
CSE 123: Computer Networks
Stefan Savage

Lecture 8: Routing I
Distance-vector Algorithms

This class
 New topic: routing

How do I get
there from

here?

Overview

 Routing overview

 Intra vs. Inter-domain routing

 Distance-vector routing protocols

3

 Forwarding
 Move packet from input link to the appropriate output link
 Purely local computation
 Must go be very fast (executed for every packet)

 Routing
 Make sure that the next hop actually leads to the destination
 Global decisions; distributed computation and communication
 Can go slower (only important when topology changes)

Router Tasks

 Source routing
 Complete path listed in packet

 Virtual circuits
 Set up path out-of-band and store path identifier in routers
 Local path identifier in packet

 Destination-based forwarding
 Router looks up address in forwarding table
 Forwarding table contains (address, next-hop) tuples

Forwarding Options

 Routing
 Host computes path

» Must know global topology and detect failures
 Packet contains complete ordered path information

» I.e. node A then D then X then J…
 Requires variable length path header

 Forwarding
 Router looks up next hop in packet header, strips it off and

forwards remaining packet
» Very quick forwarding, no lookup required

 In practice
 ad hoc networks (DSR), some HPC networks (Myrinet), and for

debugging on the Internet (LSR,SSR)

Source Routing

 Routing
 Hosts sets up path out-of-band, requires connection setup
 Write (input id, output id, next hop) into each router on path
 Flexible (one path per flow)

 Forwarding
 Send packet with path id
 Router looks up input, swaps for output, forwards on next hop
 Repeat until reach destination
 Table lookup for forwarding (faster than IP lookup?)

 In practice
 ATM: fixed VC identifiers and separate signaling code
 MPLS: ATM meets the IP world (why? traffic engineering)

Virtual Circuits

 Routing
 All addresses are globally known

» No connection setup
 Host sends packet with destination address in header

» No path state; only routers need to worry about failure
 Distributed routing protocol used to routing tables

 Forwarding
 Router looks up destination in table

» Must keep state proportional to destinations rather than
connections

 Lookup address, send packet to next-hop link
» All packets follow same path to destination

 In Practice: IP routing

Destination-based Forwarding

 The routing table at A, lists – at a minimum – the next
hops for the different destinations

D

G

A

F

E

B

C

Dest Next
Hop

B B
C C
D C
E E
F F
G F

Routing Tables

 Essentially a graph theory problem
 Network is a directed graph; routers are vertices

 Find “best” path between every pair of vertices
 In the simplest case, best path is the shortest path

D

G

A

F

E

B

C
=router

=link

X

1
1

1

1
1

1

1

1
1 =cost

10

Routing on a Graph

 How to choose best path?
 Defining “best” can be slippery

 How to scale to millions of users?
 Minimize control messages and routing table size

 How to adapt to failures or changes?
 Node and link failures, plus message loss

Routing Challenges

 Routing within a network/organization
 A single administrative domain
 The administrator can set edge costs

 Overall goals
 Provide intra-network connectivity
 Adapt quickly to failures or topology changes
 Optimize use of network resources

 Non-goals
 Extreme scalability
 Lying, and/or disagreements about edge costs
 We’ll deal with these when we talk about inter-domain

routing 12

Intra-domain Routing

 Static
 Type in the right answers and hope they are always true
 …So far

 Distance vector
 Tell your neighbors when you know about everyone
 Today’s lecture!

 Link state
 Tell everyone what you know about your neighbors
 Next time…

Basic Approaches

Distance vector algorithm

 Base assumption
 Each router knows its own address and

the cost to reach each of its directly connected neighbors

 Bellman-Ford algorithm
 Distributed route computation using only neighbor’s info

 Mitigating loops
 Split horizon and posion reverse

14

 Define distances at each node X
 dx(y) = cost of least-cost path from X to Y

 Update distances based on neighbors
 dx(y) = min {c(x,v) + dv(y)} over all neighbors V

3
2

2

1

1
4

1

4

5

3

u

v

w

x

y

z

s

t du(z) = min{c(u,v) + dv(z),
c(u,w) + dw(z)}

Bellman-Ford Algorithm

Iterative, asynchronous: each
local iteration caused by:

 Local link cost change
 Distance vector update message

from neighbor

Distributed:
 Each node notifies neighbors

only when its DV changes
 Neighbors then notify their

neighbors if necessary

wait for (change in local link
cost or message from neighbor)

recompute estimates

if distance to any destination
has changed, notify neighbors

Each node:

Distance Vector Algorithm

16

 c(x,v) = cost for direct link from x to v
 Node x maintains costs of direct links c(x,v)

 Dx(y) = estimate of least cost from x to y
 Node x maintains distance vector Dx = [Dx(y): y є N]

 Node x maintains its neighbors’ distance vectors
 For each neighbor v, x maintains Dv = [Dv(y): y є N]

 Each node v periodically sends Dv to its neighbors
 And neighbors update their own distance vectors
 Dx(y) ← minv{c(x,v) + Dv(y)} for each node y ∊ N

Step-by-Step

17

1

7

8

2

2

1

A

E

B C

D

Info at
node

Distance to Node
A B C D E

A 0 7 1
B 7 0 1 8
C 1 0 2

D 2 0 2
E 1 8 2 0

Example: Initial State

18

1

7

8

2

2

1

A

E

B C

D

Info at
node

Distance to Node
A B C D E

A 0 7 1
B 7 0 1 8
C 1 0 2

D 2 0 2
E 1 8 4 2 0

I’m 2 from C, 0 from
D and 2 from E

D is 2 away, 2+2< ,
so best path to C is 4

D sends vector to E

19

1

7

8

2

2

1

A

E

B C

D

Info at
node

Distance to Node
A B C D E

A 0 7 8 1
B 7 0 1 8
C 1 0 2

D 2 0 2
E 1 8 4 2 0

I’m 7 from A, 0
from B, 1 from C &
8 from E

B is 7 away, 1+7< so
best path to C is 8

B sends vector to A

20

I’m 1 from A, 8 from B, 4
from C, 2 from D & 0 from E

1

7

8

2

2

1

A

E

B C

D

Info at
node

Distance to Node
A B C D E

A 0 7 5 3 1
B 7 0 1 8
C 1 0 2

D 2 0 2
E 1 8 4 2 0

E is 1 away, 4+1<8
so C is 5 away, 1+2<
 so D is 3 away

E sends vector to A

21

1

7

8

2

2

1

A

E

B C

D

Info at
node

Distance to Node
A B C D E

A 0 6 5 3 1
B 6 0 1 3 5
C 5 1 0 2 4
D 3 3 2 0 2
E 1 5 4 2 0

…until Convergence

22

1

7

8

2

2

1

A

E

B C

D

Dest
Next hop

A E C
A 7 9 6
C 12 12 1
D 10 10 3
E 8 8 5

Node B’s distance vectors

23

1

7

8

2

2

1

A

E

B C

D

Info
at

node

Distance to Node
A B C D E

A 0 7 8 10 12

B 7 0 1 3 5
C 8 1 0 2 4
D 10 3 2 0 2
E 12 5 4 2 0

• A marks distance to E as , and tells B
• E marks distance to A as , and tells B and D
• B and D recompute routes and tell C, E and E
• etc… until converge

Handling Link Failure

24

1
A CB

23 2

1
A CB
3 4

Update 3

1
A CB

Update 4

5 4

Etc…

Distance
to C

Counting to Infinity

25

 Updates don’t contain enough information

 Can’t totally order bad news above good news

 B accepts A’s path to C that is implicitly through B!

 Aside: this also causes delays in convergence even
when it doesn’t count to infinity

Why so High?

26

 Hold downs
 As metric increases, delay propagating information
 Limitation: Delays convergence

 Loop avoidance
 Full path information in route advertisement
 Explicit queries for loops

 Split horizon
 Never advertise a destination through its next hop

» A doesn’t advertise C to B
 Poison reverse: Send negative information when advertising a

destination through its next hop
» A advertises C to B with a metric of
» Limitation: Only works for “loop”s of size 2

Mitigation Strategies

27

If Z routes through Y to get to X:

• Z tells Y its (Z’s) distance to X is infinite
(so Y won’t route to X via Z) X Z

14

50

Y
60

Poison Reverse Example

28

Split Horizon Limitations

 A tells B & C that D is unreachable

 B computes new route through C
 Tells C that D is unreachable

(poison reverse)
 Tells A it has path of cost 3

(split horizon doesn’t apply)

 A computes new route through B
 A tells C that D is now reachable

 Etc…

29

1

A C

B

D

1

1

1

 RIP: Routing Information Protocol
 DV protocol with hop count as metric

» Infinity value is 16 hops; limits network size
» Includes split horizon with poison reverse

 Routers send vectors every 30 seconds
» With triggered updates for link failures
» Time-out in 180 seconds to detect failures

 Rarely used today
 EIGRP: proprietary Cisco protocol

 Ensures loop-freedom (DUAL algorithm)
 Only communicates changes (no regular broadcast)
 Combine multiple metrics into a single metric

(BW, delay, reliability, load)

In practice

 Routing is a distributed algorithm
 React to changes in the topology
 Compute the paths through the network

 Distance Vector shortest-path routing
 Each node sends list of its shortest distance to each

destination to its neighbors
 Neighbors update their lists; iterate

 Weak at adapting to changes out of the box
 Problems include loops and count to infinity

Summary

31

Next time
 Link state routing

 Turn in homework…

32

