Lecture 8 - Model Identification

- What is system identification?
- Direct pulse response identification
- Linear regression
- Regularization
- Parametric model ID, nonlinear LS

What is System Identification? Experiment Plant Data Identification Model

- White-box identification
 - estimate parameters of a physical model from data
 - Example: aircraft flight model
- Gray-box identification
 - given generic model structure estimate parameters from data
 - Example: neural network model of an engine

- Rarely used in real-life control
- Black-box identification
 - determine model structure and estimate parameters from data
 - Example: security pricing models for stock market

EE392m - Winter 2003

Industrial Use of System ID

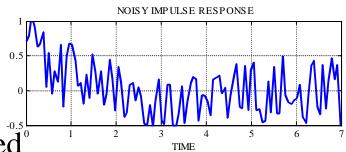
- Process control most developed ID approaches
 - all plants and processes are different
 - need to do identification, cannot spend too much time on each
 - industrial identification tools
- Aerospace
 - white-box identification, specially designed programs of tests
- Automotive
 - white-box, significant effort on model development and calibration
- Disk drives
 - used to do thorough identification, shorter cycle time
- Embedded systems
 - simplified models, short cycle time

Impulse response identification

• Simplest approach: apply control impulse and collect the data

0.6 0.4 0.2

• Difficult to apply a short impulse big enough such that the response is much larger than the noise



• Can be used for building simplified¹ control design models from complex sims

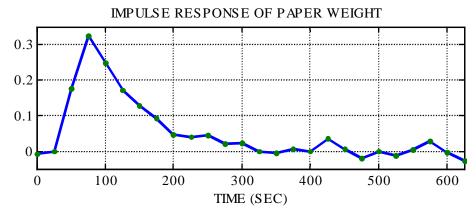
Step response identification

- Step (bump) control input and collect the data
 used in process control 1.5
 Actuator bumped
 0.5
- Impulse estimate still noisy: impulse(t) = step(t)-step(t-1)

200

0

0



600

TIME (SEC)

800

1000

400

EE392m - Winter 2003

Control Engineering

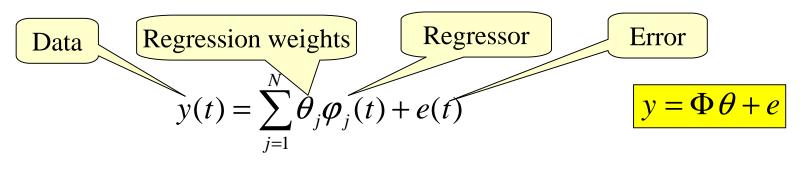
Noise reduction

Noise can be reduced by statistical averaging:

- Collect data for mutiple steps and do more averaging to estimate the step/pulse response
- Use a parametric model of the system and estimate a few model parameters describing the response: dead time, rise time, gain
- Do both in a sequence
 - done in real process control ID packages
- Pre-filter data

Linear regression

- Mathematical aside
 - linear regression is one of the main System ID tools

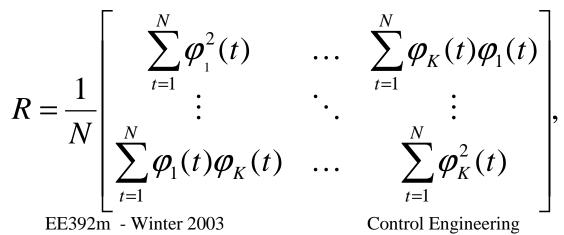


$$y = \begin{bmatrix} y(1) \\ \vdots \\ y(N) \end{bmatrix}, \Phi = \begin{bmatrix} \varphi_1(1) & \dots & \varphi_K(1) \\ \vdots & \ddots & \vdots \\ \varphi_1(N) & \dots & \varphi_K(N) \end{bmatrix}, \theta = \begin{bmatrix} \theta_1 \\ \vdots \\ \theta_K \end{bmatrix}, e = \begin{bmatrix} e(1) \\ \vdots \\ e(N) \end{bmatrix}$$

EE392m - Winter 2003

Linear regression

- Makes sense only when matrix Φ is tall, N > K, more data available than the number of unknown parameters.
 - Statistical averaging
- Least square solution: $||e||^2 \rightarrow \min$
 - Matlab pinv or left matrix division $\$
- Correlation interpretation:



$$y = \Phi \theta + e$$

^

$$\hat{\theta} = \left(\Phi^T \Phi \right)^{-1} \Phi^T y$$

$$\theta = R^{-1}c$$

$$c = \frac{1}{N} \begin{bmatrix} \sum_{t=1}^{N} \varphi_{1}(t) y(t) \\ \vdots \\ \sum_{t=1}^{N} \varphi_{K}(t) y(t) \end{bmatrix}$$
8-8

Example: linear first-order model

y(t) = ay(t-1) + gu(t-1) + e(t)

• Linear regression representation

$$\begin{aligned} \varphi_1(t) &= y(t-1) \\ \varphi_2(t) &= u(t-1) \end{aligned} \qquad \theta = \begin{bmatrix} a \\ g \end{bmatrix} \qquad \hat{\theta} = \left(\Phi^T \Phi \right)^{-1} \Phi^T y \end{aligned}$$

• This approach is considered in most of the technical literature on identification

Lennart Ljung, System Identification: Theory for the User, 2nd Ed, 1999

- Matlab Identification Toolbox
 - Industrial use in aerospace mostly
 - Not really used much in industrial process control
- Main issue:

small error in *a* might mean large change in response
 EE392m - Winter 2003 Control Engineering

Regularization

- Linear regression, where $\Phi^T \Phi$ is ill-conditioned
- Instead of $||e||^2 \rightarrow \min$ solve a regularized problem $||e||^2 + r||\theta||^2 \rightarrow \min$ y =

$$y = \Phi \theta + e$$

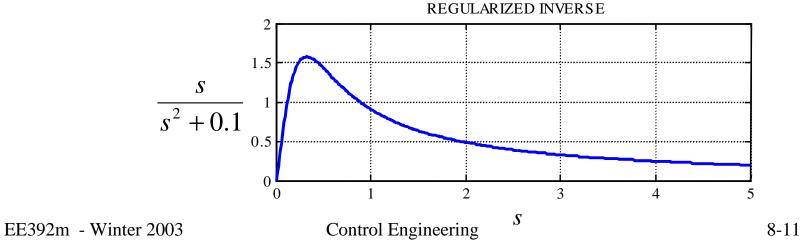
- r is a small regularization parameter
- Regularized solution

$$\hat{\theta} = \left(\Phi^T \Phi + rI\right)^{-1} \Phi^T y$$

• Cut off the singular values of Φ that are smaller than r

Regularization

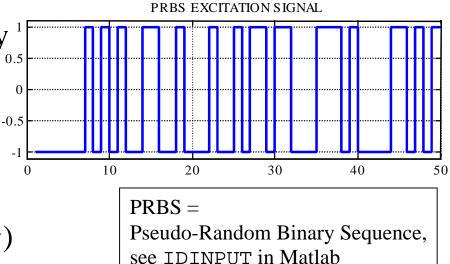
- Analysis through SVD (singular value decomposition) $\Phi = USV^{T}; \quad V \in R^{n,n}; U \in R^{m,m}; S = \text{diag}\{s_{i}\}_{i=1}^{n}$
- Regularized solution $\hat{\theta} = \left(\Phi^T \Phi + rI\right)^{-1} \Phi^T y = V \left[\operatorname{diag}\left\{\frac{s_j}{s_j^2 + r}\right\}_{j=1}^n\right] U^T y$
- Cut off the singular values of Φ that are smaller than r



Linear regression for FIR model

- Identifying impulse response by applying multiple steps
- PRBS excitation signal
- FIR (impulse response) model

$$y(t) = \sum_{k=1}^{K} h(k)u(t-k) + e(t)$$

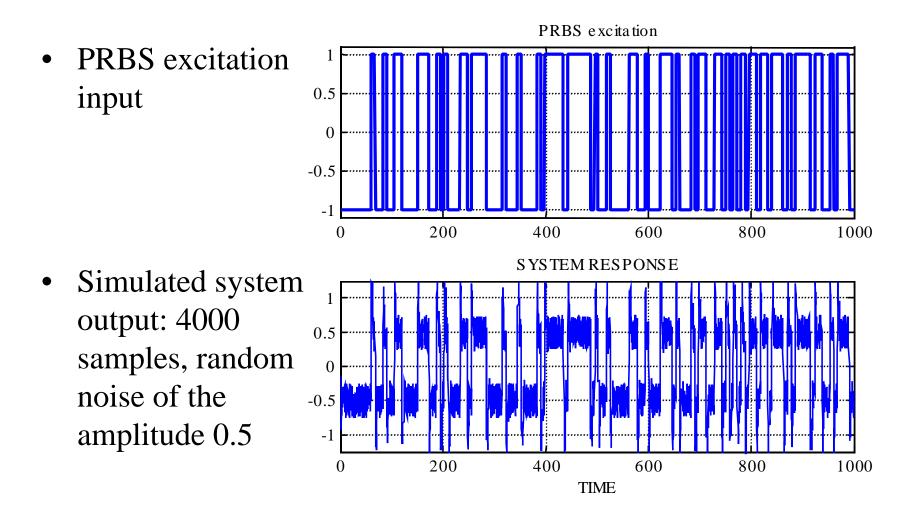


• Linear regression representation

$$\begin{aligned} \varphi_1(t) &= u(t-1) \\ \vdots & \theta = \begin{bmatrix} h(1) \\ \vdots \\ h(K) \end{bmatrix} \\ \hat{\theta} &= \left(\Phi^T \Phi + rI \right)^{-1} \Phi^T y \\ h(K) \end{bmatrix} \end{aligned}$$

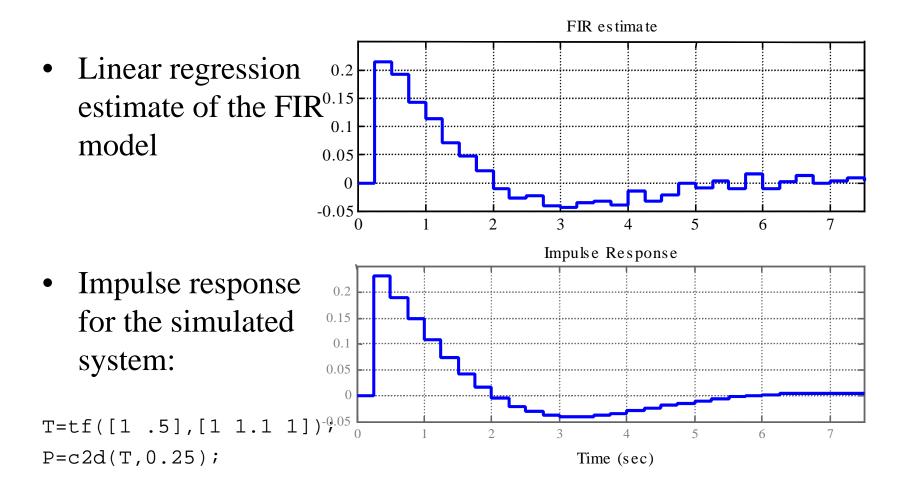
EE392m - Winter 2003

Example: FIR model ID



Control Engineering

Example: FIR model ID



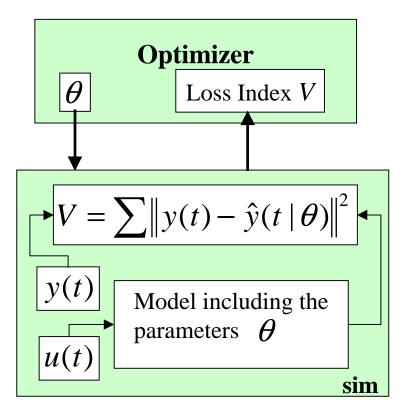
EE392m - Winter 2003

Nonlinear parametric model ID

- Prediction model depending on the unknown parameter vector θ $u(t) \rightarrow \text{MODEL}(\theta) \rightarrow \hat{y}(t \mid \theta)$
- Loss index

 $J = \sum \left\| y(t) - \hat{y}(t \mid \theta) \right\|^2$

• Iterative numerical optimization. Computation of *V* as a subroutine



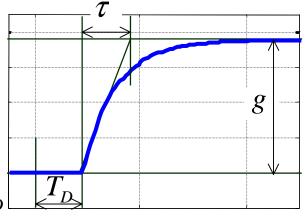
Lennart Ljung, "Identification for Control: Simple Process Models," *IEEE Conf. on Decision and Control*, Las Vegas, NV, 2002

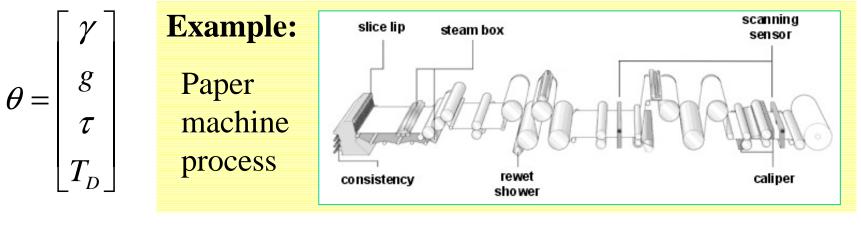
Parametric ID of step response

- First order process with deadtime
- Most common industrial process model
- Response to a control step applied at $t_{\rm B}$

$$y(t \mid \theta) = \gamma + \begin{cases} g\left(1 - e^{(t - t_B - T_D)/\tau}\right), & \text{for } t > t_B - T_D \end{cases}$$

$$0, & \text{for } t \le t_B - T_D \end{cases}$$





Gain estimation

• For given τ, T_D , the modeled step response can be presented in the form

 $y(t \mid \theta) = \gamma + g \cdot y_1(t \mid \tau, T_D)$

• This is a linear regression

$$y(t \mid \theta) = \sum_{k=1}^{2} w_k \varphi_k(t) \qquad \begin{array}{l} w_1 = g \qquad \varphi_1(t) = y_1(t \mid \tau, T_D) \\ w_2 = \gamma \qquad \varphi_2(t) = 1 \end{array}$$

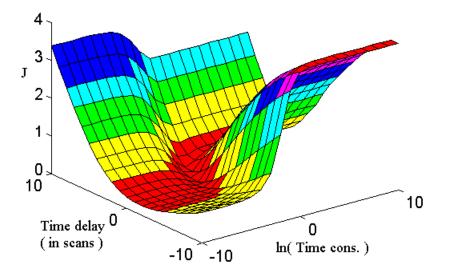
• Parameter estimate and prediction for given τ, T_D $\hat{w}(\tau, T_D) = (\Phi^T \Phi)^{-1} \Phi^T y$ $\hat{y}(t \mid \tau, T_D) = \hat{\gamma} + \hat{g} \cdot y_1(t \mid \tau, T_D)$

Rise time/dead time estimation

• For given τ, T_D , the loss index is

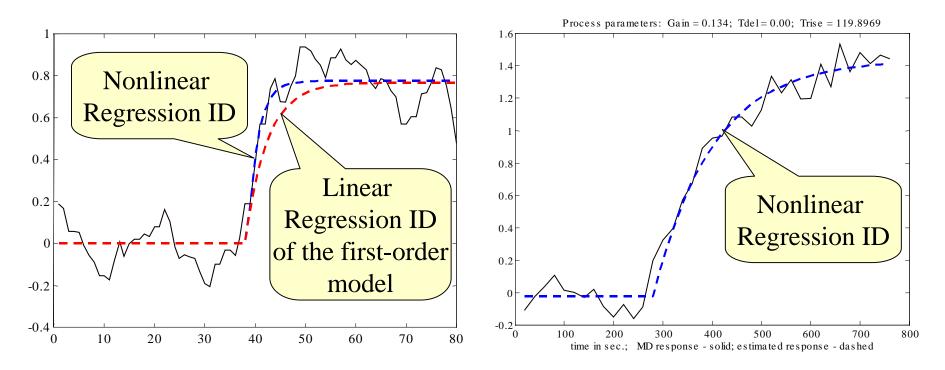
$$V = \sum_{t=1}^{N} \left| y(t) - \hat{y}(t \mid \tau, T_D) \right|^2$$

• Grid τ, T_D and find the minimum of $V = V(\tau, T_D)$



Examples: Step response ID

- Identification results for real industrial process data
- This algorithm works in an industrial tool used in 500+ industrial plants, many processes each



EE392m - Winter 2003

Linear filtering

- A trick that helps: pre-filter data
- Consider data model

$$y = h * u + e$$

• *L* is a linear filtering operator, usually LPF

$$Ly = L(h * u) + Le$$

$$y_{f}$$

$$L(h * u) = (Lh) * u = h * (Lu)$$

- Can estimate *h* from filtered *y* and filtered *u*
- Or can estimate filtered *h* from filtered *y* and 'raw' *u*
- Pre-filter bandwidth will limit the estimation bandwidth

Multivariable ID

- Apply SISO ID to various input/output pairs
- Need *n* tests excite each input in turn
- Step/pulse response identification is a key part of the industrial Multivariable Predictive Control packages.