Lecture 8: ARM Arithmetic and Bitweise
Instructions

CSE 30: Computer Organization and Systems Programming
Winter 2014
Diba Mirza
Dept. of Computer Science and Engineering
University of California, San Diego

Basic Types of ARM Instructions

1. Arithmetic: Only processor and registers involved

compute the sum (or difference) of two registers, store the
result in a register

move the contents of one register to another

2. Data Transfer Instructions: Interacts with memory
load a word from memory into a register
store the contents of a register into a memory word

3. Control Transfer Instructions: Change flow of execution
jump to another instruction
conditional jump (e.g., branch if register1 == 0)
jump to a subroutine

== UCSD

ARM Addition and Subtraction

= Syntax of Instructions:

1 2,3,4

where:

1) mstruction by name

2) operand getting result (“destination”)

3) 1st operand for operation (“sourcel”)

4) 2nd operand for operation (“source2”)
= Syntax 1s rigid (for the most part):

1 operator, 3 operands

Why? Keep Hardware simple via regularity

== UCSD

Addition and Subtraction of Integers

= Addition in Assembly
Example: ADD r0,rl,r2 (in ARM)
Equivalentto:a = b + ¢ (in C)

where ARM registers rO, r1, r2 are associated
with C variables a, b, c

= Subtraction in Assembly
Example: SUB r3, r4, r5(in ARM)
Equivalentto:d = e - £ (in C)

where ARM registers r3, r4, r5 are associated
with C variables d, e, £

== UCSD

Setting condition bits

= Simply add an ‘S’ following the arithmetic/
logic instruction
Example: ADDSr0,rl, r2 (in ARM)

This 1s equivalent to rO=r1+r2 and set the
condition bits for this operation

== UCSD

What is the min. number of assembly
instructions needed to perform the following *

a =b +c + d - e;

A. Single nstruction
B. Two 1nstructions
C. Three 1nstructions

D. Four instructions

Assume the value of each variable 1s stored in a
register.

== UCSD

What is the min. number of assembly
instructions needed to perform the following *

a =b +c + d - e;

A. Single nstruction
B. Two 1nstructions
C. Three instructions

D. Four instructions

Assume the value of each variable 1s stored in a
register.

== UCSD

Addition and Subtraction of Integers

» How do the following C statement?
a =Db + c + d - e;

= Break into multiple instructions

ADD r0O, rl, «rZ ; a = b + C
ADD r0O, r0O, r3 ; a = a + d
SUB r0O, r0O, r4 ; a = a - e
= Notice: A single line of C may break up into
several lines of ARM.

= Notice: Everything after the semicolon on
each line 1s 1gnored (comments)

== UCSD

Addition and Subtraction of Integers

= How do we do this?

f=(g+h - (1 + 3J);
» Use intermediate temporary register
ADD r0O,rl,xr?2 ; £ = g + h
ADD r5,r3,r4 ; temp = 1 + 7
SUB r0,r0,r5 ; £ =(gth)-(i+73)

== UCSD

Immediates

= [mmediates are numerical constants.

= They appear often 1n code, so there are ways
to indicate their existence

» Add Immediate:
f =g+ 10 (inC)
ADD r0,rl,#10 (in ARM)
where ARM registers rO, r1 are associated
with C variables £, g
» Syntax similar to add instruction, except
that last argument 1s a #number 1nstead of a
register.

== UCSD

Arithmetic operations: Addressing Modes

1. Register Direct Addressing: Operand values are
1In registers:
ADD 13, 10, r1; r3=rO+rl
2. Immediate Addressing Mode: Operand value is
within the mstruction
ADD r3, 10, #7; r3=r0+7
The number 7 is stored as part of the instruction

3. Register direct with shift or rotate (more next
lecture)

ADD r3, 10, r1, LSL#2; r3=r0+ r1<<2
== UCSD

What is a likely range for immediates in
the immediate addressing mode

A. 0to (2°2-1)

B. 0to 255

== UCSD

What is a likely range for immediates in

the immediate addressing mode
A. 0to (2°2-1)

B. 0to 255 Immediates are part of the instruction
(which 1s a total of 32 bits). Number of bits
reserved for representing immediates 1s 8 bits

== UCSD

‘Add/Subtract instructions

1. ADD rl,12,r3; rl=r2+r3

ADC rl,12,13; rl=r2+r3+ C(arry Flag)
SUB rl,r2,r3; rl=r2-r3

SUBCrl, 12, r3; rl=r2-r3 +C -1

RSB rl, 12, r3; rl=r3-12;

RSC rl, 12, r3; rl1=r3-r2 +C -1

AN AN T

== UCSD

Integer Multiplication

<+Paper and pencil example (unsigned):
Multiplicand 1000
Multiplier x1001

1000
0000

0000
+1000
01001000

m bits X n bits = m + n bit product

== UCSD

Multiplication

= Example:
mC: a =b * c;
in ARM:
let b be 12; let ¢ be r3; and let a be r0 and r1 (since it may be up to 64 bits)

MUL r0, r2, r3 ; b*c only 32 bits stored
Note: Often, we only care about the lower half of the product.

SMULL r0O,rl,r2,r3 ; 64 bits in rO:rl

== UCSD

Multiply and Divide

= There are 2 classes of multiply - producing 32-bit and 64-bit results
= 32-bit versions on an ARM7TDMI will execute in 2 - 5 cycles

MUL 0O, rl, r2 ; rO = rl * r2
MLA r0O, rl, r2, r3 ; rO = (rl * r2) + r3

= 64-bit multiply instructions offer both signed and unsigned versions

For these instruction there are 2 destination registers

[U|S]MULL r4, r5, r2, 3 ; r5:rd = r2 * r3
[U|S]MLAL r4, r5, r2, 3 ; r5:rd = (r2 * r3) + r5:r4

= Most ARM cores do not offer integer divide instructions

Division operations will be performed by C library routines or inline shifts

== UCSD

Logical Operations operate on

A. Bits
B. Instructions
C. Numbers

D. Strings

== UCSD

18

Logical Operations operate on

A. Bits
B. Instructions
C. Numbers

D. Strings

== UCSD

19

Logical Operators

<+ Basic logical operators:
AND
OR
XOR
BIC (Bit Clear)

+In general, can define them to accept >2 1nputs,
but in the case of ARM assembly, both of these
accept exactly 2 mputs and produce 1 output

Again, rigid syntax, simpler hardware

20

== UCSD

Logical Operators

<+ Truth Table: standard table listing all possible
combinations of mputs and resultant output for each

<+Truth Table for AND, OR and XOR

A AND (NOT B)

A B |AANDB| AORB|AXORBJABICB
0 O 0 0 0 0
0 1 0 1 1 0
1 O 0 1 1 1
1 1 1 1 0 0

21

== UCSD

Bitwise Logic Instruction Syntax

<+Syntax of Instructions:

1 2,3,4

where:

1) mstruction by name

2) operand getting result (“destination”)

3) 1st operand for operation (“sourcel”)

4) 2nd operand for operation (“source2”)
+Syntax 1s rigid (for the most part):

1 operator, 3 operands

Why? Keep Hardware simple via regularity

22

== UCSD

Bitwise Logic Operatlons

<+ Bitwise AND in Assembly
Example: AND 1r0,rl,r2 (in ARM)
rl & r2 (inC)

Equivalent to: r0O
<+Bitwise OR in Assembly

Example: ORR r3, r4, r5(in ARM)
rd | r5 (inC)

Equivalent to: r3
+Bitwise XOR 1n Assembly

Example: EOR r0,rl, r2 (in ARM)

Equivalentto: r0 = r1 ~ r2 (inC)
+Bitwise Clear in Assembly

Example: BIC r3, r4, r5(in ARM)

Equivalentto: r3 = r4 & (!r5) (inC)

== UCSD

Bit wise operations

r0: 01101001
rl: 11000111

ORR 13, 1r0,r1;r3: 11101111

AND 13.1r0,r1; r3: 01000001
EOR r3,r0,r1; r3: 10101110
BIC 13,10, rl;r3: 00101000

== UCSD

24

Uses for Logical Operators

»Note that AN Ding a bit with 0 produces a O at the

output while ANDing a bit with 1 produces the
original bit.

<+ This can be used to create a mask.

Example:
1011 0110 1010 0100 0011{1101 1001 1010
mask: 0000 0000 0000 0000 0000(1111 1111 1111

The result of ANDing these:
0000 0000 0000 0000 0000(1101 1001 1010

mask last 12 bits

25

== UCSD

Uses for Logical Operators

«Similarly, note that ORing a bit with 1

produces a 1 at the output while ORing a bit
with 0 produces the original bit.

<+ This can be used to force certain bits of a
string to 1s.

For example, 0x12345678 OR 0x0000FFF
results in 0x1234FFFF (e.g. the high-order 16
bits are untouched, while the low-order 16 bits
are forced to 1s).

26

== UCSD

Invert bits 0-2 of x

A. x AND 00000111

B. x OR 00000111

c. x MOVN 00000111

D. x XOR 00000111

== UCSD

27

Invert bits 0-2 of x

A. x AND 00000111

B. x OR 00000111

c. x MOVN 00000111

D. x XOR 00000111

== UCSD

28

Uses for Logical Operators

o:oFinally, note that BT Cing a bit with 1 resets

the bit (sets to 0) at the output while BICing
a bit with 0 produces the original bit.

<+ This can be used to force certain bits of a
string to Os.

For example, 0x12345678 OR 0x0000FFFF
results in 0x12340000 (e.g. the high-order 16

bits are untouched, while the low-order 16 bits
are forced to 0s).

29

== UCSD

Find the 1's complement of x

A. x XOR 00000000
B. x XOR 11111111
c. x XOR 11111110

D. x BIC 11111111

== UCSD

30

Find the 1's complement of x

A. x XOR 00000000
B. x XOR 11111111
c. x XOR 11111110

D. x BIC 11111111

== UCSD

31

Assignment Instructions

< Assignment in Assembly
Example: MOV r0,rl (in ARM)
Equivalent to: a => (in C)

where ARM registers rO, r1 are associated with C
variables a & Db

Example: MOV r0,#10 (in ARM)
Equivalentto:a = 10 (in C)

== UCSD

32

Assignment Instructions

+ MVN — Move Negative — moves one’s
complement of the operand into the register.

< Assignment in Assembly
Example: MVN 0, #0 (in ARM)
Equivalent to: a = -1 (in C)

where ARM registers r0 are associated with C
variables a

Since ~0x00000000 == OxXFFFFFEFF

== UCSD

33

Shifts and Rotates

< LSL — logical shift by n bits — multiplication by 2"

C

<—

<— 0

<+ LSR — logical shift by n bits — unsigned division by 2"

0 —

—%C

+ ASR — arithmetic shift by n bits — signed division by 2"

s

> C

< ROR — logical rotate by n bits — 32 bit rotate

== UCSD

v

34

A. 00011010
B. 00101001
c. 01101001

D. 10100100

01101001 << 2

== UCSD

35

A new instruction HEXSHIFTRIGHT shifts hex
humbers over by a digit to the right.

HEXSHIFTRIGHT /times is equivalent to
A. Dividing by 1
B. Dividing by 2!
c. Dividing by 16

D. Multiplying by 16

== UCSD

36

A new instruction HEXSHIFTRIGHT shifts hex
humbers over by a digit to the right.

HEXSHIFTRIGHT /times is equivalent to
A. Dividing by 1
B. Dividing by 2!
c. Dividing by 16!

D. Multiplying by 16

== UCSD

37

Ways of specifying operand 2

< Opcode Destination, Operand 1, Operand 2
Register Direct: ADD 10, r1, 12;

< With shift/rotate:

Shift value: 5 bit immediate (unsigned integer)
ADD r0, r1, 12, LSL #2; rO=rl1+r2<<2; rO=r1+4*r2

Shift value: Lower Byte of register:
ADD 10, r1, r2, LSL 13; rO=rl1+r2<<r3; rO=r1+(2"r3)*r2

K/
000

38

== UCSD

Ways of specifying operand 2

< Opcode Destination, Operand 1, Operand 2

Register Direct: ADD 10, r1, 12;
Immediate addressing: ADD 10, r1, #0xFF
< 8 bit immediate value
<« With rotate-right ADD r0O,rl, #OXFF,

= Rotate value must be even
#0xFF ROR 8 generates: O0XFF000000
= Maximum rotate value is 30

== UCSD

39

Reasons for constraints on Immediate Addressing

< The data processing instruction format has 12 bits
available for operand?2

11 8 7 0

rot immed_8
| | L1l T

OxFF000000
Shifter MOV r0, #OxFF,8

Immed_8=0xFF, rot =4

x2

ROR

< 4 bit rotate value (0-15) 1s multiplied by two to
give range 0-30 1n steps of 2

< Rule to remember 1s “8-bits rotated right by an

even number of bit positions”

40

== UCSD

Generating Constants using immediates

Rotate Value
0

Right, 30 bits
Right, 28 bits
Right, 26 bits

Right, 8 bits

Right, 6 bits
Right, 4 bits
Right, 2 bits

Biﬁary
000000000000000000000000xxXXXXXX
0000000000000000000000xxxxxxxx00
00000000000000000000xxxxxxxx0000
000000000000000000xxxxxxxx000000

xxxxxxxx000000000000000000000000

xxxxxx0000000000000000000000xx
xxxx0000000000000000000000xxxx
xx0000000000000000000000xxxxXX

Decimal
0-255
4-1020
16-4080
128-16320

16777216-
255x2%

Hexadecimal
0-OxFF
0x4-0x3FC
0x10-0xFFO0
0x40-0x3FCO0

0x1000000-0xF
F000000

< This scheme can generate a lot, but not all, constants.

< Others must be done using literal pools (more on that later)

== UCSD

41

Implementation in h/w using a Barrel Shifter

Operand 1 Operand 2 < 1. Register, optionally with shift operation
" Shift value can either be:

\ < 5 bit unsigned integer
: < Specified in bottom byte of

Barrel another register.
Shifter C e
% Used for multiplication by constant

% 2. Immediate value

8 bit number, with a range of 0-255.

< Rotated right through even
number of positions

Allows increased range of 32-bit
\ constants to be loaded directly into
registers
Result

42

== UCSD

Shifts and Rotates

< Shifting in Assembly

Examples:
r4d, ro, LSL #4 ; rd4d = ro << 4

MOV
MOV

r4, ro, LSR #8 ; r4

< Rotating in Assembly

Examples:

MOV r4, ro, ROR #12

; ¥4 = r6 rotated right 12 bits

; ¥4 = ro rotated left by 20 bits

Therefore no need for rotate left.

== UCSD

ro >> 8

(32 -12)

43

Variable Shifts and Rotates

< Also possible to shift by the value of a register
<+ Examples:

MOV r4d, ro, LSL r3
; ¥4 = r6 << value specified 1in r3
MOV r4, r6, LSR #8 ; r4d = ro >> 8

< Rotating in Assembly

Examples:
MOV r4, ro, ROR r3
; ¥4 = ro rotated right by value specified
in r3

44

== UCSD

Constant Multiplication

< Constant multiplication 1s often faster using shifts and
additions
MUL r0O, r2, #8 ; r0 = r2 * 8

Is the same as:
MOV r0O, r2, LSL #3 ; rO = r2 * 8

< Constant division
MOV rl, r3, ASR #7 ; rl = r3/128
Treats the register value like signed values (shifts in MSB).
Vs.
MOV rl, r3, LSR #7 ; rl = r3/128

Treats register value like unsigned values (shifts in 0)

== UCSD

45

Constant Multiplication

< Constant multiplication with subtractions
MUL r0O, xr2, #7 ; r0 = xr2 * 7
Is the same as:
RSB r0O, r2, r2, LSL #3 ; r0O = r2 * 7
; rO = —-r2 + 8*r2 = T7*r2

RSB r0, rl, r2 i1sthe same as
SUB rO, r2, rl ; rO = rl - r2

Multiply by 35:
ADD r9,r8,r8,LSL #2 ; r9=1r8%*5
RSB r10,r9,r9,LSL #3 ; r10=r9*7

Why have RSB? B/C only the second source operand can be shifted. 4
== UCSD

Conclusion

<Instructions so far:
Previously:
ADD, SUB, MUL, MLA, [U|S]MULL, [U|S]MLAL
New 1nstructions:

RSB
AND, ORR, EOR, BIC

MOV, MVN
.SI,, LSR, ASR, ROR

<+Shifting can only be done on the second source operand

+Constant multiplications possible using shifts and
addition/subtractions

47

== UCSD

Comments in Assembly

= Another way to make your code more
readable: comments!
= Semicolon (;) 1s used for ARM comments

anything from semicolon to end of line 1s a
comment and will be 1gnored

= Note: Different from C

C comments have format /* comment */, so
they can span many lines

== UCSD

Conclusion

= In ARM Assembly Language:
Registers replace C variables
One Instruction (simple operation) per line
Simpler 1s Better

Smaller 1s Faster

= Instructions so far:

ADD, SUB, MUL, MULA, [U|S]MULL, [U|
S]MLAL

« Registers:

Places for general variables: rO-r12

== UCSD

