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Equality Constrained Minimization 

minimize f(x)

subject to Ax = b

- f convex, twice continuously di↵erentiable
- p⇤ = inf

x

f(x) is finite and attained
- A 2 Rp⇥n with rank p

Optimality condition: from KKT condition, x⇤ is optimal if and only if there
exists ⌫⇤ such that

Ax

⇤ = b, rf(x⇤) +A

T

⌫

⇤ = 0

- a set of n+ p equations in n+ p variables x⇤
, ⌫

⇤
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Equality Constrained Quadratic Minimization 

minimize (1/2)xT
Px+ q

T
x+ r

subject to Ax = b

Optimality condition: 
P A

T

A 0

� 
x

⇤

v

⇤

�
=


�q

b

�

- coe�cient matrix is called KKT matrix
- KKT matrix is nonsingular i↵

Ax = 0, x 6= 0 ) x

T
Px > 0

- equivalent condition for nonsingulariry: P +A

T
A � 0
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Eliminating Equality Constraint 

represent solution of {x|Ax = b} as

{x|Ax = b} = {Fz + x̂|z 2 Rn�p}

where x̂ is any particular solution, and range of F 2 Rn⇥(n�p)
is null space of

A (F has rank n� p and AF = 0)

reduced or eliminated problem

minimize f(Fz + x̂)

- an unconstrained problem with variable z 2 Rn�p

- once have solution z

⇤
, can obtain x

⇤
and ⌫

⇤
as

x

⇤
= Fz

⇤
+ x̂, ⌫

⇤
= �(AA

T
)

�1
Arf(x

⇤
)
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Example 

optimal allocation with resource constraint

minimize f1(x1) + f2(x2) + · · ·+ fn(xn)

subject to x1 + x2 + · · ·+ xn = b

eliminate xn = b� x1 � · · ·� xn�1, i.e. choose x = Fz + x̂ with

x̂ = ben, F =


I

�1T

�

reduced problem:

minimize f1(x1) + f2(x2) + · · ·+ fn(b� x1 � · · ·� xn�1)
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Extension of Newton’s Method 

Newton’s method can be extended to include equality constraints. The extended

method is almost the same as Newton’s method without constraints, except for

two di↵erences:

- The initial point must be feasible (i.e., satisfy x 2 dom f and Ax = b)

- The definition of Newton step is modified to take the equality constraints into

account. In particular, we make sure that the Newton step �xnt is a feasible

direction, i.e., A�xnt = 0
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Newton Step 

Newton step �xnt of f at feasible x is given by solution v of


r2

f(x) A

T

A 0

� 
v

w

�
=


�rf(x)

0

�

Interpretations:

- �xnt minimizes second order approximation (with variable v)

minimize

ˆ

f(x+ v) = f(x) +rf(x)

T
v + (1/2)v

Tr2
f(x)v

subject to A(x+ v) = b

- �xnt solves linearized optimality condition:

0 = rf(x+ v) +A

T
w ⇡ rf(x) +r2

f(x)v +A

T
w, A(x+ v) = b
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Newton Decrement 

�(x) = (�x

T

ntr2
f(x)�xnt)

1/2

= k�xntkr2
f(x)

- gives an estimate of f(x)� p

⇤
, using quadratic approximation

ˆ

f :

f(x)� inf

Ay=b

ˆ

f(y) = �(x)

2
/2

- as before,

rf(x)

T

�xnt = �k�xntk2r2
f(x) = ��(x)

2

therefore it comes up in backtracking line search

- in general, �(x) 6= (rf(x)

Tr2
f(x)

�1rf(x))

1/2
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Newton’s Method with Equality Constraints 

- a feasible descent method: x

(k)
feasible and f(x

k+1
) < f(x

k
)

- a�ne invariant
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Newton’s Method and Elimination 

Newton’s method for reduced problem

minimize

¯

f(z) = f(Fz + x̂)

Newton’s method for

¯

f , started at z

(0)
, generates iterates z

(k)

Newton’s method with equality constraints when started at x

(0)
= Fz

(0)
+ x̂,

iterates are

x

(k+1)
= Fz

(k)
+ x̂

hence, don’t need separate convergence analysis
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Newton Step at Infeasible Points 

Linearizing optimality conditions at infeasible x gives


r2

f(x) A

T

A 0

� 
�xnt

w

�
= �


rf(x)

Ax� b

�

Primal-dual Interpretations:

- write optimality condition as r(y) = 0, where

y = (x, ⌫), r(y) = (rf(x) +A

T
⌫, Ax� b)

- linearizing r(y) = 0 gives r(y +�y) ⇡ r(y) +Dr(y)�y = 0:


r2

f(x) A

T

A 0

� 
�xnt

�⌫nt

�
= �


rf(x) +A

T
⌫

Ax� b

�
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Infeasible Start Newton Method 

not a descent method: f(x

+
) > f(x) is possible
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Equality Constrained Analytic Centering 

primal problem: minimize �
nX

i=1

log xi subject to Ax = b

dual problem: maximize � b

T
⌫ +

nX

i=1

log(A

T
⌫)i + n

Three methods for an example with A 2 R100⇥500
, di↵erent starting points:

1. Newton method with equality constraints (x

(0) � 0, Ax

(0)
= b)
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Equality Constrained Analytic Centering 

2. Newton method applied to dual problem (AT ⌫(0) � 0)

3. infeasible start Newton method (x

(0) � 0)


