
Lecture 8:  
 Logical Shifts, Addressing modes in

ARM Arithmetic  
Data Transfer Instructions

CSE 30: Computer Organization and Systems Programming

Diba Mirza
Dept. of Computer Science and Engineering

University of California, San Diego

Shifts and Rotates
v  LSL – logical shift by n bits – multiplication by 2n

v  LSR – logical shift by n bits – unsigned division by 2n

v  ASR – arithmetic shift by n bits – signed division by 2n

v  ROR – logical rotate by n bits – 32 bit rotate

… 0 C

… 0 C

… C

… C
2

01101001 << 2

A.  00011010

B.  00101001

C.  01101001

D.  10100100

3

A new instruction HEXSHIFTRIGHT shifts hex
numbers over by a digit to the right.  

 
 HEXSHIFTRIGHT i times is equivalent to

A.  Dividing by i

B.  Dividing by 2i

C.  Dividing by 16i

D.  Multiplying by 16i

4

A new instruction HEXSHIFTRIGHT shifts hex
numbers over by a digit to the right.  

 
 HEXSHIFTRIGHT i times is equivalent to

A.  Dividing by i

B.  Dividing by 2i

C.  Dividing by 16i

D.  Multiplying by 16i

5

Ways of specifying operand 2

v Opcode Destination, Operand_1, Operand_2
v Register Direct: ADD r0, r1, r2;

v With shift/rotate:
1)  Shift value: 5 bit immediate (unsigned integer)

ADD r0, r1, r2, LSL #2; r0=r1+r2<<2; r0=r1+4*r2
2)  Shift value: Lower Byte of register:

ADD r0, r1, r2, LSL r3; r0=r1+r2<<r3; r0=r1+(2^r3)*r2

v Immediate: ADD r0, r1, #0xFF
v With rotate-right ADD r0,r1, #0xFF, 28
Rotate value must be even: #0xFF ROR 28 generates:
0XFF00000000

6

Ways of specifying operand 2

v Opcode Destination, Operand_1, Operand_2
v Register Direct: ADD r0, r1, r2;

v With shift/rotate:
1)  Shift value: 5 bit immediate (unsigned integer)

ADD r0, r1, r2, LSL #2; r0=r1+r2<<2; r0=r1+4*r2
2)  Shift value: Lower Byte of register:

ADD r0, r1, r2, LSL r3; r0=r1+r2<<r3; r0=r1+(2^r3)*r2

v Immediate addressing: ADD r0, r1, #0xFF
v 8 bit immediate value

v With rotate-right ADD r0,r1, #0xFF, 8
§  Rotate value must be even
 #0xFF ROR 8 generates: 0XFF000000
§  Maximum rotate value is 30

7

v The data processing instruction format has 12 bits
available for operand2

v 4 bit rotate value (0-15) is multiplied by two to

give range 0-30 in steps of 2

v Rule to remember is “8-bits rotated right by an
even number of bit positions”

0 7 11 8

immed_8

Shifter
ROR

rot

x2
0xFF000000
MOV r0, #0xFF,8

Reasons for constraints on Immediate Addressing

8

Immed_8=0xFF, rot =4

Generating Constants using immediates
Rotate Value Binary Decimal Hexadecimal
0 000000000000000000000000xxxxxxxx 0-255 0-0xFF
Right, 30 bits 0000000000000000000000xxxxxxxx00 4-1020 0x4-0x3FC
Right, 28 bits 00000000000000000000xxxxxxxx0000 16-4080 0x10-0xFF0
Right, 26 bits 000000000000000000xxxxxxxx000000 128-16320 0x40-0x3FC0
… … … …
Right, 8 bits xxxxxxxx000000000000000000000000 16777216-

255x224
0x1000000-0xF
F000000

Right, 6 bits xxxxxx0000000000000000000000xx - -
Right, 4 bits xxxx0000000000000000000000xxxx - -
Right, 2 bits xx0000000000000000000000xxxxxx - -

v  This scheme can generate a lot, but not all, constants.
v  Others must be done using literal pools (more on that later)

9

1. Register, optionally with shift operation
v  Shift value can either be:

v  5 bit unsigned integer
v Specified in bottom byte of

another register.
v  Used for multiplication by constant

2. Immediate value
v  8 bit number, with a range of 0-255.

v Rotated right through even
number of positions

v  Allows increased range of 32-bit
constants to be loaded directly into
registers

Result

Operand 1

Barrel
Shifter

Operand 2

ALU

Implementation in h/w using a Barrel Shifter

10

Shifts and Rotates

v Shifting in Assembly
Examples:
MOV r4, r6, LSL #4 ; r4 = r6 << 4
MOV r4, r6, LSR #8 ; r4 = r6 >> 8

v Rotating in Assembly
Examples:
MOV r4, r6, ROR #12
; r4 = r6 rotated right 12 bits

; r4 = r6 rotated left by 20 bits (32 -12)

Therefore no need for rotate left.

11

Variable Shifts and Rotates

v Also possible to shift by the value of a register
v Examples:

MOV r4, r6, LSL r3
; r4 = r6 << value specified in r3

MOV r4, r6, LSR #8 ; r4 = r6 >> 8

v Rotating in Assembly
v Examples:
MOV r4, r6, ROR r3

; r4 = r6 rotated right by value specified
in r3

12

Constant Multiplication
v  Constant multiplication is often faster using shifts and

additions
 MUL r0, r2, #8 ; r0 = r2 * 8

Is the same as:
 MOV r0, r2, LSL #3 ; r0 = r2 * 8

v  Constant division
 MOV r1, r3, ASR #7 ; r1 = r3/128

 Treats the register value like signed values (shifts in MSB).

Vs.
 MOV r1, r3, LSR #7 ; r1 = r3/128

 Treats register value like unsigned values (shifts in 0)

13

Constant Multiplication
v  Constant multiplication with subtractions

 MUL r0, r2, #7 ; r0 = r2 * 7

 Is the same as:
 RSB r0, r2, r2, LSL #3 ; r0 = r2 * 7

 ; r0 = -r2 + 8*r2 = 7*r2

 RSB r0, r1, r2 is the same as
 SUB r0, r2, r1 ; r0 = r1 – r2

Multiply by 35:

 ADD r9,r8,r8,LSL #2 ; r9=r8*5
 RSB r10,r9,r9,LSL #3 ; r10=r9*7

Why have RSB? B/C only the second source operand can be shifted.

14

Conclusion
v Instructions so far:

v Previously:
ADD, SUB, MUL, MLA, [U|S]MULL, [U|S]MLAL
v New instructions:
RSB
AND, ORR, EOR, BIC

MOV, MVN
LSL, LSR, ASR, ROR

v Shifting can only be done on the second source operand
v Constant multiplications possible using shifts and

addition/subtractions

15

Comments in Assembly

§  Another way to make your code more
readable: comments!

§  Semicolon (;) is used for ARM comments
§  anything from semicolon to end of line is a

comment and will be ignored
§  Note: Different from C

§  C comments have format /* comment */, so
they can span many lines

Conclusion
§  In ARM Assembly Language:

§  Registers replace C variables
§  One Instruction (simple operation) per line
§  Simpler is Better
§  Smaller is Faster

§  Instructions so far:
§  ADD, SUB, MUL, MULA, [U|S]MULL, [U|
S]MLAL

§  Registers:
§  Places for general variables: r0-r12

Lecture 8: Data Transfer Instructions

CSE 30: Computer Organization and Systems Programming

 Diba Mirza

Dept. of Computer Science and Engineering
University of California, San Diego

Assembly Operands: Memory
v Memory: Think of as single one-dimensional array where each cell

v Stores a byte size value
v Is referred to by a 32 bit address e.g. value at 0x4000 is 0x0a

v Data is stored in memory as: variables, arrays, structures
v But ARM arithmetic instructions only operate on registers,

never directly on memory.
v Data transfer instructions transfer data between registers and

memory:
v Memory to register or LOAD from memory to register
v Register to memory or STORE from register to memory

0x0a 0x0b 0x0c 0x0d
0x4000 0x4001 0x4002 0x4003

Load/Store Instructions
v  The ARM is a Load/Store Architecture:

v Does not support memory to memory data processing
operations.

v Must move data values into registers before using them.

v  This might sound inefficient, but in practice isn’t:
v Load data values from memory into registers.
v Process data in registers using a number of data processing

instructions which are not slowed down by memory access.
v Store results from registers out to memory.

Load/Store Instructions
v  The ARM has three sets of instructions which interact

with main memory. These are:
v Single register data transfer (LDR/STR)
v Block data transfer (LDM/STM)
v Single Data Swap (SWP)

v The basic load and store instructions are:
v Load and Store Word or Byte or Halfword

v LDR / STR / LDRB / STRB / LDRH / STRH

Single register data transfer
 LDR STR Word
 LDRB STRB Byte
 LDRH STRH Halfword
 LDRSB Signed byte load
 LDRSH Signed halfword load

v Memory system must support all access sizes
v Syntax:

v LDR{<cond>}{<size>} Rd, <address>
v STR{<cond>}{<size>} Rd, <address>
e.g. LDREQB

Data Transfer: Memory to Register
v To transfer a word of data, we need to
specify two things:

v Register: r0-r15
v Memory address: more difficult

v How do we specify the memory address of data to
operate on?

v We will look at different ways of how this is done in
ARM

Remember: Load value/data FROM memory

Addressing Modes

v There are many ways in ARM to specify the
address; these are called addressing modes.

v  Two basic classification
1.  Base register Addressing

§  Register holds the 32 bit memory address
§  Also called the base address

2.  Base Displacement Addressing mode
§  An effective address is calculated :

Effective address = < Base address +offset>
§  Base address in a register as before
§  Offset can be specified in different ways

Base Register Addressing Modes

v Specify a register which contains the
memory address
v In case of the load instruction (LDR) this is the memory

address of the data that we want to retrieve from memory
v  In case of the store instruction (STR), this is the memory

address where we want to write the value which is
currently in a register

v Example: [r0]
v specifies the memory address pointed to by the

value in r0

Data Transfer: Memory to Register

v Load Instruction Syntax:
 1 2, [3]
v where
 1) operation name
 2) register that will receive value
 3) register containing pointer to memory

v ARM Instruction Name:
v LDR (meaning Load Register, so 32 bits or one

word are loaded at a time)

Data Transfer: Memory to Register

v  LDR r2,[r1]
This instruction will take the address in r1, and then load a 4
byte value from the memory pointed to by it into register r2

v Note: r1 is called the base register

r1
0x200

Base Register

Memory

0xaa 0x200

r2

0xddccbbaa

Destination Register
for LDR

0x201 0xbb
0xcc 0x202

0x203 0xdd

Data Transfer: Register to Memory

v  STR r2,[r1]
This instruction will take the address in r1, and then store a 4
byte value from the register r2 to the memory pointed to by r1.

v Note: r1 is called the base register

r1
0x200

Memory

0xaa 0x200

r2

0xddccbbaa
0x201 0xbb

0xcc 0x202
0x203 0xdd

Source Register
for STR

Base Register

Base Displacement Addressing Mode

v To specify a memory address to copy from,
specify two things:

v A register which contains a pointer to memory
v A numerical offset (in bytes)

v The effective memory address is the sum of
these two values.

v Example: [r0,#8]
v specifies the memory address pointed to by the

value in r0, plus 8 bytes

Base Displacement Addressing Mode

1.  Pre-indexed addressing syntax:
I. Base register is not updated

 LDR/STR <dest_reg>[<base_reg>,offset]

 Examples:
 LDR/STR r1 [r2, #4]; offset: immediate 4
 ;The effective memory address is calculated as r2+4

LDR/STR r1 [r2, r3]; offset: value in register r3
 ;The effective memory address is calculated as r2+r3

LDR/STR r1 [r2, r3, LSL #3]; offset: register value *23

 ;The effective memory address is calculated as r2+r3*23

Base Displacement Addressing Mode

1.  Pre-indexed addressing:
I. Base register is not updated:
LDR/STR <dest_reg>[<base_reg>,offset]
II. Base register is first updated, the updated address is used

 LDR/STR <dest_reg>[<base_reg>,offset]!
 Examples:
 LDR/STR r1 [r2, #4]!; offset: immediate 4
 ;r2=r2+4

LDR/STR r1 [r2, r3]!; offset: value in register r3
 ;r2=r2+r3

LDR r1 [r2, r3, LSL #3]!; offset: register value *23

 ;r2=r2+r3*23

Base Displacement, Pre-Indexed
v Example: LDR r0,[r1,#12]

 This instruction will take the pointer in r1, add 12 bytes to
it, and then load the value from the memory pointed to by
this calculated sum into register r0

v Example: STR r0,[r1,#-8]
 This instruction will take the pointer in r0, subtract 8 bytes
from it, and then store the value from register r0 into the
memory address pointed to by the calculated sum

v Notes:
v r1 is called the base register
v #constant is called the offset
v offset is generally used in accessing elements of array or

structure: base reg points to beginning of array or structure

Pre indexed addressing

What is the value in r1 after the following instruction is executed?

 STR r2,[r1, #-4]!

r1
0x200

Base Register

Memory

0xaa 0x20_
r2

0xddccbbaa

Destination Register
for LDR

0x20_ 0xbb
0xcc 0x20_

0x20_ 0xdd

A.  0x200
B.  0x1fc
C.  0x196
D.  None of the above

Base Displacement Addressing Mode

1.  Post-indexed addressing:Base register is updated after load/
store

 LDR/STR <dest_reg>[<base_reg>] ,offset
 Examples:
 LDR/STR r1 [r2], #4; offset: immediate 4
 ;Load/Store to/from memory address in r2, update r2=r2+4

LDR/STR r1 [r2], r3; offset: value in register r3
 ;Load/Store to/from memory address in r2, update r2=r2+r3

LDR r1 [r2] r3, LSL #3; offset: register value left shifted

 ;Load/Store to/from memory address in r2, update r2=r2+r3*23

Post-indexed Addressing Mode

*  Example: STR r0, [r1], #12

*  If r2 contains 3, auto-increment base register to 0x20c by multiplying

this by 4:
•  STR r0, [r1], r2, LSL #2

*  To auto-increment the base register to location 0x1f4 instead use:
•  STR r0, [r1], #-12

r1

0x200
Original

Base
Register

Memory

0x5 0x200

r0

0x5
Source
Register
for STR

Offset

12 0x20c

r1
0x20c

Updated
Base

Register

Using Addressing Modes Efficiently
*  Imagine an array, the first element of which is pointed to by the contents

of r0.
*  If we want to access a particular element,

then we can use pre-indexed addressing:
•  r1 is element we want.
•  LDR r2, [r0, r1, LSL #2]

*  If we want to step through every

element of the array, for instance
to produce sum of elements in the
array, then we can use post-indexed addressing within a loop:
•  r1 is address of current element (initially equal to r0).
•  LDR r2, [r1], #4

 Use a further register to store the address of final element,

so that the loop can be correctly terminated.

0

1

2

3

element

0

4

8

12

Memory
Offset

r0

Pointer to start
of array

Pointers vs. Values

v Key Concept: A register can hold any 32-bit
value. That value can be a (signed) int, an
unsigned int, a pointer (memory
address), and so on

v If you write ADD r2,r1,r0
 then r0 and r1 better contain values

v If you write LDR r2,[r0]
 then [r0] better contain a pointer

v Don’t mix these up!

Compilation with Memory
v What offset in LDR to select A[8] in C?
v  4x8=32 to select A[8]: byte vs word
v Compile by hand using registers:

 g = h + A[8];
v  g: r1, h: r2, r3:base address of A

v 1st transfer from memory to register:
LDR r0,[r3, #32] ; r0 gets A[8]

v Add 32 to r3 to select A[8], put into r0

v Next add it to h and place in g  
ADD r1,r2,r0 ; r1 = h+A[8]

