2015.0 Release



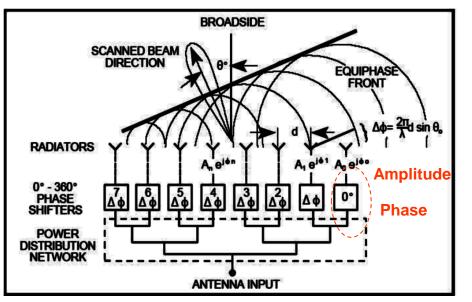
# Lecture 9: Unit Cell Analysis (Infinite Array)



**Structural Mechanics** 

Electromagnetics

Systems and Multiphysics


**ANSYS HFSS for Antenna Design** 



#### Array Overview

- Phased Array
  - A group of antenna elements in which the relative amplitudes and phases are varied to construct an effective radiation pattern by constructive and destructive interference

$$E_{array}(\theta_o, \phi_o, \theta, \phi) = \sum_n A_n(\theta_o, \phi_o) e^{j\psi_n(\theta_o, \phi_o)} \frac{e^{-jk_o r_n}}{r_n} E_n(\theta, \phi)$$
$$S_m(\theta_o, \phi_o) = \sum_n \frac{A_n(\theta_o, \phi_o) e^{j\psi_n(\theta_o, \phi_o)}}{A_m(\theta_o, \phi_o) e^{j\psi_m(\theta_o, \phi_o)}} S_{m,n}$$



- Beam shape can be controlled by adjusting the amplitude of each element
- Beam can be steered by applying a progressing phase shift across the array.
- Mutual coupling plays a key role in an element's pattern and input impedance.
- It is necessary to analyze the arrays performance over frequency and scan volume.

2



## **Analysis Approaches**

# **Unit Cell**

#### Uses Master/Slave boundaries

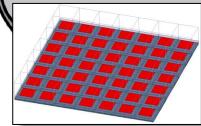
- models a single element as if it were in an infinite array environment
- Infinite array environment accounted for by enforcing field periodicity through master/slave boundary pairs.
- Reduces RAM
- Reduces solve time

#### Infinite Array Approx.

- · Edge affects ignored
- Uniform magnitude excitation
- Single scan angle solved at a time (Distributed Solve Option Parallelizes)

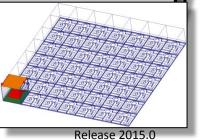


## Explicit


**Finite Array** 

#### Entire array analyzed

- Accounts for edge affects and edge treatments
- Provides mutual coupling terms
- Allows magnitude taper
- Most flexible
  - Fewest assumptions
  - Adaptive meshing performed on entire model


#### Complex Geometry

- Every element needs to be drawn
- Large number of excitations
- Complicated meshing process



## Finite Array DDM

- Entire array analyzed
  - Accounts for edge affects
  - Provides mutual coupling terms
  - Allows magnitude taper
  - Adaptive meshing performed on single unit cell
  - Uses Domain Decomposition to minimize and distribute compute resources
- Distributes RAM
- Reduces solve time
- Periodic assumption
  - Geometry must be purely periodic in the XY plane

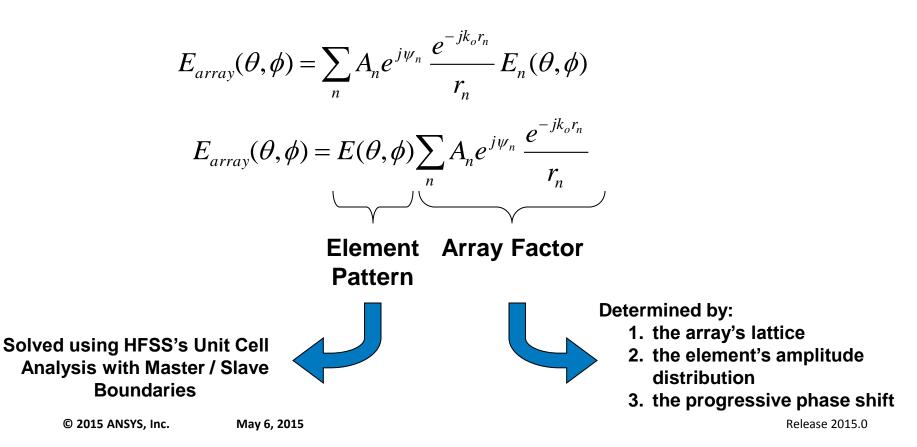


© 2015 ANSYS, Inc.

May 6, 2015

3




4

## **Unit Cell Analysis with Master / Slave Boundaries**



### **Unit Cell Simplification**

- Unit Cell Analysis simplifies large arrays by assuming:
  - The array is infinite
  - The pattern of each element is identical
  - The array is uniformly excited in amplitude, but not necessarily in phase.
- This simplifies the pattern superposition equation





#### **Master/Slave Boundaries**

- Used to model unit cell of periodic structures
- Master and slave boundaries are always paired
  - Fields on master surface are mapped to slave surface with a phase shift enforcing a periodicity in the fields.
- Constraints
  - Master and slave surfaces must be identical in shape and size
  - Coordinate systems must be created to identify point-to-point correspondence

| Master Boundary          Name:       Master         Coordinate System         U       Vector:         Defined         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V | Slave         General Data       Phase Delay       Defaults         Name:       Slave 1         Master Boundary:       Master 1         Coordinate System       U         U       Vector:       Defined         V       Vector:       Image: Reverse Direction | Slave Slave General Data Phase Delay Defaults Guse Scan Angles To Calculate Phase Delay Scan Angles Phi: phi_scan Theta: theta_scan y (Applies to whole model, in the global coordinate system) C Input Phase Delay |                     |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|
| OK Cancel                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                | Phase Delay: 0 deg  (Applies to this boundary only) Use Defaults OK Cancel                                                                                                                                          | WG Port<br>(bottom) |

Unit Cell Model of Waveguide Array

FloquetPort1

**U-axis** 

V-axis

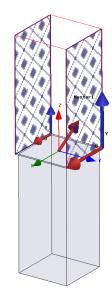
Master2

Master

Boundary

a

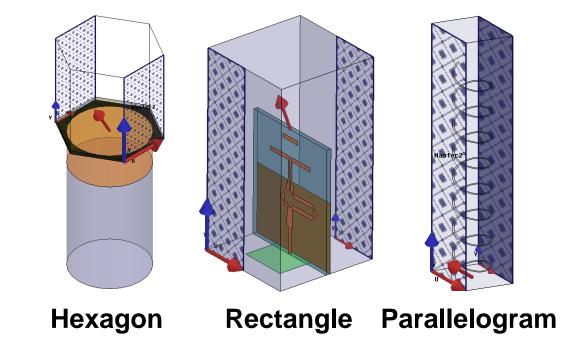
Slave


Boundary



#### **Unit Cell Creation**

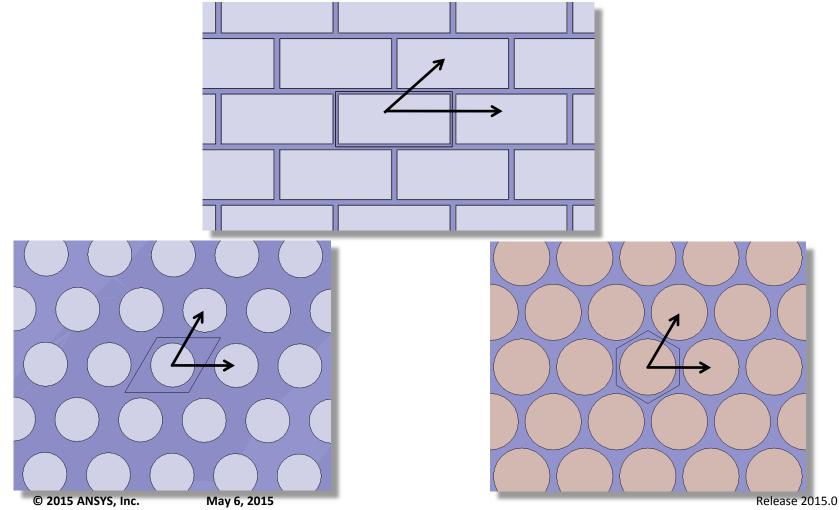
- Unit Cell shape describes the array's lattice
  - The shape should recreate the array's periodicity


#### **Rectangular Lattice**



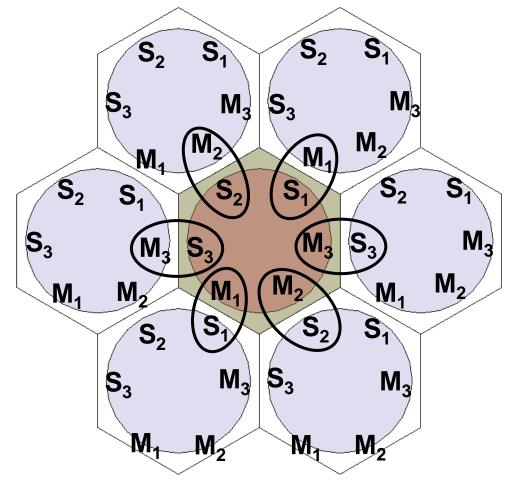
Rectangle

7


#### **Triangular Lattice**






## What if the Lattice is Triangular

- Triangular Lattice
  - A and B vectors should point from one element to the next adjacent element.
  - Alternatively they should point from a master boundary to its corresponding slave boundary (or visa versa).



## **ANSYS** Verifying the Unit Cell Geometry

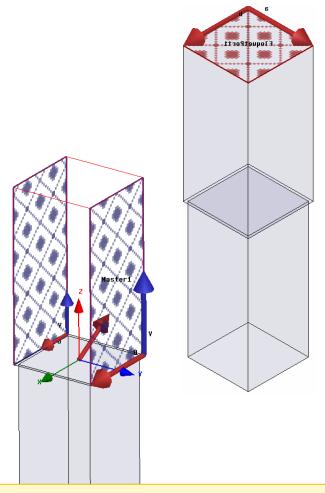
• When an element is duplicated along a periodicity the Master boundary should make contact with the adjacent cell's slave boundary



9

| <b>ANSYS®</b> |  |     |
|---------------|--|-----|
|               |  | SYS |

#### **Floquet Ports Overview**


- Floquet Port
  - Excites and terminates waves propagating down the unit cell
  - Always Linked to Master/Slave Boundaries
    - Establishes field periodicity of the array
  - Only for surfaces exposed to the background
  - Replaces radiation boundary and PML for free space field absorption

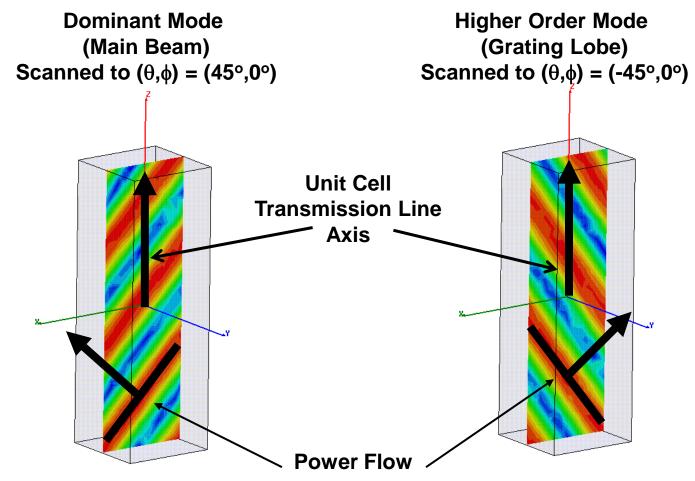
#### How do Floquet Ports Excite and Terminate Power

- Decomposes the fields on the Floquet Port into Floquet Modes
  - Set of TE and TM modes in which the power travels
  - Similar concept to Waveguide Modes
- Floquet Ports only absorb the modes that are defined on the port
  - All other modes are short circuited back into the model

#### Post-Processing Floquet Ports

- Supports multiple modes and de-embedding
- Computes Generalized S-Parameters
  - Frequency dependent characteristic impedance (Zo)
  - Frequency dependent propagation constant
  - Perfectly matched at every frequency and every scan angle




All significant mode need to be defined in the Floquet Port Setup to obtain accurate solutions.



## **Floquet Mode Visualization**

#### • Each floquet mode:

- 1. is a plane wave propagating in a given direction
- 2. represents a main beam or grating lobe of the array



|                                         |                                                                                                    | Floquet Port                                                                                                                                                                                                                                                                                                      |
|-----------------------------------------|----------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <b>ANSYS</b> Floque                     | t Port Setup                                                                                       | General       Modes       Setup       Post Processing       3D Refinement         To add a Roquet mode to the 3D adaptive mesh<br>refinement process, check the corresponding box.       In general, only add Roquet modes when these modes create<br>the 3D fields of interest. See the online help for details. |
| <ul> <li>Modes excluded have</li> </ul> | are excited during 3D Refinement<br>NO impact on the mesh density<br>rom the 3D Refinement Process | Mode         Polarization         State         m         n         Affects         Refinement           1         TE         0         0                                                                                                                                                                         |
| Mesh for Random<br>Multiport Device     | Regions Requiring<br>Mesh Refinement                                                               | Regions Requiring Mesh<br>Refinement with Port 3 Excluded                                                                                                                                                                                                                                                         |
| Port 1<br>Port 2<br>Port 3              | Port 1<br>Port 2<br>Port 3                                                                         | Port 1<br>Fort 2<br>Port 3                                                                                                                                                                                                                                                                                        |

- For phased array element analysis uncheck all the modes.
  - The primary purpose of the Floquet Port is to terminate the array's radiated power and determine how the element transmits power to different Floquet Modes.
  - The transmission terms from the antenna to the Floquet Modes will be accurate because the antenna's ports are always included in the 3D Refinement process.
  - The only questionable results will be the transmission and reflection terms where the power emanates from the Floquet Port itself.