
Lecture 8:Lecture 8:
Scheduling &Scheduling & DeadlockDeadlock

CSE 120: Principles of Operating Systems
Alex C. Snoeren

Project 1 Due Thursday 10/20

CSE 120 – Lecture 82

Scheduling OverviewScheduling Overview
 In discussing process management and

synchronization, we talked about context switching
among processes/threads on the ready queue

 But we have glossed over the details of exactly which
thread is chosen from the ready queue

 Making this decision is called scheduling
 In this lecture, we’ll look at:

◆ The goals of scheduling
◆ Starvation
◆ Various well-known scheduling algorithms
◆ Standard Unix scheduling algorithm

CSE 120 – Lecture 83

MultiprogrammingMultiprogramming
 In a multiprogramming system, we try to increase CPU

utilization and job throughput by overlapping I/O and
CPU activities
◆ Doing this requires a combination of mechanisms and policy

 We have covered the mechanisms
◆ Context switching, how and when it happens
◆ Process queues and process states

 Now we’ll look at the policies
◆ Which process (thread) to run, for how long, etc.

 We’ll refer to schedulable entities as jobs (standard
usage) – could be processes, threads, people, etc.

CSE 120 – Lecture 84

SchedulingScheduling HorizonsHorizons
 Scheduling works at two levels in an operating system

◆ To determine the multiprogramming level – the number of
jobs loaded into primary memory

» Moving jobs to/from memory is often called swapping
◆ To decide what job to run next to guarantee “good service”

» Good service could be one of many different criteria

 These decisions are known as long-term and short-
term scheduling decisions, respectively
◆ Long-term scheduling happens relatively infrequently

» Significant overhead in swapping a process out to disk
◆ Short-term scheduling happens relatively frequently

» Want to minimize the overhead of scheduling

CSE 120 – Lecture 85

Scheduling GoalsScheduling Goals
 Scheduling algorithms can have many different goals:

◆ CPU utilization
◆ Job throughput (# jobs/unit time)
◆ Turnaround time (Tfinish – Tstart)
◆ Waiting time (Avg(Twait): avg time spent on wait queues)
◆ Response time (Avg(Tready): avg time spent on ready queue)

 Batch systems
◆ Strive for job throughput, turnaround time (supercomputers)

 Interactive systems
◆ Strive to minimize response time for interactive jobs (PC)

CSE 120 – Lecture 86

StarvationStarvation
 Starvation occurs when a job cannot make progress

because some other job has the resource it requires
◆ We’ve seen locks, Monitors, Semaphores, etc.
◆ The same thing can happen with the CPU!

 Starvation can be a side effect of synchronization
◆ Constant supply of readers always blocks out writers
◆ Well-written critical sections should ensure bounded waiting

 Starvation usually a side effect of the sched. algorithm
◆ A high priority process always prevents a low priority process

from running on the CPU
◆ One thread always beats another when acquiring a lock

CSE 120 – Lecture 87

SchedulingScheduling
 The scheduler (aka dispatcher) is the module that

manipulates the queues, moving jobs to and fro
 The scheduling algorithm determines which jobs are

chosen to run next and what queues they wait on
 In general, the scheduler runs:

◆ When a job switches states (running, waiting, etc.)
◆ When an interrupt occurs
◆ When a job is created or terminated

 We’ll discuss scheduling algorithms in two contexts
◆ A preemptive scheduler can interrupt a running job
◆ A non-preemptive scheduler waits for running job to block

CSE 120 – Lecture 88

FCFS/FIFO AlgorithmsFCFS/FIFO Algorithms
 First-come first-served (FCFS), first-in first-out (FIFO)

◆ Jobs are scheduled in order of arrival to ready queue
◆ “Real-world” scheduling of people in lines (e.g., supermarket)
◆ Typically non-preemptive (no context switching at market)
◆ Jobs treated equally, no starvation

 Problem
◆ Average waiting time can be large if small jobs wait behind

long ones (high turnaround time)
» You have a basket, but you’re stuck behind someone with a cart

CSE 120 – Lecture 89

Shortest Job First (SJF)Shortest Job First (SJF)
 Shortest Job First (SJF)

◆ Choose the job with the smallest expected CPU burst
» Person with smallest number of items to buy

◆ Provably optimal minimum average waiting time

 Problem
◆ Impossible to know size of CPU burst

» Like choosing person in line without looking inside basket/cart
◆ How can you make a reasonable guess?
◆ Can potentially starve

 Flavors
◆ Can be either preemptive or non-preemptive
◆ Preemptive SJF is called shortest remaining time first (SRTF)

CSE 120 – Lecture 810

Round Robin (RR)Round Robin (RR)
 Round Robin

◆ Excellent for timesharing
◆ Ready queue is treated as a circular queue (FIFO)
◆ Each job is given a time slice called a quantum
◆ A job executes for the duration of the quantum, or until it

blocks or is interrupted
◆ No starvation
◆ Can be preemptive or non-preemptive

 Problem
◆ Context switches are frequent and need to be very fast

CSE 120 – Lecture 811

Priority SchedulingPriority Scheduling
 Priority Scheduling

◆ Choose next job based on priority
» Airline checkin for first class passengers

◆ Can implement SJF, priority = 1/(expected CPU burst)
◆ Also can be either preemptive or non-preemptive
◆ This is what you’re implementing in Nachos in Project 1

 Problem
◆ Starvation – low priority jobs can wait indefinitely

 Solution
◆ “Age” processes

» Increase priority as a function of waiting time
» Decrease priority as a function of CPU consumption

CSE 120 – Lecture 812

Combining AlgorithmsCombining Algorithms
 Scheduling algorithms can be combined

◆ Have multiple queues
◆ Use a different algorithm for each queue
◆ Move processes among queues

 Example: Multiple-level feedback queues (MLFQ)
◆ Multiple queues representing different job types

» Interactive, CPU-bound, batch, system, etc.
◆ Queues have priorities, jobs on same queue scheduled RR
◆ Jobs can move among queues based upon execution history

» Feedback: Switch from interactive to CPU-bound behavior

CSE 120 – Lecture 813

Unix SchedulerUnix Scheduler
 The canonical Unix scheduler uses a MLFQ

◆ 3-4 classes spanning ~170 priority levels
» Timesharing: first 60 priorities
» System: next 40 priorities
» Real-time: next 60 priorities
» Interrupt: next 10 (Solaris)

 Priority scheduling across queues, RR within a queue
◆ The process with the highest priority always runs
◆ Processes with the same priority are scheduled RR

 Processes dynamically change priority
◆ Increases over time if process blocks before end of quantum
◆ Decreases over time if process uses entire quantum

CSE 120 – Lecture 814

Motivation of Unix SchedulerMotivation of Unix Scheduler
 The idea behind the Unix scheduler is to reward

interactive processes over CPU hogs
 Interactive processes (shell, editor, etc.) typically run

using short CPU bursts
◆ They do not finish quantum before waiting for more input

 Want to minimize response time
◆ Time from keystroke (putting process on ready queue) to

executing keystroke handler (process running)
◆ Don’t want editor to wait until CPU hog finishes quantum

 This policy delays execution of CPU-bound jobs
◆ But that’s ok

CSE 120 – Lecture 815

Scheduling SummaryScheduling Summary
 Scheduler (dispatcher) is the module that gets invoked

when a context switch needs to happen
 Scheduling algorithm determines which process runs,

where processes are placed on queues
 Many potential goals of scheduling algorithms

◆ Utilization, throughput, wait time, response time, etc.

 Various algorithms to meet these goals
◆ FCFS/FIFO, SJF, Priority, RR

 Can combine algorithms
◆ Multiple-level feedback queues
◆ Unix example

CSE 120 – Lecture 816

DeadlockDeadlock
 Processes that acquire multiple resources are

dependent on those resources
◆ E.g., locks, semaphores, monitors, etc.

 What if one process tries to allocate a resource that a
second process holds, and vice-versa?
◆ Neither can ever make progress!
◆ Dining philosphers problem from Homework 2

 We call this situation deadlock, and we’ll look at:
◆ Definition and conditions necessary for deadlock
◆ Representation of deadlock conditions
◆ Approaches to dealing with deadlock

CSE 120 – Lecture 817

Deadlock DefinitionDeadlock Definition
 Deadlock is a problem that can arise:

◆ When processes compete for access to limited resources
◆ When processes are incorrectly synchronized

 Definition:
◆ Deadlock exists among a set of processes if every process is

waiting for an event that can be caused only by another
process in the set.

lockA->Acquire();
…
lockB->Acquire();

lockB->Acquire();
…
lockA->Acquire();

Process 1 Process 2

CSE 120 – Lecture 818

Conditions for DeadlockConditions for Deadlock
Deadlock can exist if and only if four conditions hold:
1. Mutual exclusion – At least one resource must be held

in a non-sharable mode. (I.e., only one instance)
2. Hold and wait – There must be one process holding

one resource and waiting for another resource
3. No preemption – Resources cannot be preempted

(I.e., critical sections cannot be aborted externally)
4. Circular wait – There must exist a set of processes

{P1, P2, P3,…,Pn} such that P1 is waiting for a resource
held by P2, P2 is waiting for P3, … , and Pn for P1

CSE 120 – Lecture 819

Resource Allocation GraphResource Allocation Graph
 Deadlock can be described using a resource allocation

graph (RAG)
 The RAG consists of sets of vertices P = {P1, P2, …,

Pn} of processes and R = {R1, R2, …, Rm} resources
◆ A directed edge from a process to a resource, Pi→Ri, implies

that Pi has requested Rj

◆ A directed edge from a resource to a process, Ri→Pi, implies
that Rj has been acquired by Pi

◆ Each resource has a fixed number of units

 If the graph has no cycles, deadlock cannot exist
 If the graph has a cycle, deadlock may exist

CSE 120 – Lecture 820

RAG ExampleRAG Example

A cycle…and
deadlock!

Same cycle…but no
deadlock. Why?

CSE 120 – Lecture 821

Dealing With DeadlockDealing With Deadlock
There are four ways to deal with deadlock:
 Ignore it

◆ How lucky do you feel?
 Prevention

◆ Make it impossible for deadlock to happen
 Avoidance

◆ Control allocation of resources
 Detection and recovery

◆ Look for a cycle in dependencies

CSE 120 – Lecture 822

Deadlock PreventionDeadlock Prevention
Prevent at least one condition from happening:
 Mutual exclusion

◆ Make resources sharable (not generally practical)

 Hold and wait
◆ Process cannot hold one resource when requesting another
◆ Process requests, releases all needed resources at once

 Preemption
◆ OS can preempt resource (costly)

 Circular wait
◆ Impose an ordering (numbering) on the resources and

request them in order (popular implementation technique)

CSE 120 – Lecture 823

Deadlock AvoidanceDeadlock Avoidance
 Avoidance

◆ Provide information in advance about what resources will be
needed by processes to guarantee that deadlock will not
happen

◆ System only grants resource requests if it knows that the
process can obtain all resources it needs in future requests

◆ Avoids circularities (wait dependencies)

 Tough
◆ Hard to determine all resources needed in advance
◆ Good theoretical problem, not as practical to use

CSE 120 – Lecture 824

BankerBanker’’s Algorithms Algorithm
 The Banker’s Algorithm is the classic approach to

deadlock avoidance for resources with multiple units
1. Assign a credit limit to each customer (process)

◆ Maximum credit claim must be stated in advance

2. Reject any request that leads to a dangerous state
◆ A dangerous state is one where a sudden request by any

customer for the full credit limit could lead to deadlock
◆ A recursive reduction procedure recognizes dangerous states

3. In practice, the system must keep resource usage well
below capacity to maintain a resource surplus
◆ Rarely used in practice due to low resource utilization

CSE 120 – Lecture 825

Detection and RecoveryDetection and Recovery
 Detection and recovery

◆ If we don’t have deadlock prevention or avoidance, then
deadlock may occur

◆ In this case, we need to detect deadlock and recover from it

 To do this, we need two algorithms
◆ One to determine whether a deadlock has occurred
◆ Another to recover from the deadlock

 Possible, but expensive (time consuming)
◆ Implemented in VMS
◆ Run detection algorithm when resource request times out

CSE 120 – Lecture 826

Deadlock DetectionDeadlock Detection
 Detection

◆ Traverse the resource graph looking for cycles
◆ If a cycle is found, preempt resource (force a process to

release)

 Expensive
◆ Many processes and resources to traverse

 Only invoke detection algorithm depending on
◆ How often or likely deadlock is
◆ How many processes are likely to be affected when it occurs

CSE 120 – Lecture 827

Deadlock RecoveryDeadlock Recovery
Once a deadlock is detected, we have two options…
1. Abort processes

◆ Abort all deadlocked processes
» Processes need start over again

◆ Abort one process at a time until cycle is eliminated
» System needs to rerun detection after each abort

2. Preempt resources (force their release)
◆ Need to select process and resource to preempt
◆ Need to rollback process to previous state
◆ Need to prevent starvation

CSE 120 – Lecture 828

Deadlock SummaryDeadlock Summary
 Deadlock occurs when processes are waiting on each

other and cannot make progress
◆ Cycles in Resource Allocation Graph (RAG)

 Deadlock requires four conditions
◆ Mutual exclusion, hold and wait, no resource preemption,

circular wait

 Four approaches to dealing with deadlock:
◆ Ignore it – Living life on the edge
◆ Prevention – Make one of the four conditions impossible
◆ Avoidance – Banker’s Algorithm (control allocation)
◆ Detection and Recovery – Look for a cycle, preempt or abort

CSE 120 – Lecture 829

Next timeNext time……
 Work on Project 1
 We’ll review material for the midterm on Thursday

