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Consider Lorentz transformations – pseudo-orthogonal transformations in 

4-dimentional vector space (Minkowski space)

4-vectors:

with contravariant components

(upper indices)

Note: covariant components (lower indices) are defined by 

1. Lorentz Group1. Lorentz Group

The transformation between covariant and contravariant components is 
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Notation:                

T = transposition
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1. Lorentz Group1. Lorentz Group

Pseudometric tensor:

(5)

For any space-time vector we get:

where the vector x’ is the result of a Lorentz transformation ΛΛΛΛµµµµ
ν ν ν ν ::::

such that

(6)

(7)

(8)

(9)• Pseudo-orthogonality relation:

which implies that the pseudometric tensor is Lorentz invariant !
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For the transformation in x1 direction with velocity

the transformation matrix is given by

where                    ,   and 14 is the 4x4 unitary matrix     ����

1. Lorentz Group1. Lorentz Group

In matrix form:

The inverse Lorentz transformation reads:

(10)

(11)

(12)

(13)

(14)

From (9), (6) we obtain: 

with determinant
(15)
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Properties of Lorentz transformations:

1) Two Lorentz transformations

applied successively

appear as a single Lorentz transformation. In matrix form:

2) The neutral element is the 4x4 unitary matrix 14 for a Lorentz boost with υ υ υ υ =0 

3) For each ΛΛΛΛ exists the inverse transformation:

4) The matrix multiplication is associative ���� the Lorentz transformation is 

associative also, ( i.e. the order in which the operations are performed does not matter as long as the

sequence of the operands is not changed.)

1. Lorentz Group1. Lorentz Group

(16)

(17)

(18)

(19)

(20)

(21)
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2. Lorentz Group:  scalars, vectors, tensors2. Lorentz Group:  scalars, vectors, tensors

1) Lorentz-Scalars transform as:

Lorentz transformation

ΛΛΛΛ (22)

ΨΨΨΨ: e.g. electric charge

2) Lorentz-Vectors are defined by the transformation properties as:
(23)

(24)

���� Transformation of covariant components:
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2. Lorentz Group:  vectors, tensors2. Lorentz Group:  vectors, tensors

3) Lorentz-Tensor 

(25)

(26)

(27)

Transformation of the covariant components of a Lorentz tensor is defined as:

���� Transformation of contravariant-covariant components:

4) Higher tensor products (Kronecker products)

(28)e.g.  tensor of 3rd order:

Aµ µ µ µ is a vector-component 

Tνννν
ρ ρ ρ ρ is a tensor-component
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2. Lorentz Group:  vectors, tensors2. Lorentz Group:  vectors, tensors

5) Covariant trace

(29)

(30)

(31)

Consider e.g. the trace of a tensor of 2nd order:

After Lorentz transformation it has to transform as a scalar:

6) Fundamental Levi-Civita-Pseudo-tensor (or permutation tensor)

if (µ,ν,ρ,σ)(µ,ν,ρ,σ)(µ,ν,ρ,σ)(µ,ν,ρ,σ) is an even permutation of (0,1,2,3)

if (µ,ν,ρ,σ)(µ,ν,ρ,σ)(µ,ν,ρ,σ)(µ,ν,ρ,σ) is an odd permutation of (0,1,2,3)

in all other cases

(32)
Pseudo-tensor, 

since 

After Lorentz transformation we get:

(33)

Cf. Eq.(27)



9

2. Lorentz Group:  vectors, tensors2. Lorentz Group:  vectors, tensors

� Covariant differentiation:

(34)

(35)

(36)

(37)

ΨΨΨΨ’ is a Lorentz scalar and 

� the 4-derivative is a covariant 4-vector: 

� The 4-divergence of a Lorentz vector is a Lorentz scalar:

(38)

Since

Note: the total derivative is a scalar:
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2. Lorentz Group:  vectors, tensors2. Lorentz Group:  vectors, tensors

If one introduces the 4-vector (39)

(41)

(40)

Thus the D’Alembert-Operator

is also invariant under Lorentz transformations, i.e.

(42)

(43)

In general: The scalar product of two Lorentz vectors is a Lorentz scalar:

ít follows from (38):
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The  continuity equation:

New notation:

ρ is the charge density and   j1, j2,j3 are the 3-components of the currect

In covariant notation we get:

• In a system with a charge distribution at rest we have:

As a covariant component of a 4-vector,  jµµµµ
‘ must be also invariant under

Lorentz transformations with velocity                  in x1-direction:

3. Vector current3. Vector current

(44)

(45)

(46)

(47)

(48)

and transformes  as

with
(49)
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3. Vector current3. Vector current

The Lorentz transformation of the volume from frame ΣΣΣΣ to ΣΣΣΣ‘ reads:

(50)

(51)

One obtains in any frame the charge invariance:

Q=
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4. The four4. The four--potentialpotential

� Consider the vector potential A and scalar potential ΦΦΦΦ

(52)

(53)

The Lorentz gauge reads:

The wave equation: 

One can also write in covariant notation:
(54)

(55)

(56)

using that

Then Eq. (53) reads:   

The Lorentz covariance of Eq. (52)  can be also written in the form:

(57)

�0 is the electric constant, �0 is the magnetic constant.
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4. The four4. The four--potentialpotential

Consequences:

• Lorentz invariance of the continuity equation and gauge condition:

If in the frame ΣΣΣΣ

then in the frame ΣΣΣΣ‘ we also have 

(57)

(58)

Since eq. (53) is covariant, the same result will be in Σ Σ Σ Σ and ΣΣΣΣ‘

(59)

(60)

thus

This is the covariance of classical electrodynamics! 
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5. Plane5. Plane--waveswaves

(61)

Consider plane-waves in vacuum in the inertial system Σ:Σ:Σ:Σ:

(62)

(63)

Due to the covariance of the homogenuous wave equation

a transformation to another system ΣΣΣΣ’ gives:

(64)

Accordingly, the phase of the plane wave should be also invariant:

as in case of a point-like excitation, where the wave fronts are spherical surfaces 

moving with the velocity of light c.

(65)

with
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5. Plane5. Plane--waveswaves

(66)

Since the phase in Eq. (64) is an invariant scalar product, the k� must be the 

covariant components of a 4-vector, which transform as:

(67)
Using the dispersion relation:

(68)

(69)

and denoting the angles φφφφ and φφφφ� with the direction of k and k� with respect 

to the direction of v (i.e. the x-direction in case of (28)) we obtain:
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5. Plane5. Plane--wavewave

(70)

Equation (68) describes the Doppler-effect, which apart from a longitudinal effect,

(71)

for � << 1 and φφφφ = 0, �, 

also implies a transversal effect

for

which is a typical relativistic phenomenon. This effect was shown experimentally 

in 1938 within the investigation of radiation from moving H-atoms. Well known is 

the longitudinal effect in the radiation of distant galaxies (red shift) which 

demonstrates that these objects are moving away from us.

Furthermore, both phenomena describe the relativistic aberration of light, i.e. the 

apparent change of position of light sources due to the motion of the earth around 

the sun relative to stars. 
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6. Transformation of the fields E and B6. Transformation of the fields E and B

Once knowing the fields A and ΦΦΦΦ, one can compute the fields E and B via

(72)

(73)

(74)

Let‘s rewrite Eq. (72) in covariant form with coordinates x� and the 

components of the 4-potential A� . For example we obtain:

Eq. (73) suggests to introduce the antisymmetric field-strength tensor 

of second rank

(75)
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6. Transformation of the fields E and B6. Transformation of the fields E and B

(76)

(77)

The contravariant components are

(78)

Now we know the transformation properties of the fields E and B since the 

contravariant components transform as (25)

For the special Lorentz boost  (14) we obtain:

transformation in x1 direction with velocity

(14):
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6. Transformation of the fields E and B6. Transformation of the fields E and B

(79)

(80)

(81)

For a Lorentz-Boost with velocity vv in arbitrary direction holds that the 

parallel components (in direction of v) are conserved:

while the transverse components transform as:

The inversion

is obtained – in analogy to the coordinate transformation - by replacing  v � −v.

Equations (80) and (81) demonstrate the connection between the electromagnetic 

fields E and B in different frames.
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7. 7. Maxwell equationsMaxwell equations

Now we can rewrite the Maxwell equations for the electromagnetic field in 

covariant form. We focus on the case of the vacuum and recall the Maxwell 

equations in conventional notation:

(82)

(83)

The equations (82) are the homogenuous Maxwell equations. They can be 

fulfilled by introducing scalar and vector potentials. 

The equations (83) describe the ‚creation‘ of the fields from electric 

charges and currents. As seen before these equations can be written in 

covariant form of 4-tensor structure. The components of the field strength 

appear in the field-strength tensor (76), i.e. we have to express the 

equations in terms of this tensor. 
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7. 7. Maxwell equationsMaxwell equations

and

where (†F)� is the dual tensor to F� . The first equation we can evaluate by writing 

the field-strength tensor in the form (84) via the potentials and take care of the 

Lorentz gauge :

(84)

(85)

(86)

These equations apparently correspond to the inhomogenuous Eqs. (83). When 

rewriting the dual tensor in terms of the potentials we obtain:

By calculating the 4-divergence of (86) we find that due to the antisymmetry of the 

Levi-Civita tensor               and the exchange properties of the derivatives we get:

(87)

Indeed, we can construct two independent covariant equations with first 

order derivatives: 
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7. 7. Maxwell equationsMaxwell equations

where �(x) is an arbitrary scalar field. In fact, the field-strength tensor does not 

depend on such gauge transformations as seen from

The advantage of the Maxwell equations (85) and (87) is that they are gauge 

independent. Indeed, a change in the gauge for the potentials implies

This implies that the 4-potentials A� und A˜� describe the same physical fields. The 

invariance of (85) and (87) with respect to gauge transformations (88) is the starting 

point of the standard model of elementary particle physics.

(88)

(89)
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8. Coulomb field8. Coulomb field

(90)

The field of a charge q at rest in the frame ΣΣΣΣ� is:

(91)

In a frame moving with velocity v = (v, 0, 0) relative to ΣΣΣΣ� we obtain:

Here x�, y�, z� has been written explicitly as a function of x, y, z using the Lorentz 

transformation of the coordinates. The field appears as in ΣΣΣΣ� as a central field 

but is no longer isotropic. The factor �2 in the square root differentiates the x-

direction relative the y- and z-direction. 



25

8. Coulomb Field8. Coulomb Field

(93)

since the charge q is moving and thus generating a current. For illustration we 

consider the case � >> 1:

i) Close to the x-axis (y, z � 0) we get 

which implies a reduction of the field strength by a factor �−2 .

ii) In the plane parallel to the y − z-plane through q we get:

(94)

which implies an enhancement of the transverse field strength by a factor of � . 

����The radial field lines are thus thinner in the direction of motion whereas 

they are enhanced in transverse direction:

An observer measures also the magnetic field:

(92)
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Covariant electrodynamicsCovariant electrodynamics

Summary:

The basic equations of electrodynamics are covariant 

with respect to Lorentz transformations and have the 

same form in all inertial systems thus following the 

Einstein principle of relativity.


