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Lecture 8: Free energy

1 Introduction

Using our various ensembles, we were led to a rather simple di�erential relation between energy
and other state variables, Eq. (55) of Lecture 7:

dE=TdS ¡PdV + �dN (1)

The terms on the right are di�erent ways the energy can change: the �rst term is heat, since
dS=

dQ

T
, the second term is work from expanding volume, the third term is the energy associated

with bond formation or particle creation.
Holding any two of the four di�erentials �xed we can derive from this equation lots of relations�
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and so on. Some of these are more useful than others. They are collectively known as Maxwell
relations.

The way to think about the Maxwell relations is that they relate small changes of E;S; V and
N , with T ; P and � giving the relative size relating the small changes. So the functions depend
only on the other di�erential variables.

E=E(S; V ;N); S=S(E; V ;N); V =V (E; S;N ); N =N(E;S; V ) (3)

The variables T ; P ; � are derived quantities. They are calculated by taking partial derivatives
with respect to the independent variables. That is, if one of the functional forms is known, such
as S(E; V ;N), we can �nd T ; P and � by taking derivatives.

Since partial derivatives commute, we can derive some additional relations amount derivatives:�
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and so on.
Keep in mind that the general relations amount E;S; V ;N ; T ; P ; � hold for any system. The

�rst 3 equations in Eq. (2) are the de�nitions of T ; � and P . The others follow mathematically
from these using elementary multivariate calculus. Starting with the speci�cation of a system in any
ensemble (micro, canonical, or grand canonical), we can compute these quantities and the relations
will hold. We often use monatomic ideal gases to check these general relations. For example� the
entropy of a monatomic ideal gas is
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which is the statement 3

2
NkBT , is the average kinetic energy of a gas. Another one is,
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which is the ideal gas law, and so on.
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When we have a function like S(V ; E; N), we can easily see how the system responds when
we change V ;E and N . In physical situations, we are often much more interested in knowing how
our system responds to changes in temperature (when we heat it) or pressure (when we compress
it), or, for chemical reactions in particular, how to characterize equilibrium properties of a system
when T and P are held �xed. So we would like the system to be described by functions that
depend explicitly on T and P rather than E and V . In this lecture, we construct new variables
(free energies) that depend on T and P . The four new potentials we introduce are

Helmoltz free energy: F �E ¡TS (8)

Enthalpy: H �E+PV (9)

Gibbs free energy: G�E+PV ¡TS (10)

Grand free energy: ��E ¡TS ¡ �N (11)

These are general de�nitions of these new variables, holding for arbitrary systems. We will work
through these, constructing them, showing what the depend on, and then exploring their physical
signi�cance.

As a warning, this business of dependent and independent variables is going to be one of the
most confusing and infuriating things in the course. Unfortunately, it is essential to understanding
thermodynamics so there's no getting around it. We'll try to be as clear about what is going on
as possible.

As another piece of advice going forward: sequester in your mind all the complicated subtleties
with entropy (ergodicity, Boltzmann's H theorem, Lodschmidt's paradox, Landauer's principle,
etc.). If you really reach down deep to understand the foundations of the second law, all these things
are important. However to use statistical mechanics, and thermodynamics, in physics, chemistry,
astronomy and so on, we de�ne systems based on macroscopic quantities (P ;V ;N ;T , ...), entropy
is extensive (Stot= S1+ S2), the second law holds without subtlety (�Stot> 0), and �; T and P
are constant for systems in equilibrium.

2 Euler identity

Before getting started with all the new potentials, there is actually a very nice relation we can
derive among all the di�erent interdependent variables using only Eq. (1) and the fact that entropy
is extensive.

From Eq. (1) we see that S=S(E;V ;N) (which we already knew since that's how we set up the
microcanonical ensemble in the beginning). E; V ;N and S are all extensive quantities. When we
double the size of a system, they all double. This is in contrast to P ; � and T which are intensive
quantities. When we double the system, they do not change.

It's actually very hard to make an extensive function. Any extensive function f(x) must satisfy
f(cx)= cf(x) for any c. Let's write f(x) as a Taylor series, f(x)=

P
n anx

n. Then for f(x) to be
extensive, we must have

c
X
n

anx
n= cf(x)= f(cx) =

X
n

cnanx
n (12)

The only way this can hold for all x is if an=0 for n=/ 1. That is, f(x) = ax for some a. We can
write this conclusion in a suggestive way ,that any extensive function of one variable must satisfy.

f(x) =

�
df
dx

�
x (13)

Are thermodynamic functions have logarithms in them, so we can't obviously write them as
Taylor expansions. Nevertheless, the constraint still holds. Extensivity requires

S(cE; cV ; cN)= cS(E; V ;N) (14)
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Di�erentiating both sides with respect to c gives�
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This holds for any c, so setting c=1 we get
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E
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T
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or equivalently

E=TS ¡PV + �N (18)

This is known as the Euler equation. You can check it yourself for a monatomic ideal gas.
A related result comes from taking the total derivative of both sides

dE= d(TS)¡ d(PV ) + d(�N) =TdS+SdT ¡VdP ¡PdV + �dN +Nd� (19)

Subtracting Eq. (1) we get

SdT ¡VdP +Nd�=0 (20)

This is called the Gibbs-Duhem equation. It says that T ; P and � are not independent �
changing T and P constrains exactly the way � changes. The Gibbs-Duhem equation generates a
whole new set of Maxwell relations, such as�
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and so on.
The Euler equation at the Gibbs-Duhem equation hold for almost all statistical mechanical

systems. Keep in mind however that the extensivity of entropy is not guaranteed by de�nition,
and in some situations, where there are long-range interactions like gravity, as in stars, entropy
is not extensive. Indeed, famously, for a black hole, entropy scales as the area of the black hole's
event horizon, not the volume of the hole. That being said, for the vast majority of statistical
mechanical systems we will consider, the Euler equation holds. To be safe, we will avoid using the
Euler equation, but rather check that it holds in situations where entropy is indeed extensive.

3 Helmholtz Free Energy

We de�ne the Helmholtz free energy as

F �E ¡TS (22)

Free energy is a concept particularly useful at constant temperature.
We can take the di�erential of F :

dF = dE ¡TdS ¡SdT =¡PdV + �dN ¡SdT (23)

We used d(TS) = TdS +SdT , which follows from the chain rule, in the �rst step and Eq. (1) in
the second. Note that the dS has dropped out, meaning that F does not depend on S. What it
does depend on can be read o� of Eq. (23):

F =F (V ;N ; T ) (24)

This generates a whole new set of Maxwell relations, by picking two terms in Eq. (23):�
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and so on.
It is perhaps also worth pointing out to the mathematically-oriented crowd that the operation of

replacing the dependent variable S in E(S; V ;N) with a new dependent variable T = @E

@S
is known

as a Legendre transform. Another example of a Legendre transform is going from a Lagrangian
L(q_; q) that depends on velocity q_ to a Hamiltonian H(p; q) that depends on momentum p=

@L

@q_
.

The Hamiltonian does not depend on q_ just as F does not depend on S.
Before continuing, let me try to address a common pitfall. You might ask why is there no dE

in Eq. (23)? Similarly, you could ask why is there no dT in Eq. (1)? The answer is that the non-
trivial content in Eq. (1) is precisely that there is no dT (and no d� or dP either). Of course T
does vary, so if we have a nonzero dN ;dV and dS then dT is probably nonzero as well. The point
is that dT is not an independent variation. Eq. (1) says that we don't need to know what dT is
to compute dE, we just need dS, dV and dN . Similarly, the content of Eq. (23) is that we don't
need to know dE or dS, it is enough to know dV , dN and dT . E is a dependent variable in Eq.
(23), so its variation is determined by the variation of the other, independent variables.

3.1 Free energy for work
The Helmholtz free energy is one of the most useful quantities in thermodynamics. Its usefulness
stems from the fact that dV , dN and dT are readily measurable. This in contrast to E(S; V ;N)
which depends on entropy that is hard to measure and in contrast to S(E; V ; N) which depends
on energy that is hard to measure. Helmholtz free energy is particularly powerful for systems at
constant temperature where dF = dE ¡ TdS. In previous courses you have studied mechanical
systems using energy. Mechanical systems all �xed degrees of freedom, so S =0 and F =E. Free
energy is a generalization of energy whose importance is revealed by working at �nite T .

Suppose we have some system in thermal contact with a heat bath, and we want the system to
do work by pushing a piston (which in turn can lift a weight, or whatever). We do not demand that
the pushing be reversible, so we are considering an arbitrary isothermal expansion. If the system
were isolated, as it pushes its energy would go down and it would cool, but since its in contact with
a heat bath, it instead draws in energy from the bath and turns that heat into work. If heat Q is
drawn in, the change in entropy of the bath is �Sbath=¡Q

T
. By the second law of thermodynamics,

we know also that �Ssystem> Q

T
, with the equality holding only for a reversible expansion. If work

W is done on the piston by the expansion, then, by conservation of energy, the change in energy
of the system is given by �Esystem=¡W +Q. Then the free energy change (at constant T ) is:

�Fsystem=�Esystem¡T�Ssystem6 (¡W +Q)¡T Q
T
=¡W (26)

That is,

�Fsystem6¡W (27)

where the inequality becomes an equality if and only if the expansion is done reversibly. So we see
that when work is done at constant temperature, the free energy of the system is depleted to do the
work. This is why free energy is called free: it is the energy available to do work. In an insulated
system (not heat exchange), the energy of the system is used for work, but in an isothermal system,
it is the free energy that is used for work. The minimum that the free energy will go down by is
W itself, which happens if and only if the work is done reversibly.

For another perspective, consider the case where no work is done by the system on the surround-
ings. We can always do this by including whatever the work would be done on as part of the system.
But there are also many examples where work is not relevant, such as when gases mix together, or
some chemical reactions occur, or a system settles down after some perturbation. WhenW =0, we
get from Eq. (27) that �Fsystem6 0. Thus, in a system kept at constant temperature, interacting
with the surroundings only through an exchange of heat (i.e. no work), the Helmholtz free energy
never increases. As the system settles down towards equilibrium, F will decrease until equilibrium
is reached when it stops decreasing (if it could decrease more by a �uctuation, it would, and then
it could never go up again). Therefore, in an isolated system kept at constant temperature, the
equilibrium is the state of minimum Helmholtz free energy.
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To be extra clear, let us emphasize that free energy refers to the free energy of the system only,
F =Fsystem. So to �nd the equilibrium state we minimize the free energy of the system, ignoring
the heat bath. Indeed, this is why free energy is powerful: it lets us talk about the system alone.

For a concrete example, consider a system of two gases separated by a partition, initially with
di�erent pressures P1 and P2 and di�erent volumes V1 and V2 with V1+V2=V , in thermal contact
with a heat bath. Then, since F =F (T ;N ;V ) and T and N are �xed, the minimization condition is

0= dF =

�
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@V1

�
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�
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@V2

�
dV2=P1dV1+P2d(V ¡V1)= (P1¡P2)dV1 (28)

Thus the pressures are equal at equilibrium � if P1=/ P2 then changing V would lower F . Of course,
we knew this already; previously, we derived the pressure equality from maximization of the total
entropy at constant energy. Here we are deriving it from minimization of free energy of the system
at constant temperature. The two are equivalent. Indeed, the second law of thermodynamics is
equivalent to the minimization of free energy. In general however, it is much easier to deal with
systems at constant temperature than at constant entropy, and to minimize the free energy of the
system rather than to maximize the total entropy.

In summary,

� Free energy is to a constant T system what E is to a mechanical system.

� Free energy is the available energy to do work at constant T .

� In a system kept at constant T , interacting with the surroundings only through
an exchange of heat (i.e. no work), the Helmholtz free energy never increases.

� In an isolated system at constant T , free energy is minimized in equilibrium.

� Free energy refers to the free energy of the system only F =Fsystem.

3.2 Free energy and the partition function
Next, consider how to compute free energy from the partition function in the canonical ensemble.
Recall that in the canonical ensemble, S= hEi

T
+ kBlnZ. So for an isolated system where hE i=E

we immediately get that

F =¡kBT lnZ (29)

So the free energy is (- kBT times the logarithm of) the partition function. It therefore carries all
that useful information about the spectrum that the partition function has � the partition function
and free energy are both very powerful. But it is the same power, since they are the same function.

Another way to write the relation in Eq. (29) is

e¡�F =Z=
X

e¡�E (30)

This has the interpretation that the free energy is the energy a system would have if there were
only one microstate. In essence, all the possible degrees of freedom of the system are summed over,
and they are all encoded in the free energy. This gives the free energy the interpretation of an
e�ective potential. For example, the Lennard-Jones potential for the energy between atoms is an
e�ective potential � it comes from integrating out all the electronic and van der Waals �uctuations
that generate the interatomic force. If you haven't seen it already, the idea of e�ective potentials
is an enormously powerful concept in physics. We won't use it to much this course, but it guides
essentially all of condensed matter physics and much of particle physics.

For a monoatomic ideal gas recall that

Z= e¡N
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As a check, we note that�
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2
NkBT for a monatomic ideal gas, agrees with Eq. (5). Also,
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in agreement with the ideal gas law.

3.3 Spring and gas
To build some more intuition for free energy, let's consider some examples. First, think about
the free expansion of a gas, from V1! V2, at constant temperature. No work is done in the free
expansion. The distribution of molecular speeds is the same, they just have more room to move
around in, so the internal energy of the gas doesn't change either, �E=0. The entropy change is
�S=NkB lnV2

V1
, as we saw in the discussion entropy of mixing. So the change in free energy is

�F =�E ¡T�S=¡NkBT ln
V2
V1

(35)

In this case, the transition is completely driven by entropic considerations.
Now consider a piston on a spring, with force constant k, immersed in a heat bath (e.g. freely

moving in air at room temperature). The spring only has 1 degree of freedom, the position of the
piston. Let x be the displacement of the piston from its equilibrium position. Its energy is

E(x; x_)=
1

2
mx_2+

1

2
kx2 (36)

The �rst term is kinetic energy, the second is potential energy. The entropy of the spring is zero
and doesn't change as the spring moves. As the spring moves the piston, it dissipates energy into
the bath. Note however that it does no work on the bath: all the energy transferred goes to heating
up the bath, there is no sense in which the energy transferred is useful in any sense, so it cannot
be doing work. Thus this system quali�es for our general results about F decreasing. Since S=0
for the piston+spring system, F = E. So minimizing F just corresponds to minimizing E. This
free energy is minimized for x = x_ = 0, the equilibrium position of the spring. Alternatively, we
could de�ne the system as the spring plus the heat bath. Then, �E=0 so �F =¡T�Sbath=¡Q.
Thus free energy is minimized when the maximum amount of heat is transferred to the bath, i.e.
the entire energy of the spring.

Now let's put the spring and the gas together. We'll start the gas o� at volume V0 and the
spring at x=0:

Figure 1. Spring-loaded piston against gas in a heat bath
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What is the equilibrium state of this system?
To �nd the equilibrium, we want the free energy to be stationary when we vary x, so we need
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(37)

Now the energy in the gas doesn't depend on x, since we are at constant temperature. So @E

@x
comes

only from the spring, where we get @E

@x
=Fpiston=¡kx. We use the curly F for force to distinguish

it from free energy. Fpiston is the force acting on the gas by the piston. The piston doesn't have

any entropy, so @S

@x
comes entirely from the gas. Now, the volume of the gas is V =V0+Ax where

A is the area of the piston. So
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In the last step we used that pressure times area is force. So Eq. (37) becomes

@F
@x

=Fpiston¡Fgas (39)

Setting the variation of the free energy to zero, @F
@x
=0, implies Fpiston=Fgas. This of course makes

complete sense � we can compute the equilibrium point of the spring by demanding the the forces
are equal, or we could �nd the equilibrium by minimizing the free energy. The result is the same.

3.4 Energy (non)-minimization
It is common lore to think of energy being minimized by physical systems: a ball rolls down to the
bottom of a hill and stays there. But energy is conserved, so where does this common sense lore
come from? It comes from free energy! All those systems in which energy is minimized are really
minimizing free energy. You may never have thought about the gas in air surrounding the ball,
but it it weren't for the gas, or the molecules in the dirt that can heat up due to friction, the ball
would just roll right back up the hill.

The gas-spring example hopefully illustrated the point that there is no tendency to minimize
energy. Total energy is conserved, in spontaneous motion, adiabatic motion, or whatever. The
energy E in the de�nition F =E¡TS is not the total energy but rather the energy of the system.
We assume the system is in thermal equilibrium, so energy in the form of heat can leave the system
into the surroundings, or enter the system from the surroundings. Thus �E may not be zero. But
the energy of system itself does not tend towards a minimum.

The tendency to minimize free energy is entirely because of a tendency to maximize entropy.
This is clearest if we write

�F =¡T

2664 �S||{z}}
�Ssys

+

�
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�
|||||||||||||||||||||||||||||||||||||||||||||||||| |{z}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}} }
�Ssurr

3775 (40)

The�S term is the entropy change of the system. The second term �E

T
=

Q

T
is the entropy change of

the surroundings. Their total is maximized, so entropy is maximized, and free energy is minimized.
When we think of a spring with friction slowly stopping, we think it is minimizing energy. Indeed,
it is minimizing energy, but that is because it is maximizing ¡E

T
=S.

In summary, energy minimization is really free energy minimization, which really is entropy
maximization.

4 Enthalpy
We use the symbol H for enthalpy. It is de�ned as

H �E+PV (41)

So, using Eq. (1),

dH = dE+PdV +VdP =TdS+VdP + �dN (42)
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Thus, �
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Enthalpy is a concept useful at constant pressure. It is a function H =H(S; P ;N).
Recall that we had two heat capacities related to how much temperature rises when heat dQ

is put in at constant V or constant P
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�
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(44)

For constant V , no work is done, since W =PdV . So CV =
�
@E

@T

�
V
. For constant P , the gas has to

expand when heat is absorbed to keep the pressure constant, so work is done and the energy goes
down. The total energy change is �E=Q¡P�V . In other words, �H =Q. Thus,

CP =

�
@H
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�
P

(45)

Thus enthalpy plays the role at constant pressure that energy does at constant volume.
For a monatomic ideal gas, since PV =NkBT and E=

3

2
NkBT we get immediately that

H =E+PV =
5
2
NkBT (46)

so, from Eq. (45) CP =
5

2
NkB in agreement with what we found in Lecture 5.

4.1 Enthalpy of chemical bonds
Enthalpy is especially useful in chemistry, where pressure is nearly always constant but volume
is not under control. For example, when you open the door to your room, the volume of the air
changes, but the pressure is the same. Chemicals in a solution are also at constant pressure, as are
biological reactions in cells. When you mix two solutions, the volume accessible to each changes,
but the pressure is the same.

Since chemistry (and biology) takes place at constant pressure and temperature, when a chem-
ical reaction occurs the heat released is Q = �H. Thus when you measure the heat released or
absorbed in a reaction, you are measuring the enthalpy.

There are di�erent ways to compute the enthalpy of a reaction, to di�erent degrees of approx-

imation. Consider for example the hydrogenation of ethene= (C2H4)= into ethane

(C2H6)= :

H2+C2H4!C2H6 (47)

First of all, you can just look up the enthalpy for this reaction. That is called the standard
enthalpy of reaction, where standard means under some reference conditions, like 298K and 1
atm. For this reaction, we can look up at the reaction enthalpy is �rH°=¡136.3� 0.3 kJ

mol . The
enthalpy decreases, to the reaction is exothermic: heat is released.

If we don't have the reaction enthalpy handy, we can compute the enthalpy change by taking
the di�erences of the enthalpies of the products and the reactants. So in this case, we look up
that the enthalpy of formation of each. The enthalpy of formation is the enthalpy change in
breaking something down into its constituent atoms (C;S;Si) or diatomic molecules (H2,O2,N2,F2).
So the enthalpy of formation of C or H2 is 0, by de�nition. The enthalpy of formation for C2H4 is
�fH°= 52.4� 0.5 kJ

mol and for C2H6 is �fH°=¡84� 0.4 kJ
mol . Combining these, the enthalpy of the

reaction is�rH°=¡84 kJ
mol¡52.4 kJ

mol=¡136.4
kJ
mol in agreement with the directly measured enthalpy

of reaction. That we can add and subtract enthalpies to get the reaction enthalpy is known as
Hess's law. There are lots of laws in chemistry.
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If we don't have the enthalpy's of formation handy, our last resort is to compute the enthalpy
change ourselves by adding up the enthalpy of each bond. There are only a �nite number of relevant
bonds for organic chemistry, so we can just make a table of them:

Figure 2. Average enthalpies of common covalent bolds. Numbers are listed as positive, as enthalpies
required to break the bonds.

So C2H4= has one C = C double bond, Hb = ¡614 kJ
mol and 4 CH bonds each with

Hb=¡413 kJ
mol giving it an enthalpy of HC2H4=¡2266

kJ
mol . C2H6= has 6 CH bonds

and one C-C single bond, giving it HC2H6=¡2826
kJ
mol . H2 has HH2=¡436

kJ
mol . So the net enthalpy

change in the reaction is HC2H6¡HC2H4¡HH2=¡124
kJ
mol . This is not too far o� from the reaction

value of�rH°=¡136.3 kJ
mol but not terribly close either. The approximation that all covalent bonds

in any material have the same enthalpy is apparently not terri�c.
Also keep in mind that bond enthalpies are tabulated for gases. For liquids and solids, inter-

molecular interactions cannot be neglected and the bond enthalpies are not enough. For liquids
and solids, there are still useful tabulated enthalpies of formation and reaction that can be used
and will give better estimates than adding the bond enthalpies.

The bottom line is

� Using enthalpies of reaction is best (when available).

� Using enthalpies of formation and Hess' law is the most convenient compromise, giving
nearly identical to reaction enthalpies and requiring less tabulated data.

� Using bond enthalpies is a last resort for when formation enthalpies are not available.

4.2 Expansion work

A natural question to ask is whether the di�erence between enthalpy and energy actually even
matters. The di�erence between enthalpy and energy is �(PV). To see how big this is, relative to
the enthalpy or energy, let's consider some examples.
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For a �rst example, consider chemical reactions in solids. Clam shells have a layer of calcite
and a layer of aragonite. These minerals are both naturally occurring forms of calcium carbonate
CaCO3. They both have the same chemical composition, but di�erent lattice structure. Aragonite
forms from calcite at high pressure, but at typical pressures on the surface of the earth, aragonite
is unstable and turns into calcite on the 10 million year timescale. The two minerals have di�erent
densities: aragonite is more dense, at 2.93 g

cm3 than calcite at 2.71 g

cm3 . Thus when aragonite converts
into calcite, its volume expands, doing work and an enthalpy�H=0.21 kJ

mol is released at P =1atm.
The volume change is

�V =

 
1

2.71 g

cm3

¡ 1

2.93 g

cm3

!
= 0.028

cm3

g
(48)

Now 1 mole of CaCO3 weights 100g, and using P =1 bar= 105Pa= 105 J

m3 = 10¡4 kJ
cm3 we get

P�V = 10¡4
kJ
cm3

�
0.028

cm3

g

�
� 100g

mol
= 2.8� 10¡4

kJ
mol

(49)

So in this case P�V ��H and therefore the enthalpy and energy changes are nearly identical.
The work done is only a small fraction, 0.1%, of the enthalpy change.

Volume change is more important when the total number of molecules is not the same on both
sides of a reaction. For example, consider the enthalpy change in the formation of ammonia gas,
NH3, through the reaction of hydrogen and nitrogen gases:

3H2+N2! 2NH3 (50)

This reaction converts 4 molecules into 2, so �n=¡2, so the volume will go down. Using the ideal
gas law at room temperature

�(PV)= (�n )RT =¡2�8.3 J
molK

� 298K=¡4.9 kJ
mol

(51)

Let us compare this to the enthalpy change. Computing the enthalpy change by adding the bond
enthalpies gives �H =¡97 kJ

mol for this reaction, not far o� from the measured reaction enthalpy

change of�rH°=¡91.88 kJ

mol . So we �nd that, �(PV)=¡4.5 kJ
mol is around 5% of the total enthalpy

change in this case. 5% is small, but not so small that it can be neglected. Indeed, a 5% change
in the energetics can have important e�ects on reaction kinetics.

In summary, as a rule of thumb, enthalpies and energies are pretty similar for solids and liquids,
di�ering at the less than a percent level, but for gases the di�erence can be relatively large. The
di�erence between the energy and enthalpy change is essentially given by�H¡�E=(�n)RT with
�n the change in the number of moles of gas. This is equal to 2.48 kJ

mol�n at room temperature and
pressure. These enthalpy changes are included in tabulated enthalpies of formation and reaction
(which are di�erent for liquids and gases) and are also included in bond enthalpies (de�ned for
gases and computed by averaging the formation enthalpies of various molecules with that bond).

5 Gibbs free energy

Gibbs free energy is de�ned as

G�H ¡TS=E+PV ¡TS (52)

The di�erential of G is

dG= dE+ d (PV )¡ d(TS) =VdP ¡SdT + �dN (53)

so G=G(P ;N ; T ) and�
@G
@T

�
P ;N

=¡S;
�
@G
@P

�
T ;N

=V ;

�
@G
@N

�
P ;T

= � (54)
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Gibbs free energy is the constant pressure version of Helmholtz free energy; it is E ¡TS with
E replaced by H. Recall that Helmholtz free energy is useful at constant volume and constant
temperature. At constant pressure, as in chemistry and biology, enthalpy and Gibbs free energy
are used. Gibbs free energy gives the maximum amount of work that can be done at constant
pressure and temperature. At constant pressure and constant temperature, Gibbs free energy has
its minimum value at equilibrium.

A powerful function of the Gibbs free energy is that it tells which direction a reaction will go.
In a chemical reaction at constant T and P , the amount of heat released is given by the enthalpy
change �rH. To get the sign right, note that if �rH =Hprod¡Hreact is positive, �rH > 0, then
the products have more enthalpy than the reactants, so the surroundings must put in energy and
heat is withdrawn. The entropy change in the surroundings (the air or solution or whatever heat
bath is �xing T and P in the �rst place) is �Ssurround =

Q

T
= ¡�rH

T
. The entropy change in the

system is �rS so the total entropy change is �S =�Ssys +�Ssurround= �rS ¡ T�rH =¡�rG

T
.

Since total entropy always increases the reaction can only proceed if the Gibbs free energy change is
negative: �rG<0. Thus the sign of the Gibbs free energy change indicates which way the reaction
will spontaneously proceed.

For an ideal monatomic gas, we want to express G as a function of P ; N and T . We start by
using Eq. (32) to write

G=F +PV =¡NkBT
�
ln
V
N
+
3
2
ln
�
2�mT
h2

�
+1

�
+PV (55)

Then we convert V to P using the ideal gas law V =
NkBT

P
so

G=¡NkBT
�
ln
kBT
P

+
3
2
ln
�
2�mT
h2

��
(56)

Then we �nd

�=

�
@G
@N

�
P ;T

= kBT lnn�3 (57)

with � =
h

2�mkBT
p the thermal wavelength, in agreement with our previous result. This explicit

calculation con�rms that for a monatomic ideal gas the chemical potential is the Gibbs free energy
per molecule.

Note that we found that G = �N for the ideal gas. This relation is actually very general. It
follows immediately from the de�nition G=E+PV ¡TS and the Euler relation in Eq. (18) (which
relied on the extensivity of entropy). When there are multiple species, G=

P
�iN . Thus, similar

to how the partition function and the Helmholtz free energy were equivalent, the chemical potential
and the Gibbs free energy are equivalent.

5.1 Partial pressure

If we have a gas with N1 molecules of type 1 and N2 molecules of type 2, then they both exert
pressure on the walls of the container. We call the pressure due to molecules of type i the partial
pressure for that type and denote it Pi. The ideal gas law PV =NkBT holds for a single gas or
for a mixture of gases. So say there are two gases with N1+N2=N . Then by the ideal gas law,
the partial pressure of gas one is

Pi�
Ni

V
kBT (ideal gases) (58)

Since the ideal gas law PV =NkBT holds for the whole mixture, we can divide by it giving

Pi
P
=
Ni

N
(59)
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This relation is called Dalton's law. We derived it for ideal gases where the pressure is linear in
the number density but it also holds empirically for many interacting systems such as liquids.

Next we can de�ne the Gibbs free energy for one monatomic ideal gas in a mixture as that for
a single gas, with N replaced by Ni and P replaced by Pi:

Gi=¡NikBT

�
ln
�
N
Ni

kBT
P

�
+
3
2
ln
�
2�mT
h2

��
(60)

This de�nition is useful because it makes Gibbs free energy extensive:

G=G1+G2+ ��� (61)

To check this, consider mixing two gases with the same mass, like He3 and He4 gas, with N1=N2=
N

2
. Then N

Ni
=2

G1+G2=¡NkBT
�
ln
�
2
kBT
P

�
+
3
2
ln
�
2�mT
~2

��
(62)

=¡NkBT
�
ln
kBT
P

+
3
2
ln
�
2�mT
~2

��
¡NkBT ln 2 (63)

The �rst term in this second line is the Gibbs free energy for a gas of N identical particles of
mass m. The �nal term can be written as¡NkBT ln 2=¡T�S, where �S=NkBln 2. This extra
term is exactly the entropy of mixing. It is part of the Gibbs free energy since the mixed system
comprises two di�erent types of particles, and so has more entropy (and less Gibbs free energy),
then a single homogeneous gas.

5.2 Law of mass action

Now we want to generalize away from a monatomic ideal gas to an arbitrary mixture of general
ideal gases. We can write the partition function for a single molecule of an ideal gas as

Zsinglemolecule=
X
"

e¡�"=V� (64)

The factor of V comes from the V -fold degeneracy of every energy (translations). The rest, �
comes from the usual kinetic, vibrational, rotational, etc modes. For example, including chemical
binding energy "b, kinetic degrees of freedom and a vibrational mode of frequency ! we would have

� = e¡�"b
�
2�m

�

�3
2 1

2sinh
�
�

2
~!
� (65)

A key element of � is the binding energy "b which must be treated with a consistent zero-point
for all the molecules involved in the mixture. In general � is complicated for molecules, and we
will not try to compute it. As we'll see, we don't need to, because we can measure it. The binding
energy part is included in the standard enthalpy of formation that we can look up.

If there are N1 molecules, then the possible total energies are sums of the energies of the
individual molecules. The partition function is then the product of the single particle partition
functions divided by the identical particle factor N1!:

Z1=
1
N1!

X
"1���"N1

e¡�("1+"2+���+"N1)=
1
N1!

(Zsinglemolecule)
N1=

1
N1!

V N1�1
N1 (66)

We write it this way so that the entire V and N dependence is explicit. �1 depends on T , but not
on V or N . If there are two gases, we multiply their partition functions. So

Z=Z1Z2=
1
N1!

V N1�1
N1 1
N2!

V N2�2
N2 (67)
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That the partition function is multiplicative in this way follows from assuming the gases are non-
interacting: the energy of each molecule is independent of the other molecules. We are not making
any other assumption about the molecules though, such as how many degrees of freedom there are.

The Helmholtz free energy of the two gas mixture is then

F =¡kBT lnZ�¡kBT
�
N1

�
ln
V�1
N1

+1

�
+N2

�
ln
V�2
N2

+1

��
(68)

where Stirling's relation N !� e¡NNN was used in the � step. The chemical potential for gas 1 is
then

�1=

�
@F
@N1

�
T ;V ;N2

=¡kBT ln
V�1
N1

(69)

and similarly for gas 2. To make sure we haven't messed anything up, the Gibbs free energy is

G=F +PV =¡kBT
�
N1

�
ln
V�1
N1

+1

�
+N2

�
ln
V�2
N2

+1

��
+ (N1+N2 )kBT|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| |{z}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}} }

from ideal gas law

(70)

=�1N1+ �2N2 (71)

so that G=
P

i�iNi as expected.
All of the N and V dependence is explicit in the chemical potential, so it is helpful to pull these

factors into a separate term. We write

�i=¡kBT ln
V�i
Ni

=¡kBT ln
�iV
N

+ kBT ln
Ni

N
(72)

Thus,
Ni

N
= exp

�
�i¡G0i

kBT

�
(73)

where, using N

V
=

P

kBT

G0i=¡kBT ln
�
kBT

P
�i

�
(74)

G0i is the Gibbs free energy for a single molecule in isolation. To see this, for a single molecule

Ni=N =1 and so G0i= �i=1�G. Eq. (73) is like the relation n= 1

�3
exp
�
�¡ "

kBT

�
we derived last

lecture for a monatomic ideal gas. But here we computing the fraction Ni
N

rather than ni=
Ni
V

and
we have G0i written with pressure explicit rather than volume (so we can hold P �xed).

From here we get a relation between the fractions of reactants. Let us use the notation

xj�
Nj
N

(75)

for the molar fraction of a reactant. Then, for something like

2A+3B! 7C (76)

for which 2�A+3�B=7�C we would �nd that the �i drop out from the combination

xC
7

xA
2xB

3 = exp
�
¡�rG0

kBT

�
(77)

this is the law of mass action. In the general form, the powers on the left hand side are determined
by the stoichiometric coe�cients in the reaction equation and �rG0 is the change in Gibbs free
energy per particle (i.e. �rG0=7G0A¡ 2G0B¡ 3G0C for this example).

Recall that we derived the law of mass action in the previous lecture for monatomic ideal
gases, where the exponent had the energy change �" per particle and the left hand side had the
concentrations [A]= Nj

V
rather than the molar fractions. That previous formula is a special case of

this more general mass action formula, as you can check.

Gibbs free energy 13



To understand the law of mass action, recall that the total Gibbs free energy change in a
reaction at equilibrium is zero, �G = 0; otherwise, G could be minimized by moving molecules
from one side to another. The overall �G has a part per molecule, which is the Gibbs reaction
energy �rG and a part that depends on the concentrations, encoded in the xi fractions. This
second part is entirely entropic, driven by the entropy of mixing, Thus the law of mass action says
that in equilibrium these two contributions to �G exactly cancel. It thereby lets us �gure out the
equilibrium concentrations from the Gibbs reaction energy per particle.

By Dalton's law, we also have xi=
Pi
P

so Eq. (77) can also be thought of as an equation for the
equilibrium partial pressures. Chemists also prefer to use moles rather than particles, so we use
�rG, the Gibbs reaction energy (in kJ

mol) and use RT instead of kBT . The ratio of fractions is
also given a name, the equilibrium constant and the symbol K:

K� xC
7

xA
2xB

3
=

�
NC
N

�7
�
NA
N

�2�NB
N

�3 = 1
P 4

PC
7

PA
2PB

3
= e

¡�rG0
kBT = e

¡�rG

RT (78)

Let's do an example. In the reactionH2O(g)
H2(g)+
1

2
O2(g) at T =5000K the Gibbs reaction

energy is �rG= 118 kJ
mol . If we start with 1 mol of H2O it will decompose into � moles of H2 and

�

2
moles of O2 leaving 1¡�moles of H2O. The total number of moles is 1¡�+�+ �

2
=1+

�

2
. Then

xH2xO2
1/2

xH2O
=

�
�

1+
�

2

�
�

2
¡
1+

�

2

�q
1¡�
1+

�

2

= exp

24¡ 118 kJ
mol

8.3 J

molK � 5000K

35= 0.058 (79)

Solve numerically for � gives � = 0.17. Thus at 5000K, 17% of the water molecules will be
decomposed into H2 and O2. At room temperature �rG= 228 kJ

mol and �= 10¡27.
This example indicates an important qualitative point about using the Gibbs free energy:

generally �rG is of order hundreds of kJ
mol while RT = 2.5 kJ

mol at room temperature. So the factor

exp
�
¡�rG

RT

�
is almost always either very very small, if �rG>0 or very very large if �rG<0. Thus

for exergonic reactions (�rG<0), the reaction strongly favors the products, while for endergonic
reactions (�rG>0), the reactants are favored. Thus to a good approximation, we can use the rule
of thumb that

� If we mix some chemicals, the sign of �rG tells which way the reaction will go.

This rule of thumb works only when we the concentrations are not exponentially small so that
the exp

�
¡�rG

RT

�
dominates. Of course, if the system is in equilibrium, it will not proceed in

any direction. Or if the concentration of products (or reactants) is small enough, the reaction
will proceed in the only direction it can. In such a case, when the reaction proceeds against the
direction of �rG, the total Gibbs free energy of the system is still decreasing: the entropy of mixing
associated with the concentration imbalance dominates over the �rG e�ect from the reaction itself
(remember, we pulled the concentration-dependence out in Eq.(72)).

In summary, the law of mass action always tells us which way the reaction will proceed given
some initial concentrations. The rule-of-thumb only determines the reaction direction when the
concentrations are not exponentially small.

5.3 Direction of chemical reactions
We saw that the direction a reaction proceeds is determined by the sign of �rG. What do we know
about this sign? Although G0i and �rG are in principle computable from the partition function
for a single molecule, this is never actually done. One can easily look up �rG under standard
conditions P =1 bar and T = 298K. This standard value of the Gibbs reaction energy is denoted
�rG

�. It is more useful however to look up �rH and �rS and compute �rG via:

�rG=�rH ¡T�rS (80)
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The reason this formula is useful is because both �rH and �rS are generally weakly dependent on
temperature (less then any power of T ), while �rG depends strongly on T because of the explicit
factor of T in Eq. (80). So Eq. (80) lets us compute �rG at any temperature, while �rG� only
gives the value at one reference temperature.

The dominant contribution to �rH is from bonds breaking and forming, with a subleading
contribution from �(PV) ��ngasRT . What determines �rS? Or more practically, how can we
measure �rS? One way is to ask at what temperature the reaction is in equilibrium. Then we know
�rG=0 and we can compute �rS=

�rH

T
. Alternatively, we could note the heat Q given o� in the

reaction and use �Ssurroundings=
Q

T
; if we can reverse the reaction adiabatically and isothermally

doing work W , then �S =
Q¡W
T

. Conveniently, chemists have measured the entropy of enough
reactions to tabulate standard molar entropies. For example,

Figure 3. Standard molar entropies for some compounds at 298 K

Then the change in entropies can be computed by taking the di�erence of the standard molar
entropies of the products and reactants. Note from the table that

� More complex molecules have higher entropies.

� Gases have higher entropies than liquids which have higher entropies than solids.

These observations are consistent with our understanding of entropy as measuring disorder.
Let's consider an example. Limestone is a commonly occurring mineral, calcium carbonate

CaCO3. By itself, limestone is not so useful, but can be converted to lime, calcium oxide CaO
in a kiln. Lime is an extremely useful mineral, used in making steel, mortar and cement and in
agriculture. To make lime from limestone involves the reaction

CaCO3�CaO+CO2 (81)

The enthalpy change in this reaction is �rH=178 kJ
mol . The entropy change is �rS=161 J

Kmol . At
room temperature, T = 273K; so

�rG=�rH ¡ (273K)�rS= 130
kJ
mol

(82)

Since the reaction increases the Gibbs free energy, it does not spontaneously occur.
On the other hand, if we heat the limestone in a lime kiln, to T = 1500K, then

�rG=�rH ¡ (1500K)�rS=¡65
kJ
mol

(83)

Thus the kiln allows the reaction to occur.
Normally heating up a system makes a reaction go faster. Taking milk out of the fridge makes

it go bad faster. But milk would go bad eventually even if left in the fridge. With the lime kiln,
heating the system does not just make the reaction go faster. It changes the direction of the
reaction. The reverse reaction naturally occurs at room temperature � lime will eventually turn
back into limestone if left in the presence of CO2.
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Note that we have assumed that all of the T dependence is in the explicit factor of T in the de�-
nition�rG=�rH¡T�rS. What about the temperature dependence of�rH and�rS themselves?
We can write �rH=�rE+�r(PV). The �rE contribution is from breaking bonds, which is inde-
pendent of T . Solids and liquids have the same volume, so �r(PV)= (�ngas)RT �8 J

molK�ngasT .
Although this depends linearly on T , just like the T�rS factor in �rG, the numerical values for
�rS�161 J

molK in this example are much bigger. Thus we can neglect the temperature dependence
of �rH when solids and liquids are involved; for gases, it is a subleading e�ect. The temperature
dependence of �rS is generally logarithmic, since S�NkBln T and generally very small.

In the above discussion of CaCO3 we used only the sign of �rG to determine the reaction
direction. The law of mass action tells us the relative concentrations in equilibrium

K =
xCaOxCO2
xCaCO3

= exp
�
¡�rG

kBT

�
(84)

For T =298K, K= exp
�
¡ 130

0.0083� 293

�
=10¡25 and T =1500K, K= exp

�
65

8.3� 1.5

�
=185, so we see

that the equilibrium concentrations are hugely di�erent at these two temperatures.
Suppose the system is in equilibrium at some temperature. Then if we add more CaO to the

system, xCaO will go up. To keep K the same, the system will adjust to remove CaO and increase
CaCO3. This is an example of a phenomenological observation called

� Le Chatelier's principle: a system will work to restore equilibrium by counteracting any
change.

6 Osmotic pressure

As a �nal example, let us return to the topic of osmotic pressure, introduced in the discussion of
entropy of mixing. Osmotic pressure is the pressure resulting from a concentration imbalance on
the two sides of a semi-permeable barrier. For example, if you put a raisin in water, the higher
sugar content of the raisin as compared to the water forces the water to be drawn into the raisin.
The result is that the raisin swells up, almost back to the size of a grape. The drying out of a
grape is also osmosis: water �ows out of the grape into the air over time, and the grape desiccates.
Grocers spray water on their fruits and vegetables to increase the local concentration of water so
their produce looks more appealing. How about your �ngers getting wrinkled when you stay in
the bath too long. Is this osmosis?

Say we have water in a U-shaped tube with a semi-permeable membrane in the middle. The
membrane allows water to pass but not sugar. Now put some sugar on one side. As water �ows
into the sugar side, it will increase the pressure on that side, lowering the pressure on the other
side. Thus the sugar water will move up. This is a physical e�ect due to the entropy of mixing.

Figure 4. Osmotic pressure arises when concentrations are di�erent on two sides of a semi-permeable
barrier. Adding glucose to one side causes a pressure imbalance. This can be compensated by applying an
external pressure � called the osmotic pressure.
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One way to quantify the e�ect is by the pressure you need to apply on the sugary side to restore
the balance. This pressure is called the osmotic pressure and denoted by the symbol �.

To compute the osmotic pressure, let us start with some de�nitions. A solution is a mixture
of solvent and solute, with the solvent being the major component and the solute being a small
addition. For example, in sugar water, water is the solvent and sugar the solute.

We want to compute the chemical potential of the solvent (water) on both sides, which we can
derive from the Gibbs free energy accounting for the entropy of mixing. Let us say that initially
there is the same number Nw of solvent (water) molecules on both sides of the barrier and we then
add Ns solute (sugar) molecules to one side.

Recall that entropy of mixing is the extra entropy that a mixed substance has compared to a
pure substance with the same properties (N; T ; P ). A great thing about the entropy of mixing
is that it only depends on whether the things mixing are indistinguishable, not any other other
properties of those things (internal degrees of freedom, etc.). For N particles in a volume V , the
entropy is S=kBln

¡ 1

N !
V N

�
�¡kBN lnN

V
. For our Nw molecules of solvent (water) and Ns molecules

of solvent, the entropy of mixing is

�Smix=¡kB

2664
�
Nw ln

Nw

V
+Nsln

Ns
V

�
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| |{z}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}} }

mixed system

¡ (Nw+Ns)ln
�
Nw+Ns

V

�
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pure systemwithNw+Nsparticles

3775 (85)

=¡kB
�
Nw ln

Nw

Nw+Ns
+Nsln

Ns
Nw+Ns

�
> 0 (86)

Note that V dropped out. Indeed, the entropy of mixing only depends on the 1

N !
factor.

In the limit that Ns�Nw we can expand in Ns
Nw

to �nd

�Smix= kBNs

�
1¡ ln

Ns
Nw

�
+O

�
Ns
2

Nw

�
(87)

Let's us write Gw(T ; P ) for the Gibbs free energy of pure solvent (water). Since Ns� Nw, the
enthalpy of the solute gives a negligible contribution to the total Gibbs free energy, and the only
contribution that matters is from the entropy of mixing. So the total Gibbs free energy on the
mixed side, generalizing Eq. (63), is

Gmixed=Gw¡TSmix=Gw¡ kBTNs
�
1¡ ln

Ns
Nw

�
(88)

Thus the chemical potential of the solvent on the mixed side is then

�w
mixed(T ; P )=

�
@Gmixed

@Nw

�
T ;P ;Ns

= �w(T ; P )¡ kBT
Ns
Nw

(89)

where �w(T ; P )=
Gw
Nw

is the chemical potential of the pure solvent.
Equilibrium requires the chemical potential of the solvent to be the same on both sides of the

barrier. So

�w(T ; Ppure)= �w
mixed(T ; Pmixed) = �w(T ; Pmixed)¡ kBT

Ns
Nw

(90)

The osmotic pressure we are trying to compute is the pressure di�erence � = Pmixed ¡ Ppure. In
the limit Ns�Nw we must have ��Ppure so that we can expand

�w(T ; Pmixed) = �w(T ; Ppure+�)= �w(T ; Ppure) +�

�
@�w
@P

�
T ;Nw

(91)

Since Gw= �wNw, �
@�w
@P

�
T ;Nw

=
1
Nw

�
@Gw

@P

�
T ;Nw

=
V
Nw

(92)

Combining the last 3 equations gives

�w(T ; Ppure)= �w(T ; Ppure) +�
V
Nw

¡ kBT
Ns
Nw

(93)
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So that

�= kBT
Ns
V

(94)

This is known as van 't Ho�'s formula.
You can repeat this exercise when the solute contains a number of di�erent substances (sugar,

salt, etc). The result is that the osmotic pressure is

�= kBT
X
s

Ns
V

(95)

This indicates that osmotic pressure is a colligative property, meaning it doesn't matter what
the solute is, just the total concentration of solutes.

For example, when your blood pressure is 120/80 it means that the pressure measured is 120
mmHg=0.16 atm coming out of your heart and 80 mmHg=0.1 atm going in. This doesn't mean
that your blood is at much lower than atmospheric pressure, since it is measured by a device in the
atmosphere � these numbers are relative to atmospheric pressure; thus the actual pressure in your
veins is 1.1 to 1.16 atm. The osmotic pressure in blood is 7.65 atm at 37�C = 310K. This doesn't
mean that blood is under 7.65 atm of pressure; it means that if a blood vessel were immersed in
pure water, 7.65 atm would have to be applied to prevent the in�ux of water. Blood vessels are not
surrounded by water, but by solution, also at an osmotic pressure around 7.65, so no solution �ows.

We can use these numbers to �nd the net concentration ns (in mol/L) of all dissolved solvents:

ns=
Ns

NA �V
=

�
RT

=
7.65 atm

0.08314L atm
molK310K

= 296
mmol
L

(96)

where mmol is a millimole. This quantity ns is called the osmolarity and often written in mil-
limoles per kg of solution (water): ns= 296 mmol

L
= 296mmol

kg . For example, we can compare to the

osmolarity of 50g of sugar (glucose, molar mass 180 g
mol)mixed into 1 liter of water:

ns=
50g

180 g

mol

1

L
= 277

mmol
L

(97)

So mixing a little more than 50g of sugar (about 2 tablespoons) with a liter of water and drinking
it will not increase your blood pressure. More sugar (or salt) than this concentration will cause
your blood pressure to go up.

Osmotic pressure really is an entropic e�ect . It is a powerful example of the importance of
entropy. You might have been concerned from time to time that the way we were de�ning entropy
had some arbitrariness to it, due to the choice to coarse-grain or add indistinguishable particle fac-
tors. Osmotic pressure indicates that entropy is real and unambiguous. It has physical observable
consequences and makes quantitative predictions that can be tested experimentally. Add salt and
the pressure goes up and work can be done.

Finally, it is worth pointing out that equilibrium properties, such as from equating the chemical
potentials on two sides of a semipermeable barrier, do not tell us anything about the micro-
scopic mechanism by which equilibrium is achieved. Di�usion, which we have discussed, involving
the random walks of molecules, is one way. Another is convection, when large macroscopic cur-
rents, such as temperature gradients, push the molecules around together. There is also advection,
whereby the motion of one type of molecule pulls another along with it. Capillary action is another
transport mechanism relevant for liquids where surface tension draws water into a straw or a paper
towel. Imbibation is a transport phenomenon in solids or colloids whereby the a material expands
as liquid is absorbed (such as a sponge or seed). What is the microscopic mechanism for osmosis?
Probably some combination of the above mechanisms. The point, however, is that the microscopic
mechanism is irrelevant. Equilibrium thermodynamics lets us compute the main result, the osmotic
pressure, independently of the microscopic mechanism of osmosis.

Test your understanding: when we apply a pressure � to restore the original levels in the
U -tube (step 3 in Fig. 4), we are unmixing the solution, undoing the entropy of mixing. What
compensates for this decrease in entropy so that the second law still holds? Is anything di�erent
about the water in the left tube in panels a) and c) of Fig. 4?
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7 Grand free energy

There is one more free energy that is used sometimes, called the grand free energy �. We're not
going to use it until Lecture 11, because it's harder to interpret physically, but I include the releant
formulas here since they are closely related to the other free energies from this lecture.

Recall that the grand canonical partition function is

Z(V ; T ; �)=
X
k

e¡�"k+��Nk (98)

where the sum is over microstates k with Nk particles and energy "k. We also showed that

¡kBT lnZ = hE i¡TS ¡ �hN i (99)

We then de�ne the grand free energy � like the free energy F , but computed using the grand
canonical ensemble.

�=¡kBT lnZ (100)

Thus,

�(T ; V ; �) = hEi ¡TS ¡ �hN i (101)

Recall that F (V ; T ; N) and now we have �(V ; T ; �), so the grand free energy has traded N for
� in the free energy. This is similar to how we used F (V ; T ; N) =E ¡ TS to trades entropy for
temperature using E(S; V ;N). Indeed, we can also write

�(T ; V ; �)=F ¡ �N (102)

Using Eq. (1) again, we �nd

d�=SdT ¡PdV +Nd� (103)

An important property of � is that it is an extensive (like the other energies, internal energy,
Helmholtz free energy, Gibbs free energy) function of only a single extensive variable V . Thus it

must be proportional to V . Since @�

@V

������
�;T

=¡P we then have

�=¡PV (104)

This is a useful relation, similar to G = �N for the Gibbs free energy. Like G = �N , � = ¡PV
follows from the Euler relation in Eq. (18). We'll use the grand free energy in quantum statistical
mechanics. It is not used in chemistry or for pure thermodynamics computations, since we can
just use PV. I only include it here since it is a free energy and naturally part of the �free energy�
lecture. We'll only need the de�nition Eq. (100) and the relation (103) in future applications.

Grand free energy 19


	1 Introduction
	2 Euler identity
	3 Helmholtz Free Energy
	3.1 Free energy for work
	3.2 Free energy and the partition function
	3.3 Spring and gas
	3.4 Energy (non)-minimization

	4 Enthalpy
	4.1 Enthalpy of chemical bonds
	4.2 Expansion work

	5 Gibbs free energy
	5.1 Partial pressure
	5.2 Law of mass action
	5.3 Direction of chemical reactions

	6 Osmotic pressure
	7 Grand free energy

