

Basic Relationships between Pixels

Outline of the Lecture

- > Neighbourhood
- > Adjacency
- Connectivity
- > Paths
- Regions and boundaries
- Distance Measures
- Matlab Example

Neighbors of a Pixel

1. **N**₄ (**p**) : 4-neighbors of **p**.

- Any pixel p(x, y) has two vertical and two horizontal neighbors, given by (x+1,y), (x-1, y), (x, y+1), (x, y-1)
- This set of pixels are called the <u>4-neighbors</u> of **P**, and is denoted by $N_4(P)$
- Each of them is at a <u>unit distance</u> from **P**.

2. N_D(p)

- This set of pixels, called 4-neighbors and denoted by N_D (p).
- **N**_D(**p**): four diagonal neighbors of **p** have coordinates:

(x+1,y+1), (x+1,y-1), (x-1,y+1), (x-1,y-1)

- Each of them are at **Euclidean distance** of **1.414** from **P**.
- **3. N**₈ (**p**): 8-neighbors of **p**.
 - $N_4(P)$ and $N_D(p)$ together are called 8-neighbors of p, denoted by $N_8(p)$.
 - $N_8 = N_4 U N_D$
 - Some of the points in the N₄, N_D and N₈ may fall <u>outside</u> image when P lies on the <u>border</u> of image.

F(x-1, y-1)	F(x-1, y)	F(x-1, y+1)
F(x, y-1)	F(x,y)	F(x, y+1)
F(x+1, y-1)	F(x+1, y)	F(x+1, y+1)
	N ₈ (p)	-

Dr. Qadri Hamarsheh Adjacency

- Two pixels are **connected** if they are neighbors and their gray levels satisfy some specified criterion of similarity.
- For example, in a binary image two pixels are connected if they are 4-neighbors and have same value (0/1)
- Let **v**: a set of intensity values used to *define adjacency* and *connectivity*.
- In a <u>binary Image</u> $v = \{1\}$, if we are referring to adjacency of pixels with value 1.
- In a <u>Gray scale image</u>, the idea is the same, but v typically contains more elements, for example v= {180, 181, 182,...,200}.
- If the possible intensity values 0 to 255, **v** set could be any subset of these 256 values.

Types of adjacency

- 4-adjacency: Two pixels p and q with values from v are 4-adjacent if q is in the set N₄ (p).
- 2. 8-adjacency: Two pixels p and q with values from v are 8-adjacent if q is in the set N₈ (p).
- 3. m-adjacency (mixed): two pixels p and q with values from v are m-adjacent if:
 - **q** is in **N**₄ (**p**) or
 - **q** is in **N**_D (**P**) and
 - **The set N_4 (p)** $\cap N_4$ (q) has no pixel whose values are from v (No intersection).
 - **Mixed adjacency** is a modification of 8-adjacency "introduced to eliminate the ambiguities that often arise when 8- adjacency is used. (eliminate multiple path connection)
 - Pixel arrangement as shown in figure for **v**= {1}

Example:

Path

- A digital path (or curve) from pixel p with coordinate (x,y) to pixel q with coordinate (s,t) is a sequence of distinct pixels with coordinates (x₀, y₀), (x₁, y₁), ..., (x_n, y_n), where (x₀, y₀)= (x,y), (x_n, y_n)= (s,t)
- $(\mathbf{x}_i, \mathbf{y}_i)$ is adjacent pixel $(\mathbf{x}_{i-1}, \mathbf{y}_{i-1})$ for $1 \le j \le n$,
- **n** The *length* of the path.
- If $(\mathbf{x}_0, \mathbf{y}_0) = (\mathbf{x}_n, \mathbf{y}_n)$: the path is *closed path*.
- We can define 4-,8-, or *m-paths* depending on the type of adjacency specified.

Dr. Qadri Hamarsheh Connectivity

- Let **S** represent a subset of pixels in an image, Two pixels **p** and **q** are said to be connected in **S** if there exists a path between them.
- Two image subsets **S1** and **S2** are adjacent if some pixel in **S1** is adjacent to some pixel in **S2**

Region

- Let **R** to be a subset of pixels in an image, we call a **R** a region of the image. If **R** is a *connected* set.
- Region that are not adjacent are said to be **<u>disjoint</u>**.
- *Example*: the two regions (of Is) in figure, are adjacent only if 8-adjacany is used.

- *4-path* between the two regions does not exist, (so their union in not a connected set).
- <u>Boundary (border)</u> image contains K disjoint regions, R_k, k=1, 2, ..., k, none of which touches the image border.

Dr. Qadri Hamarsheh

 Let: R_u - denote the union of all the K regions, (R_u)^c- denote its complement. (Complement of a set S is the set of points that are not in s).

 \mathbf{R}_{u} - called **foreground**; $(\mathbf{R}_{u})^{c}$ - called **background** of the image.

<u>Boundary (border or contour)</u> of a region **R** is the set of points that are adjacent to points in the complement of **R** (another way: the border of a region is the set of pixels in the region that have at least are background neighbor).

Distance Measures

• For pixels **p**, **q** and **z**, with coordinates (**x**,**y**), (**s**,**t**) and (**u**,**v**), respenctively, **D** is a <u>distance function</u> or metric if:

 $D(p,q) \ge 0$, D(p,q) = 0 if p=qD(p,q) = D(q,p), and $D(p,z) \le D(p,q) + D(q,z)$

• The following are the different *Distance measures*:

1. Euclidean Distance (D_e)

$$D_e(p,q) = \sqrt[2]{[(x-s)^2 + (y-t)^2]}$$

• The points contained in a **disk** of radius **r** centred at **(x,y)**.

2. D₄ distance (city-block distance)

$$\mathsf{D}_4 \ (\mathbf{p}, \mathbf{q}) = \ |\mathbf{x} - \mathbf{s}| + |\mathbf{y} - \mathbf{t}|$$

Pixels having a D₄ distance from (x,y) less than or equal to some value r form a Diamond centred (x,y),.
q(s,t)

Dr. Qadri Hamarsheh

Example 1: the pixels with $D_4=1$ are the 4-nighbors of (x, y).

3. D_8 distance (chess board distance)

$$D_8(p,q) = max(|x-s|, |y-t|)$$

- square centred at (x, y)
- **D**₈ = 1 are 8-neighbors of (**x**,**y**)

Example: D_8 distance ≤ 2

P₄

4. D_m distance:

- Is defined as the **shortest m-path** between the points.
- The distance between pixels depends only on the values of pixels.

Example: consider the following arrangement of pixels

and assume that $P_1 P_2$ have value 1 and that P_1 and P_3 can have a value of 0 or 1 Suppose, that we consider adjacency of pixels value 1 ($v=\{1\}$)

a) if P_1 and P_3 are 0:

Then
$$D_m$$
 distance = 2

b) if
$$P_1 = 1$$
 and $P_3 = 0$

c) if
$$P_1=0$$
; and $P_3=1$

m-distance=4 path = $p p_1 p_2 p_3 p_4$

0 0 1 1 1 0 1 0 0 D _m =3	$\begin{array}{ccc} 0 & 0 & 1 \\ 0 & 1 & 0 \\ \hline 1 & 0 & 0 \\ D_{m}=2 \end{array}$
--	--

