Basic Relationships between Pixels

Outline of the Lecture
> Neighbourhood
> Adjacency
$>$ Connectivity
$>$ Paths
$>$ Regions and boundaries
$>$ Distance Measures
> Matlab Example

Neighbors of a Pixel

1. $\mathbf{N}_{4}(p): 4$-neighbors of p.

- Any pixel $\mathbf{p}(\mathbf{x}, \mathbf{y})$ has two vertical and two horizontal neighbors, given by

$$
(x+1, y), \quad(x-1, y), \quad(x, y+1), \quad(x, y-1)
$$

- This set of pixels are called the $\mathbf{4}$-neighbors of \mathbf{P}, and is denoted by $\mathbf{N}_{4}(\mathbf{P})$
- Each of them is at a unit distance from \mathbf{P}.

2. $\mathbf{N}_{\mathrm{D}}(\mathrm{p})$

- This set of pixels, called 4-neighbors and denoted by $\mathbf{N}_{\mathbf{D}}(\mathbf{p})$.
- $\mathbf{N}_{\mathbf{D}}(\mathbf{p})$: four diagonal neighbors of \mathbf{p} have coordinates:

$$
(x+1, y+1), \quad(x+1, y-1), \quad(x-1, y+1), \quad(x-1, y-1)
$$

- Each of them are at Euclidean distance of $\mathbf{1 . 4 1 4}$ from \mathbf{P}.

3. $\mathbf{N}_{\mathbf{8}}(\mathbf{p})$: 8-neighbors of \mathbf{p}.

- $\mathbf{N}_{\mathbf{4}}(\mathbf{P})$ and $\mathbf{N}_{\mathbf{D}}(\mathbf{p})$ together are called 8-neighbors of \mathbf{p}, denoted by $\mathbf{N}_{\mathbf{8}}(\mathbf{p})$.
- $\mathbf{N}_{8}=\mathbf{N}_{4} \mathbf{U} \mathbf{N}_{\mathbf{D}}$
- Some of the points in the $\mathbf{N}_{\mathbf{4}}, \mathbf{N}_{\mathbf{D}}$ and $\mathbf{N}_{\mathbf{8}}$ may fall outside image when P lies on the border of image.

$F(x-1, y-1)$	$F(x-1, y)$	$F(x-1, y+1)$
$F(x, y-1)$	$F(x, y)$	$F(x, y+1)$
$F(x+1, y-1)$	$F(x+1, y)$	$F(x+1, y+1)$
$N_{8}(p)$		

- Two pixels are connected if they are neighbors and their gray levels satisfy some specified criterion of similarity.
- For example, in a binary image two pixels are connected if they are 4-neighbors and have same value ($0 / 1$)
- Let v: a set of intensity values used to define adjacency and connectivity.
- In a binary Image $\mathbf{v}=\{\mathbf{1}\}$, if we are referring to adjacency of pixels with value 1 .
- In a Gray scale image, the idea is the same, but \mathbf{v} typically contains more elements, for example $\mathbf{v}=\{\mathbf{1 8 0}, \mathbf{1 8 1}, \mathbf{1 8 2}, \ldots ., 200\}$.
- If the possible intensity values 0 to 255 , \mathbf{v} set could be any subset of these 256 values.

Types of adjacency

1. 4-adjacency: Two pixels \mathbf{p} and \mathbf{q} with values from v are $\mathbf{4}$-adjacent if \mathbf{q} is in the set $\mathbf{N}_{4}(\mathbf{p})$.
2. $\mathbf{8}$-adjacency: Two pixels \mathbf{p} and \mathbf{q} with values from v are $\mathbf{8}$-adjacent if \mathbf{q} is in the set $\mathbf{N}_{\mathbf{8}}(\mathbf{p})$.
3. \mathbf{m}-adjacency (mixed): two pixels \mathbf{p} and \mathbf{q} with values from v are \mathbf{m}-adjacent if:
$D q$ is in $\mathbf{N}_{4}(p)$ or
$D \mathrm{q}$ is in $\mathbf{N}_{\mathrm{D}}(\mathrm{P})$ and
D The set $\mathbf{N}_{4}(\mathbf{p}) \cap \mathbf{N}_{4}(\mathbf{q})$ has no pixel whose values are from v (No intersection).

- Mixed adjacency is a modification of 8 -adjacency "introduced to eliminate the ambiguities that often arise when 8- adjacency is used. (eliminate multiple path connection)
- Pixel arrangement as shown in figure for $\mathbf{v}=\{\mathbf{1}\}$

Example:

Path

- A digital path (or curve) from pixel \mathbf{p} with coordinate (\mathbf{x}, \mathbf{y}) to pixel \mathbf{q} with coordinate (\mathbf{s}, \mathbf{t}) is a sequence of distinct pixels with coordinates $\left(\mathbf{x}_{0}, \mathbf{y}_{0}\right),\left(\mathbf{x}_{1}, \mathbf{y}_{1}\right)$, $\ldots,\left(\mathbf{x}_{\mathrm{n}}, \mathbf{y}_{\mathrm{n}}\right)$, where $\left(\mathbf{x}_{0}, \mathbf{y}_{\mathrm{o}}\right)=(\mathbf{x}, \mathrm{y}),\left(\mathbf{x}_{\mathrm{n}}, \mathrm{y}_{\mathrm{n}}\right)=(\mathrm{s}, \mathrm{t})$
- $\left(\mathbf{x}_{\mathbf{i}}, \mathbf{y}_{\mathbf{i}}\right)$ is adjacent pixel $\left(\mathbf{x}_{\mathbf{i}-1}, \mathbf{y}_{\mathbf{i}-1}\right)$ for $\mathbf{1} \leq \mathbf{j} \leq \mathbf{n}$,
- \mathbf{n} - The length of the path.
- If $\left(\mathbf{x}_{0}, \mathbf{y}_{0}\right)=\left(\mathbf{x}_{\mathrm{n}}, \mathbf{y}_{\mathbf{n}}\right)$:the path is closed path.
- We can define 4 - , 8 -, or m-paths depending on the type of adjacency specified.

Connectivity

- Let \mathbf{S} represent a subset of pixels in an image, Two pixels \mathbf{p} and \mathbf{q} are said to be connected in \mathbf{S} if there exists a path between them.
- Two image subsets $\mathbf{S 1}$ and $\mathbf{S 2}$ are adjacent if some pixel in $\mathbf{S 1}$ is adjacent to some pixel in $\mathbf{S 2}$

Region

- Let \mathbf{R} to be a subset of pixels in an image, we call a \mathbf{R} a region of the image. If \mathbf{R} is a connected set.
- Region that are not adjacent are said to be disjoint.
- Example: the two regions (of Is) in figure, are adjacent only if 8-adjacany is used.
$\left.\begin{array}{|l|l|l|}\hline 1 & 1 & 1 \\ \hline 1 & 0 & 1 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1\end{array}\right\} \mathbf{R i}^{2}$
- 4-path between the two regions does not exist, (so their union in not a connected set).
- Boundary (border) image contains \mathbf{K} disjoint regions, $\mathbf{R}_{\mathbf{k},} \mathbf{k}=\mathbf{1}, \mathbf{2 , \ldots + \boldsymbol { n }} \mathbf{, k}$, none of which touches the image border.

- Let: $\mathbf{R}_{\mathbf{u}}$ - denote the union of all the \mathbf{K} regions, $\left(\mathbf{R}_{u}\right)^{\text {c }}$ - denote its complement.
(Complement of a set S is the set of points that are not in s). \mathbf{R}_{u} - called foreground; $\left(\mathbf{R}_{\mathrm{u}}\right)^{\mathrm{c}}$ - called background of the image.
- Boundary (border or contour) of a region \mathbf{R} is the set of points that are adjacent to points in the complement of \mathbf{R} (another way: the border of a region is the set of pixels in the region that have at least are background neighbor).
We must specify the connectivity being used to define adjacency

Distance Measures

- For pixels \mathbf{p}, \mathbf{q} and \mathbf{z}, with coordinates $(\mathbf{x}, \mathbf{y}),(\mathbf{s}, \mathbf{t})$ and (\mathbf{u}, \mathbf{v}), respenctively, \mathbf{D} is a distance function or metric if:
$D(p, q) \geq 0, D(p, q)=0$ if $p=q$
$D(p, q)=D(q, p)$, and
$D(p, z) \leq D(p, q)+D(q, z)$

- The following are the different Distance measures:

1. Euclidean Distance (D_{e})

$$
\mathbf{D}_{\mathrm{e}}(\mathbf{p}, \mathbf{q})=\sqrt[2]{\left[(\mathbf{x}-\mathbf{s})^{2}+(\mathbf{y}-\mathbf{t})^{2}\right]}
$$

- The points contained in a disk of radius \mathbf{r} centred at (\mathbf{x}, \mathbf{y}).

2. D_{4} distance (city-block distance)

$$
\mathbf{D}_{4}(\mathbf{p}, \mathbf{q})=|\mathbf{x}-\mathbf{s}|+|\mathbf{y}-\mathbf{t}|
$$

- Pixels having a \mathbf{D}_{4} distance from (\mathbf{x}, \mathbf{y}) less than or equal to some value \mathbf{r} form a Diamond centred (\mathbf{x}, \mathbf{y}),

Example 1: the pixels with $\mathbf{D}_{\mathbf{4}}=\mathbf{1}$ are the 4-nighbors of (\mathbf{x}, \mathbf{y}).

		2		
	2	1	2	
2	1	0	1	2
	2	1	2	
		2		

3. D_{8} distance (chess board distance)

$$
\mathbf{D}_{\mathbf{8}}(\mathbf{p}, \mathbf{q})=\max (|\mathbf{x}-\mathbf{s}|,|\mathbf{y}-\mathbf{t}|)
$$

- square - centred at (\mathbf{x}, \mathbf{y})
- $\mathbf{D}_{\mathbf{8}}=\mathbf{1}$ are 8-neighbors of (\mathbf{x}, \mathbf{y})

Example: \mathbf{D}_{8} distance ≤ 2

4. D_{m} distance:

- Is defined as the shortest m-path between the points.
- The distance between pixels depends only on the values of pixels.

Example: consider the following arrangement of pixels
$\begin{array}{ll}\mathbf{P}_{3} & \mathbf{P}_{4}\end{array}$
$\begin{array}{ll}\mathbf{P}_{1} & \mathbf{P}_{\mathbf{2}} \\ \mathbf{P} & \end{array}$
and assume that $\mathbf{P}_{\mathbf{y}} \mathbf{P}_{\mathbf{2}}$ have value $\mathbf{1}$ and that $\mathbf{P}_{\mathbf{1}}$ and $\mathbf{P}_{\mathbf{3}}$ can have a value of $\mathbf{0}$ or $\mathbf{1}$ Suppose, that we consider adjacency of pixels value $1(\mathbf{v}=\{\mathbf{1}\})$
a) if P_{1} and P_{3} are 0:

Then $\mathbf{D}_{\mathbf{m}}$ distance $=2$
b) if $P_{1}=1$ and $P_{3}=0$
m-distance $=3$;
c) if $P_{1}=0$; and $P_{3}=1$
d) if $P 1=P 3=1$;
m -distance $=4$ path $=p p_{1} p_{2} p_{3} p_{4}$

0	0	(1)	0	0
1	1			
1	1	0	0	1
(1)	0			
	0	0	(1)	0
	$\mathrm{D}_{\mathrm{m}}=3$	$\mathrm{D}_{\mathrm{m}}=2$		

Matlab Code
bw = zeros(200,200); bw(50,50) = 1; bw(50,150) = 1;
bw(150,100) = 1;
D1 = bwdist(bw,'euclidean');
D2 = bwdist(bw,'cityblock');
D3 = bwdist(bw,'chessboard');
D4 = bwdist(bw,'quasi-euclidean');
figure
subplot(2,2,1), subimage(mat2gray(D1)), title('Euclidean')
hold on, imcontour(D1)
subplot(2,2,2), subimage(mat2gray(D2)), title('City block')
hold on, imcontour(D2)
subplot(2,2,3), subimage(mat2gray(D3)), title('Chessboard')
hold on, imcontour(D3)
subplot(2,2,4), subimage(mat2gray(D4)), title('Guasi-Euclidean')
hold on, imcontour(D4)

