
Lecture 8 

 Elastic strains, compliance, and stiffness 

 Review for exam 

Stress: force applied to a unit area 

Strain: deformation resulting from stress 

Purpose of today’s derivations: Generalize Hooke’s law to a 3D body that may be subjected to any 

arbitrary force. 

We imagine 3 orthogonal vectors �̂�, �̂�, �̂�  embedded in a solid before we have deformed it.  After we 

have deformed the solid, these vectors might be of different length and they might be pointing in 

different directions.  We describe these deformed vectors 𝒙′, 𝒚′, 𝒛′ in the following way: 

𝒙′ = (1 + 𝜖𝑥𝑥)�̂� + 𝜖𝑥𝑦�̂� + 𝜖𝑥𝑧�̂� 

𝒚′ = 𝜖𝑦𝑥�̂� + (1 + 𝜖𝑦𝑦)�̂� + 𝜖𝑦𝑧�̂� 

𝒛′ = 𝜖𝑧𝑥�̂� + 𝜖𝑧𝑦�̂� + (1 + 𝜖𝑧𝑧)�̂� 

The components 𝜖𝛼𝛽 define the deformation.  They are dimensionless and have values much smaller 

than 1 in most instances in solid state physics.  How one ‘reads’ these vectors is (for example) 

𝜖𝑥𝑥force along x, deformation along x; 𝜖𝑥𝑦shear xy-plane along x or y direction (depending which 

unit vector it is next to) 

The new axes have new lengths given by (for example): 

𝒙′ ∙ 𝒙′ = 1 + 2𝜖𝑥𝑥 + 𝜖𝑥𝑥
2 + 𝜖𝑥𝑦

2 + 𝜖𝑥𝑧
2  

Usually we are dealing with tiny deformations so 2nd order terms are often dropped. 

Deformation also changes the volume of a solid.  Considering our unit cube, originally it had a volume of 

1.  After distortion, it has volume  

𝑉′ = 𝒙′ ∙ 𝒚′ × 𝒛′ = |

1 + 𝜖𝑥𝑥 𝜖𝑥𝑦 𝜖𝑥𝑧
𝜖𝑦𝑥 1 + 𝜖𝑦𝑦 𝜖𝑦𝑧
𝜖𝑧𝑥 𝜖𝑧𝑦 1 + 𝜖𝑧𝑧

| ≈ 1 + 𝜖𝑥𝑥 + 𝜖𝑦𝑦 + 𝜖𝑧𝑧 

Dilation (𝛿) is given by: 

𝛿 ≡
𝑉 − 𝑉′

𝑉
≅ 𝜖𝑥𝑥 + 𝜖𝑦𝑦 + 𝜖𝑧𝑧 

 

(2nd order terms have been dropped because we are working in a regime of small distortion which is 

almost always the appropriate one for solid state physics.  This expression also gives us the intuition that 

sheer stresses, to first order, do not change volume) 

 



Now we temporarily go back to considering atoms by writing down the effect that a generic 3D 

deformation will have on an atom originally located at 𝒓 = 𝑥�̂� + 𝑦�̂� + 𝑧�̂� 

After the deformation, the atom will be located at 𝒓′ = 𝑥𝒙′ + 𝑦𝒚′ + 𝑧𝒛′ 

𝑹 ≡ 𝒓′ − 𝒓 = 𝑥(𝒙′ − �̂�) + 𝑦(𝒚′ − �̂�) + 𝑧(𝒛′ − �̂�) 

Rather than plugging in expressions for x’,y’,z’ at this point, we define new variables u, v, w. 

𝑹(𝒓) = 𝑢(𝒓)�̂� + 𝑣(𝒓)�̂� + 𝑤(𝒓)�̂� 

In the limit of very small deformations we define new scalar strain components: 

𝝐𝒙𝒙 → 𝑒𝑥𝑥 ≡
𝜕𝑢

𝜕𝑥
 

𝝐𝒚𝒚 → 𝑒𝑦𝑦 ≡
𝜕𝑣

𝜕𝑦
 

𝝐𝒛𝒛 → 𝑒𝑧𝑧 ≡
𝜕𝑤

𝜕𝑧
 

The other strain components are defined in terms of changes in angle between axes 

𝑒𝑥𝑦 ≡ 𝒙
′ ∙ 𝒚′ ≅

𝜕𝑢

𝜕𝑦
+
𝜕𝑣

𝜕𝑥
 

𝑒𝑦𝑧 ≡ 𝒚
′ ∙ 𝒛′ ≅

𝜕𝑣

𝜕𝑧
+
𝜕𝑤

𝜕𝑦
 

𝑒𝑧𝑥 ≡ 𝒛
′ ∙ 𝒙′ ≅

𝝏𝒖

𝝏𝒛
+
𝝏𝒘

𝝏𝒙
 

Stress components 

We have been discussing strains thus far, and now we move on to stresses (effect before cause…). 

Stress=force per unit area 

Strain=change in length (dimensionless, by convention) 

There are 9 stress components, which we now write with different letters: 𝑋𝑥 , 𝑋𝑦, 𝑋𝑧, 𝑌𝑥 , 𝑌𝑦, 𝑌𝑧, 𝑍𝑥 , 𝑍𝑦 , 𝑍𝑧 

The capital letter is the direction of the force, and the subscript is the normal of the plane that the 

force is being applied to.  For example, the 𝑌𝑧 stress component is a sheer stress in the y direction, 

applied to the xy plane (to which the z axis is normal). 

The number of stress components can be reduced to 6 by noticing that when you sheer one plane, you 

simultaneously sheer another plane: 𝑋𝑦 = 𝑌𝑥 , 𝑋𝑧 = 𝑍𝑥 , 𝑌𝑧 = 𝑍𝑦    

Use these stress components to make a 3D 6x6 generalization of Hooke’s law: 

𝑋𝑥 = 𝐶11𝑒𝑥𝑥 + 𝐶12𝑒𝑦𝑦 + 𝐶13𝑒𝑧𝑧 + 𝐶14𝑒𝑦𝑧 + 𝐶15𝑒𝑧𝑥 + 𝐶16𝑒𝑥𝑦 

𝑌𝑦 = 𝐶21𝑒𝑥𝑥 + 𝐶22𝑒𝑦𝑦 + 𝐶23𝑒𝑧𝑧 + 𝐶24𝑒𝑦𝑧 + 𝐶25𝑒𝑧𝑥 + 𝐶26𝑒𝑥𝑦  



𝑍𝑧 = 𝐶31𝑒𝑥𝑥 + 𝐶32𝑒𝑦𝑦 + 𝐶33𝑒𝑧𝑧 + 𝐶34𝑒𝑦𝑧 + 𝐶35𝑒𝑧𝑥 + 𝐶36𝑒𝑥𝑦 

𝑌𝑧 = 𝐶41𝑒𝑥𝑥 + 𝐶42𝑒𝑦𝑦 + 𝐶43𝑒𝑧𝑧 + 𝐶44𝑒𝑦𝑧 + 𝐶45𝑒𝑧𝑥 + 𝐶46𝑒𝑥𝑦 

𝑍𝑥 = 𝐶51𝑒𝑥𝑥 + 𝐶52𝑒𝑦𝑦 + 𝐶53𝑒𝑧𝑧 + 𝐶54𝑒𝑦𝑧 + 𝐶55𝑒𝑧𝑥 + 𝐶56𝑒𝑥𝑦 

𝑋𝑦 = 𝐶61𝑒𝑥𝑥 + 𝐶62𝑒𝑦𝑦 + 𝐶63𝑒𝑧𝑧 + 𝐶64𝑒𝑦𝑧 + 𝐶65𝑒𝑧𝑥 + 𝐶66𝑒𝑥𝑦 

Or: 

𝑿 = 𝑪𝒆 

Where C is a 6x6 matrix and e is a column vector. 

Key points: 

 Stress that is purely compressive/stretching can generically produce strain in the orthogonal 

direction, as if a sheer stress was applied 

 The components of C are elastic stiffness constants or elastic moduli.  They have units of F/A 

(same as stress) because strain is dimensionless. 

 There are ways to reduce from 36 components of elastic stiffness to a much fewer number using 

symmetry. 

Simplification applicable to all crystal systems: 

Remember Hooke’s law: 𝑈 =
1

2
𝑘𝑥2 

Generalize to this case.  Elastic energy density: 

𝑈 =
1

2
∑∑ �̃�𝜆𝜇𝑒𝜆𝑒𝜇

6

𝜇=1

6

𝜆=1

 

The indices 1-6 are defined as: 1 ≡ 𝑥𝑥, 2 ≡ 𝑦𝑦… (same order as eqns for 𝑋𝑖  above); twiddle is used over 

C’s because we will refine our definition of them further in a little bit. 

Or 𝑈 = 𝒆′𝑪𝒆 

𝑋𝑥 =
𝜕𝑈

𝜕𝑒𝑥𝑥
≡
𝜕𝑈

𝜕𝑒1
= �̃�𝑒1 +

1

2
∑(�̃�1𝛽 + �̃�𝛽1)𝑒𝛽

6

𝛽=2

 

(first step comes because Force is spatial derivative of potential energy; on the right side, first term 

doesn’t have factor of ½ because it is a derivative of something like 1/2Cx^2; the term inside the 

summation come from the fact that each strain component shows up twice in the sum for U) 

Note that the second term on the right side of the equation above is always symmetric: 

1

2
(�̃�𝛼𝛽 + �̃�𝛽𝛼) 

Thus, off-diagonal components are symmetric and there are only 21 independent components of elastic 

stiffness: 



𝐶𝛼𝛽 = 𝐶𝛽𝛼 =
1

2
(�̃�𝛼𝛽 + �̃�𝛽𝛼) 

We can make further simplifications using symmetry for specific crystal systems. 

Example: cubic crystals 

In cubic crystals, the number of unique components in the stiffness matrix is reduced to 3.   I will first 

write down the result, then explain in words why it is correct: 

(

 
 
 

𝑋𝑥
𝑌𝑦
𝑍𝑧
𝑌𝑧
𝑍𝑥
𝑋𝑦)

 
 
 

= (

𝐶11
𝐶12
𝐶12
0
0
0

𝐶12
𝐶11
𝐶12
0
0
0

𝐶12
𝐶12
𝐶11
0
0
0

0
0
0
𝐶44
0
0

0
0
0
0
𝐶44
0

0
0
0
0
0
𝐶44

)(

𝑒𝑥𝑥
𝑒𝑦𝑦
𝑒𝑧𝑧
𝑒𝑦𝑧
𝑒𝑧𝑥
𝑒𝑥𝑦

) 

 

𝐶11: these terms are on the diagonal in the top left quadrant, and they denote elastic constants relevant 

when one pushed on one face and considers displacement in the same direction as the force.  For a 

cubic crystal, this ‘spring constant’ is clearly the same whether the force is applied along x, y, z. 

𝐶12: these terms are off diagonal in the top left quadrant.  They are the elastic constants involved, for 

example, when you push/pull the cube in the  x direction, and the cube bulges in the y and z direction.  

Clearly, the amount of bulging in that direction will be the same in both y and z (because it is a cube), 

and when an identical force is applied along the y or z direction, the other two dimensions will bulge or 

contract in the same way. 

The zero terms in the top right quadrant: in a cube (and other orthogonal systems), when you push 

down on a face, there will not be a sheer deformation. 

The zero terms in the bottom left quadrant: when you sheer a cube, you will not produce a compressive 

deformation 

𝐶44: these are the components of sheer moduli.  They are the same because sheering one plane in a 

cube is equivalent to sheering an orthogonal plane. 

Bulk modulus of a cubic crystal 

Elastic constant to convert between hydrostatic pressures and volume changes 

Consider uniform dilation, which is expected for a cube: 𝑒𝑥𝑥 = 𝑒𝑦𝑦 = 𝑒𝑧𝑧 =
1

3
𝛿 

Potential energy from this deformation: 

𝑈 =
1

2
𝐵𝛿2 (B is defined as the bulk modulus) 

Comparing this to the general expression for U given earlier, and dropping all C terms that are 0 or 

sheer: 

𝑈 =
1

6
(𝐶11 + 2𝐶12)𝛿

2 



Putting it together: 

𝐵 =
1

3
(𝐶11 + 2𝐶12) 

Review for exam 

 Lattice and basis 

 Miller indices, especially in terms of primitive vs conventional lattice vectors 

 Structure factor 

 Bragg’s law 

 

Lattice and basis: 

Vocabulary: 

Lattice: any regular repetition of points in space.  This is a mathematical construct 

Primitive lattice: a lattice in which all of the points can be reached by D translation vectors 

(D=dimension—1,2, or 3)  of the form 𝒓 = ∑ 𝑢𝑖𝒂𝒊
𝐷
𝑖=1  ; when these primitive translation vectors are used 

to construct a parallelogram or parallelepiped cell, there will be one lattice point per cell.  There are only 

5 unique primitive lattices in 2D and 14 in 3D 

Basis: a group of one or more atoms which is attached to each point in a lattice which are repeated 

infinitely in space 

Unit cell: Lattice+basis attached to each lattice point; this object repeats infinitely in space to form a 

crystal 

Primitive vs conventional cell: for a subset of primitive lattices, there is a way to visualize them within a 

rectangular, cubic, or otherwise orthogonal structure.  These conventional cells are often easier to work 

with because cross products are easy with orthogonal vectors, but they have more than one lattice point 

per cell which can make other calculations (e.g. structure factor) more difficult. 

 

Hexagonal-close packed structure: identify lattice and basis 

 

ZincBlende structure: identify lattice and basis 



 

 

ZincBlende structure is based on the FCC lattice and it is almost like the diamond structure except the 

internal atoms are different from the FCC atoms.  Internal atoms located at (
1

4
,
1

4
,
1

4
) and three equivalent 

positions with alternating corners. 

Miller indices: 

Procedure for extracting them in textbook: 

1.”Find the intercepts of the axes in terms of the lattice constants a1, a2, and a3.  The axes may be those 

of a primitive or non-primitive cell 

2.  Take reciprocals and reduce to three integers 

Example FCC lattice: 

Conventional cell (cubic): find 200 plane 

 

Primitive lattice for FCC: 



 

How to describe that same object (plane cutting cube halfway) in terms of primitive lattice vectors? 

Find intersection point of each lattice vector with the plane: 

𝑎1 → 1 
𝑎2 → ∞ 

𝑎3 → 1 

Inverses(101) 

Another example: (110) plane in conventional cell is the ____ plane in primitive cell? 

𝑎1 → 1 
𝑎2 → 2 
𝑎3 → 2 

Inverses (1, 1/2 , ½) 

Miller indices(122) 

Another example: find (110) plane referenced to primitive cell 

Intercepts: 1 along a1, 1 along a2 and infinity along a3 

This ends up being a plane parallel to the xz plane, intersecting halfway into the cubethe (020) plane. 

Structure factor 

Name of the game (usually): find when it is zero 

𝑆𝑮 =∑𝑓𝑗𝑒
−𝑖𝑮∙𝒓𝒋

𝑠

𝑗=1

 

𝑆𝑮(𝜈1𝜈2𝜈3) =∑𝑓𝑗𝑒
−2𝜋𝑖(𝜈1𝑥𝑗+𝜈2𝑦𝑗+𝜈3𝑧𝑗)

𝑠

𝑗=1

 



Example: FCC (use conventional cell) 

 

Putting the origin at the back left corner and having z point up and y to the right, we have atoms at the 

following fractional coordinates (factor of a is omitted): 

(0,0,0); (
1

2
, 0,
1

2
) ; (0,

1

2
,
1

2
) ; (
1

2
,
1

2
, 0)  

(When atoms are shared with adjacent cells we count only enough of those atoms to get the total 

number contained in one cell.  For example, we counted all of the back corner atom (0,0,0) and left 

the other 7 to other unit cells because there are 8*1/8=1 corner atoms; ditto for the face-centered 

atoms which are each shared with 2 other cells, only count 3 of them) 

The structure factor for the conventional FCC cell is given by: 

𝑆𝐺(𝜈1𝜈2𝜈3) =∑𝑓𝑗𝑒
−2𝜋𝑖(𝜈1𝑥𝑗+𝜈2𝑦𝑗+𝜈3𝑧𝑗)

𝑠

𝑗=1

 

= 𝑓[1 + 𝑒−𝑖𝜋(𝜈1+𝜈3) + 𝑒−𝑖𝜋(𝜈2+𝜈3) + 𝑒−𝑖𝜋(𝜈1+𝜈2) 

= {
0 if one index is odd and other two even or if two are odd and one is even

4𝑓 if all indices are odd or all are even
 

When is the structure factor zero when we use the primitive cell: (ans: never) 

Why? For FCC structure, there is only one atom in the primitive cell (if we considered the diamond 

structure, there would be 2 and we would have cancelation) 

What would happen if the face-centered atoms were a different species from corner ones? 

𝑆𝐺 = [𝑓𝑐𝑜𝑟𝑛𝑒𝑟 + 𝑓𝑓𝑎𝑐𝑒𝑒
−𝑖𝜋(𝜈1+𝜈3) + 𝑓𝑓𝑎𝑐𝑒𝑒

−𝑖𝜋(𝜈2+𝜈3) + 𝑓𝑓𝑎𝑐𝑒𝑒
−𝑖𝜋(𝜈1+𝜈2) 

This would not be zero except for some great coincidence, but it is possible for some diffraction peaks 

for be reduced.  Note that for x-rays, the atomic form factor, f, is proportional to the number of 

electrons in that type of atom/ion. 

Bragg law: 

2𝑑𝑠𝑖𝑛𝜃 = 𝑛𝜆 

We derived this in two ways in class, via path length difference for 2 planes and via phase difference for 

an infinite crystal.  In the latter case, the angle and wavelength is encoded in the wavevector of the 

plane wave 𝑒𝑖𝒌∙𝒓.  In the second derivation, we found that the difference between wavevector of 



incoming and outgoing beams needs to be a vector of the reciprocal lattice for there to be constructive 

interference and a diffraction peak: 𝒌′ − 𝒌 = 𝚫𝒌 = 𝑮 

The way you use that information is 𝑑ℎ𝑘𝑙 = 2𝜋/|𝑮𝒉𝒌𝒍| 

Were 𝑮𝒉𝒌𝒍 = ℎ𝒃𝟏 + 𝑘𝒃𝟐 + 𝑙𝒃𝟑  is a specific vector of the reciprocal lattice which you showed in your 

homework to be perpendicular to the hkl plane.  The equation above makes it very easy to calculate the 

spacing between crystallographic planes that have complicated orientations. 

Once 𝑑ℎ𝑘𝑙 is known, one can calculate the predicted diffraction angle that type of plane will produce for 

a known wavelength of radiation.  Also, one can (and often does) work the other way: they are given a 

diffraction angle (usually powder diffraction) and they know they wavelength, and they are asked to 

calculate 𝑑ℎ𝑘𝑙 and also figure out what planes they are looking at. 

 

 

 

 

 

 

 

 

 

 

 

 

 


