
Lecture 8: ARM Arithmetic and Bitweise
Instructions

CSE 30: Computer Organization and Systems Programming

Winter 2014
Diba Mirza

Dept. of Computer Science and Engineering
University of California, San Diego

Basic Types of ARM Instructions
1.  Arithmetic: Only processor and registers involved

1.  compute the sum (or difference) of two registers, store the
result in a register

2.  move the contents of one register to another

2.  Data Transfer Instructions: Interacts with memory
1.  load a word from memory into a register
2.  store the contents of a register into a memory word

3.  Control Transfer Instructions: Change flow of execution
1.  jump to another instruction
2.  conditional jump (e.g., branch if registeri == 0)
3.  jump to a subroutine

ARM Addition and Subtraction

§  Syntax of Instructions:
1 2, 3, 4
where:
1) instruction by name
2) operand getting result (“destination”)
3) 1st operand for operation (“source1”)
4) 2nd operand for operation (“source2”)

§  Syntax is rigid (for the most part):
§  1 operator, 3 operands
§  Why? Keep Hardware simple via regularity

Addition and Subtraction of Integers

§  Addition in Assembly
§  Example: ADD r0,r1,r2 (in ARM)
 Equivalent to: a = b + c (in C)

where ARM registers r0,r1,r2 are associated
with C variables a, b, c

§  Subtraction in Assembly
§  Example: SUB r3, r4, r5 (in ARM)
 Equivalent to: d = e - f (in C)

where ARM registers r3,r4,r5 are associated
with C variables d, e, f

Setting condition bits

§  Simply add an ‘S’ following the arithmetic/
logic instruction
§  Example: ADDS r0,r1,r2 (in ARM)
This is equivalent to r0=r1+r2 and set the
condition bits for this operation

What is the min. number of assembly
instructions needed to perform the following ?

 a = b + c + d - e;

A.  Single instruction
B.  Two instructions
C.  Three instructions
D.  Four instructions

Assume the value of each variable is stored in a
register.

What is the min. number of assembly
instructions needed to perform the following ?

 a = b + c + d - e;

A.  Single instruction
B.  Two instructions
C.  Three instructions
D.  Four instructions

Assume the value of each variable is stored in a
register.

Addition and Subtraction of Integers

§  How do the following C statement?
 a = b + c + d - e;

§  Break into multiple instructions
§  ADD r0, r1, r2 ; a = b + c
§  ADD r0, r0, r3 ; a = a + d
§  SUB r0, r0, r4 ; a = a - e

§  Notice: A single line of C may break up into
several lines of ARM.

§  Notice: Everything after the semicolon on
each line is ignored (comments)

Addition and Subtraction of Integers

§  How do we do this?
§  f = (g + h) - (i + j);

§  Use intermediate temporary register
ADD r0,r1,r2 ; f = g + h

ADD r5,r3,r4 ; temp = i + j

SUB r0,r0,r5 ; f =(g+h)-(i+j)

Immediates
§  Immediates are numerical constants.
§  They appear often in code, so there are ways

to indicate their existence
§  Add Immediate:

§  f = g + 10 (in C)
§  ADD r0,r1,#10 (in ARM)
§  where ARM registers r0,r1 are associated

with C variables f, g
§  Syntax similar to add instruction, except

that last argument is a #number instead of a
register.

Arithmetic operations: Addressing Modes

1.  Register Direct Addressing: Operand values are
in registers:
v ADD r3, r0, r1; r3=r0+r1

2.  Immediate Addressing Mode: Operand value is
within the instruction
v ADD r3, r0, #7; r3=r0+7
v The number 7 is stored as part of the instruction

3.  Register direct with shift or rotate (more next
lecture)
v  ADD r3, r0, r1, LSL#2; r3=r0+ r1<<2

What is a likely range for immediates in
the immediate addressing mode

A.  0 to (232-1)

B.  0 to 255

What is a likely range for immediates in
the immediate addressing mode

A.  0 to (232-1)

B.  0 to 255 Immediates are part of the instruction
(which is a total of 32 bits). Number of bits
reserved for representing immediates is 8 bits

Add/Subtract instructions

1.  ADD r1, r2, r3; r1=r2+r3
2.  ADC r1, r2, r3; r1=r2+r3+ C(arry Flag)
3.  SUB r1, r2,r3; r1=r2-r3
4.  SUBC r1, r2, r3; r1=r2-r3 +C -1
5.  RSB r1, r2, r3; r1= r3-r2;
6.  RSC r1, r2, r3; r1=r3-r2 +C -1

Integer Multiplication

v Paper and pencil example (unsigned):
 Multiplicand 1000
 Multiplier x1001
 1000
 0000

 0000
 +1000
 01001000

v m bits x n bits = m + n bit product

Multiplication

§  Example:
§  in C: a = b * c;
§  in ARM:

let b be r2; let c be r3; and let a be r0 and r1 (since it may be up to 64 bits)

 MUL r0, r2, r3 ; b*c only 32 bits stored

Note: Often, we only care about the lower half of the product.

 SMULL r0,r1,r2,r3 ; 64 bits in r0:r1

Multiply and Divide
§  There are 2 classes of multiply - producing 32-bit and 64-bit results
§  32-bit versions on an ARM7TDMI will execute in 2 - 5 cycles

§  MUL r0, r1, r2 ; r0 = r1 * r2
§  MLA r0, r1, r2, r3 ; r0 = (r1 * r2) + r3

§  64-bit multiply instructions offer both signed and unsigned versions
§  For these instruction there are 2 destination registers

§  [U|S]MULL r4, r5, r2, r3 ; r5:r4 = r2 * r3
§  [U|S]MLAL r4, r5, r2, r3 ; r5:r4 = (r2 * r3) + r5:r4

§  Most ARM cores do not offer integer divide instructions
§  Division operations will be performed by C library routines or inline shifts

Logical Operations operate on

A.  Bits

B.  Instructions

C.  Numbers

D.  Strings

18

Logical Operations operate on

A.  Bits

B.  Instructions

C.  Numbers

D.  Strings

19

Logical Operators

v Basic logical operators:
v AND
v OR
v XOR
v BIC (Bit Clear)

v In general, can define them to accept >2 inputs,
but in the case of ARM assembly, both of these
accept exactly 2 inputs and produce 1 output

v Again, rigid syntax, simpler hardware
20

Logical Operators
v Truth Table: standard table listing all possible
combinations of inputs and resultant output for each

v Truth Table for AND, OR and XOR

 A B A AND B A OR B A XOR B A BIC B
 0 0 !!
!0! 1!
!1 0!
!1 1!

0!
1!

1!

1!

0!

0!

0!
1!

0!
1!

1!

0!

0!
0!

1!

0!

21

A AND (NOT B)

Bitwise Logic Instruction Syntax
v Syntax of Instructions:

1 2, 3, 4
where:
1) instruction by name
2) operand getting result (“destination”)
3) 1st operand for operation (“source1”)
4) 2nd operand for operation (“source2”)

v Syntax is rigid (for the most part):
v 1 operator, 3 operands
v Why? Keep Hardware simple via regularity

22

Bitwise Logic Operations
v Bitwise AND in Assembly

v Example: AND r0,r1,r2 (in ARM)
 Equivalent to: r0 = r1 & r2 (in C)

v Bitwise OR in Assembly
v Example: ORR r3, r4, r5 (in ARM)
 Equivalent to: r3 = r4 | r5 (in C)

v Bitwise XOR in Assembly
v Example: EOR r0,r1,r2 (in ARM)
 Equivalent to: r0 = r1 ^ r2 (in C)

v Bitwise Clear in Assembly
v Example: BIC r3, r4, r5 (in ARM)
 Equivalent to: r3 = r4 & (!r5) (in C)

 23

 Bit wise operations

 r0: 01101001
 r1: 11000111

ORR r3, r0,r1; r3: 11101111
AND r3,r0,r1; r3: 01000001
EOR r3,r0,r1; r3: 10101110
BIC r3, r0, r1; r3: 00101000

24

v Note that ANDing a bit with 0 produces a 0 at the
output while ANDing a bit with 1 produces the
original bit.

v This can be used to create a mask.
v Example:

 1011 0110 1010 0100 0011 1101 1001 1010
 0000 0000 0000 0000 0000 1111 1111 1111

v The result of ANDing these:
 0000 0000 0000 0000 0000 1101 1001 1010

Uses for Logical Operators

mask:!

mask last 12 bits!
25

Uses for Logical Operators
v Similarly, note that ORing a bit with 1
produces a 1 at the output while ORing a bit
with 0 produces the original bit.

v This can be used to force certain bits of a
string to 1s.

v For example, 0x12345678 OR 0x0000FFF
results in 0x1234FFFF (e.g. the high-order 16
bits are untouched, while the low-order 16 bits
are forced to 1s).

26

Invert bits 0-2 of x

A.  x AND 00000111

B.  x OR 00000111

C.  x MOVN 00000111

D.  x XOR 00000111

27

Invert bits 0-2 of x

A.  x AND 00000111

B.  x OR 00000111

C.  x MOVN 00000111

D.  x XOR 00000111

28

Uses for Logical Operators
v Finally, note that BICing a bit with 1 resets
the bit (sets to 0) at the output while BICing
a bit with 0 produces the original bit.

v This can be used to force certain bits of a
string to 0s.

v For example, 0x12345678 OR 0x0000FFFF
results in 0x12340000 (e.g. the high-order 16
bits are untouched, while the low-order 16 bits
are forced to 0s).

29

 Find the 1's complement of x

A.  x XOR 00000000

B.  x XOR 11111111

C.  x XOR 11111110

D.  x BIC 11111111

30

 Find the 1's complement of x

A.  x XOR 00000000

B.  x XOR 11111111

C.  x XOR 11111110

D.  x BIC 11111111

31

Assignment Instructions

v Assignment in Assembly
v Example: MOV r0,r1 (in ARM)
 Equivalent to: a = b (in C)

where ARM registers r0, r1 are associated with C
variables a & b

v Example: MOV r0,#10 (in ARM)
 Equivalent to: a = 10 (in C)

32

Assignment Instructions

v MVN – Move Negative – moves one’s
complement of the operand into the register.

v Assignment in Assembly
v Example: MVN r0,#0 (in ARM)
 Equivalent to: a = -1 (in C)

where ARM registers r0 are associated with C
variables a

Since ~0x00000000 == 0xFFFFFFFF

33

Shifts and Rotates
v  LSL – logical shift by n bits – multiplication by 2n

v  LSR – logical shift by n bits – unsigned division by 2n

v  ASR – arithmetic shift by n bits – signed division by 2n

v  ROR – logical rotate by n bits – 32 bit rotate

… 0 C

… 0 C

… C

… C
34

01101001 << 2

A.  00011010

B.  00101001

C.  01101001

D.  10100100

35

A new instruction HEXSHIFTRIGHT shifts hex
numbers over by a digit to the right.  

 
 HEXSHIFTRIGHT i times is equivalent to

A.  Dividing by i

B.  Dividing by 2i

C.  Dividing by 16i

D.  Multiplying by 16i

36

A new instruction HEXSHIFTRIGHT shifts hex
numbers over by a digit to the right.  

 
 HEXSHIFTRIGHT i times is equivalent to

A.  Dividing by i

B.  Dividing by 2i

C.  Dividing by 16i

D.  Multiplying by 16i

37

Ways of specifying operand 2

v Opcode Destination, Operand_1, Operand_2
v Register Direct: ADD r0, r1, r2;

v With shift/rotate:
1)  Shift value: 5 bit immediate (unsigned integer)

ADD r0, r1, r2, LSL #2; r0=r1+r2<<2; r0=r1+4*r2
2)  Shift value: Lower Byte of register:

ADD r0, r1, r2, LSL r3; r0=r1+r2<<r3; r0=r1+(2^r3)*r2

v Immediate: ADD r0, r1, #0xFF
v With rotate-right ADD r0,r1, #0xFF, 28
Rotate value must be even: #0xFF ROR 28 generates:
0XFF00000000

38

Ways of specifying operand 2

v Opcode Destination, Operand_1, Operand_2
v Register Direct: ADD r0, r1, r2;

v With shift/rotate:
1)  Shift value: 5 bit immediate (unsigned integer)

ADD r0, r1, r2, LSL #2; r0=r1+r2<<2; r0=r1+4*r2
2)  Shift value: Lower Byte of register:

ADD r0, r1, r2, LSL r3; r0=r1+r2<<r3; r0=r1+(2^r3)*r2

v Immediate addressing: ADD r0, r1, #0xFF
v 8 bit immediate value

v With rotate-right ADD r0,r1, #0xFF, 8
§  Rotate value must be even
 #0xFF ROR 8 generates: 0XFF000000
§  Maximum rotate value is 30

39

v The data processing instruction format has 12 bits
available for operand2

v 4 bit rotate value (0-15) is multiplied by two to

give range 0-30 in steps of 2

v Rule to remember is “8-bits rotated right by an
even number of bit positions”

0 7 11 8

immed_8

Shifter
ROR

rot

x2
0xFF000000
MOV r0, #0xFF,8

Reasons for constraints on Immediate Addressing

40

Immed_8=0xFF, rot =4

Generating Constants using immediates
Rotate Value Binary Decimal Hexadecimal
0 000000000000000000000000xxxxxxxx 0-255 0-0xFF
Right, 30 bits 0000000000000000000000xxxxxxxx00 4-1020 0x4-0x3FC
Right, 28 bits 00000000000000000000xxxxxxxx0000 16-4080 0x10-0xFF0
Right, 26 bits 000000000000000000xxxxxxxx000000 128-16320 0x40-0x3FC0
… … … …
Right, 8 bits xxxxxxxx000000000000000000000000 16777216-

255x224
0x1000000-0xF
F000000

Right, 6 bits xxxxxx0000000000000000000000xx - -
Right, 4 bits xxxx0000000000000000000000xxxx - -
Right, 2 bits xx0000000000000000000000xxxxxx - -

v  This scheme can generate a lot, but not all, constants.
v  Others must be done using literal pools (more on that later)

41

1. Register, optionally with shift operation
v  Shift value can either be:

v  5 bit unsigned integer
v Specified in bottom byte of

another register.
v  Used for multiplication by constant

2. Immediate value
v  8 bit number, with a range of 0-255.

v Rotated right through even
number of positions

v  Allows increased range of 32-bit
constants to be loaded directly into
registers

Result

Operand 1

Barrel
Shifter

Operand 2

ALU

Implementation in h/w using a Barrel Shifter

42

Shifts and Rotates

v Shifting in Assembly
Examples:
MOV r4, r6, LSL #4 ; r4 = r6 << 4
MOV r4, r6, LSR #8 ; r4 = r6 >> 8

v Rotating in Assembly
Examples:
MOV r4, r6, ROR #12
; r4 = r6 rotated right 12 bits

; r4 = r6 rotated left by 20 bits (32 -12)

Therefore no need for rotate left.

43

Variable Shifts and Rotates

v Also possible to shift by the value of a register
v Examples:

MOV r4, r6, LSL r3
; r4 = r6 << value specified in r3

MOV r4, r6, LSR #8 ; r4 = r6 >> 8

v Rotating in Assembly
v Examples:
MOV r4, r6, ROR r3

; r4 = r6 rotated right by value specified
in r3

44

Constant Multiplication
v  Constant multiplication is often faster using shifts and

additions
 MUL r0, r2, #8 ; r0 = r2 * 8

Is the same as:
 MOV r0, r2, LSL #3 ; r0 = r2 * 8

v  Constant division
 MOV r1, r3, ASR #7 ; r1 = r3/128

 Treats the register value like signed values (shifts in MSB).

Vs.
 MOV r1, r3, LSR #7 ; r1 = r3/128

 Treats register value like unsigned values (shifts in 0)

45

Constant Multiplication
v  Constant multiplication with subtractions

 MUL r0, r2, #7 ; r0 = r2 * 7

 Is the same as:
 RSB r0, r2, r2, LSL #3 ; r0 = r2 * 7

 ; r0 = -r2 + 8*r2 = 7*r2

 RSB r0, r1, r2 is the same as
 SUB r0, r2, r1 ; r0 = r1 – r2

Multiply by 35:

 ADD r9,r8,r8,LSL #2 ; r9=r8*5
 RSB r10,r9,r9,LSL #3 ; r10=r9*7

Why have RSB? B/C only the second source operand can be shifted.

46

Conclusion
v Instructions so far:

v Previously:
ADD, SUB, MUL, MLA, [U|S]MULL, [U|S]MLAL
v New instructions:
RSB
AND, ORR, EOR, BIC

MOV, MVN
LSL, LSR, ASR, ROR

v Shifting can only be done on the second source operand
v Constant multiplications possible using shifts and

addition/subtractions

47

Comments in Assembly

§  Another way to make your code more
readable: comments!

§  Semicolon (;) is used for ARM comments
§  anything from semicolon to end of line is a

comment and will be ignored
§  Note: Different from C

§  C comments have format /* comment */, so
they can span many lines

Conclusion
§  In ARM Assembly Language:

§  Registers replace C variables
§  One Instruction (simple operation) per line
§  Simpler is Better
§  Smaller is Faster

§  Instructions so far:
§  ADD, SUB, MUL, MULA, [U|S]MULL, [U|
S]MLAL

§  Registers:
§  Places for general variables: r0-r12

