

B.  00101001 

C.  01101001 

D.  10100100 
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A new instruction HEXSHIFTRIGHT shifts hex 
numbers over by a digit to the right.  

 
  HEXSHIFTRIGHT i times is equivalent to  

A.  Dividing by i  

B.  Dividing by 2i 

C.  Dividing by 16i 

D.  Multiplying  by 16i 
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Ways of specifying operand 2 

v Opcode  Destination, Operand_1, Operand_2  
v Register Direct:   ADD r0, r1, r2; 

v With shift/rotate:      
1)  Shift value: 5 bit immediate  (unsigned integer)                                           

ADD r0, r1, r2, LSL #2;      r0=r1+r2<<2; r0=r1+4*r2 
2)  Shift value: Lower Byte of register:                               

ADD r0, r1, r2, LSL r3;   r0=r1+r2<<r3; r0=r1+(2^r3)*r2 

v Immediate:          ADD r0, r1, #0xFF 
v With rotate-right                      ADD r0,r1, #0xFF, 28 
Rotate value must be even: #0xFF ROR 28 generates:   
0XFF00000000 
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Ways of specifying operand 2 

v Opcode  Destination, Operand_1, Operand_2  
v Register Direct:   ADD r0, r1, r2; 

v With shift/rotate:      
1)  Shift value: 5 bit immediate  (unsigned integer)                                           

ADD r0, r1, r2, LSL #2;      r0=r1+r2<<2; r0=r1+4*r2 
2)  Shift value: Lower Byte of register:                               

ADD r0, r1, r2, LSL r3;   r0=r1+r2<<r3; r0=r1+(2^r3)*r2 

v Immediate addressing:        ADD r0, r1, #0xFF 
v 8 bit immediate value 

v With rotate-right                      ADD r0,r1, #0xFF,  8 
§  Rotate value must be even 
 #0xFF ROR 8 generates:   0XFF000000 
§  Maximum rotate value is 30 
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v The data processing instruction format has 12 bits 
available for operand2 

 
v 4 bit rotate value (0-15) is multiplied by two to 

give range 0-30 in steps of 2 

v Rule to remember is “8-bits rotated right by an 
even number of bit positions” 

0 7 11 8 

immed_8 

Shifter 
ROR 

rot 

x2 
0xFF000000 
MOV r0, #0xFF,8 

Reasons for constraints on Immediate Addressing 

40 
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Generating Constants using immediates 
Rotate Value Binary Decimal Hexadecimal 
0 000000000000000000000000xxxxxxxx 0-255 0-0xFF 
Right, 30 bits 0000000000000000000000xxxxxxxx00 4-1020 0x4-0x3FC 
Right, 28 bits 00000000000000000000xxxxxxxx0000 16-4080 0x10-0xFF0 
Right, 26 bits 000000000000000000xxxxxxxx000000 128-16320 0x40-0x3FC0 
… … … … 
Right, 8 bits xxxxxxxx000000000000000000000000 16777216- 

255x224 
0x1000000-0xF
F000000 

Right, 6 bits xxxxxx0000000000000000000000xx - - 
Right, 4 bits xxxx0000000000000000000000xxxx - - 
Right, 2 bits xx0000000000000000000000xxxxxx - - 

v  This scheme can generate a lot, but not all, constants.   
v  Others must be done using literal pools (more on that later) 
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1.  Register, optionally with shift operation 
v  Shift value can either be: 

v   5 bit unsigned integer 
v Specified in bottom byte of 

another register. 
v  Used for multiplication by constant 

2. Immediate value 
v  8 bit number, with a range of 0-255. 

v Rotated right through even 
number of positions  

v  Allows increased range of 32-bit 
constants to be loaded directly into 
registers 

Result 

Operand 1 

Barrel 
Shifter 

Operand 2 

ALU 

Implementation in h/w using a Barrel Shifter 
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Shifts and Rotates 

v Shifting in Assembly 
Examples: 
MOV  r4, r6, LSL #4 ; r4 = r6 << 4   
MOV  r4, r6, LSR #8 ; r4 = r6 >> 8 

v Rotating in Assembly 
Examples: 
MOV  r4, r6, ROR #12  
; r4 = r6 rotated right 12 bits 

; r4 = r6 rotated left by 20 bits (32 -12) 

Therefore no need for rotate left. 
 

43 



Variable Shifts and Rotates 

v Also possible to shift by the value of a register 
v Examples: 

MOV  r4, r6, LSL r3  
; r4 = r6 << value specified in r3   

MOV  r4, r6, LSR #8 ; r4 = r6 >> 8 

v Rotating in Assembly 
v Examples: 
MOV  r4, r6, ROR r3  

; r4 = r6 rotated right by value specified 
in r3 
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Constant Multiplication 
v  Constant multiplication is often faster using shifts and 

additions 
 MUL r0, r2, #8 ; r0 = r2 * 8 

Is the same as: 
 MOV r0, r2, LSL #3 ; r0 = r2 * 8 

v  Constant division 
 MOV r1, r3, ASR #7 ; r1 = r3/128 

 Treats the register value like signed values (shifts in MSB).  

Vs. 
 MOV r1, r3, LSR #7 ; r1 = r3/128 

      Treats register value like unsigned values (shifts in 0) 
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Constant Multiplication 
v  Constant multiplication with subtractions 

 MUL r0, r2, #7 ; r0 = r2 * 7 

 Is the same as: 
 RSB r0, r2, r2, LSL #3 ; r0 = r2 * 7 

 ; r0 = -r2 + 8*r2 = 7*r2 

 RSB r0, r1, r2 is the same as  
 SUB  r0, r2, r1 ; r0 = r1 – r2 

 
Multiply by 35: 

 ADD  r9,r8,r8,LSL #2  ; r9=r8*5 
 RSB  r10,r9,r9,LSL #3  ; r10=r9*7 

 

Why have RSB?  B/C only the second source operand can be shifted. 
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Conclusion 
v Instructions so far: 

v Previously: 
ADD, SUB, MUL, MLA, [U|S]MULL, [U|S]MLAL   
v New instructions: 
RSB 
AND, ORR, EOR, BIC 

MOV, MVN 
LSL, LSR, ASR, ROR 

v Shifting can only be done on the second source operand 
v Constant multiplications possible using shifts and 

addition/subtractions 
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Comments in Assembly 

§  Another way to make your code more 
readable: comments! 

§  Semicolon (;) is used for ARM comments 
§  anything from semicolon to end of line is a 

comment and will be ignored 
§  Note: Different from C 

§  C comments have format /* comment */, so 
they can span many lines 



Conclusion 
§  In ARM Assembly Language: 

§  Registers replace C variables 
§  One Instruction (simple operation) per line 
§  Simpler is Better 
§  Smaller is Faster 

§  Instructions so far: 
§  ADD, SUB, MUL, MULA, [U|S]MULL, [U|
S]MLAL   

§  Registers: 
§  Places for general variables: r0-r12 


