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1. Introduction to FALSIM 
2. Preparing source files for FALSIM 
3. Using FALSIM 
4. FALCON-A assembly language techniques 
 

 

FALSIM 
 

1. Introduction to FALSIM: 

 
FALSIM is the name of the software application which consists of the 
FALCON-A assembler and the FALCON-A simulator. It runs under 
Windows XP.  
 
FALCON-A Assembler:  

 

Figure 1 shows a snapshot of the FALCON-A Assembler. This tool loads a 
FALCON-A assembly file with a (.asmfa) extension and parses it. It shows 
the parse results in an error log, lets the user view the assembled file’s 
contents in the file listing and also provides the features of printing the 
machine code, an Instruction Table and a Symbol Table to a FALCON-A 
listing file. It also allows the user to run the FALCON-A Simulator.  
 
The FALCON-A Assembler has two main modules, the 1st-pass and the 
2nd-pass. The 1st-pass module takes an assembly file with a (.asmfa) 
extension and processes the file contents. It then creates a Symbol Table 
which corresponds to the storage of all program variables, labels and data 
values in a data structure at the implementation level. If the 1st-pass 
completes successfully a Symbol Table is produced as an output, which is 
used by the 2nd-pass module. Failures of the 1st-pass are handled by the 
assembler using its exception handling mechanism.  
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The 2nd-pass module sequentially processes the .asmfa file to interpret the 
instruction opcodes, register opcodes and constants using the symbol table. 
It then produces a list file with a .lstfa extension independent of successful 
or failed pass. If the pass is successful a binary file with a .binfa extension is 
produced which contains the machine code for the program in the assembly 
file.  
 
FALCON-A Simulator:  
 
Figure 6 shows a snapshot of the FALCON-A Simulator. This tool loads a 
FALCON-A binary file with a (.binfa) extension and presents its contents 
into different areas of the simulator. It allows the user to execute the 
program to a specific point within a time frame or just executes it, line by 
line. It also allows the user to view the registers, I/O port values and memory 
contents as the instructions execute.  
 
FALSIM Features:  
 
The FALCON-A Assembler provides its user with the following features: 
  
Select Assembly File: Labeled as “1” in Figure 1, this feature enables the 
user to choose a FALCON-A assembly file and open it for processing by the 
assembler. 
  
Assembler Options: Labeled as “2” in Figure 1.  
 

• Print Symbol Table  
This feature if selected writes the Symbol Table (produced after the 
execution of the 1st-pass of the assembler) to a FALCON-A list file with an 
extension of (.lstfa). The Symbol Table includes data members, data 
addresses and labels with their respective values.  

• Print Instruction Table  
This feature if selected writes the Instruction Table to a FALCON-A list file 
with an extension of (.lstfa).  
 
List File: Labeled as “3”, in Figure 1, the List File feature gives a detailed 
insight of the FALCON-A listing file, which is produced as a result of the 
execution of the 1st and 2nd-pass. It shows the Program Counter value in 
hexadecimal and decimal formats along with the machine code generated for 
every line of assembly code. These values are printed when the 2nd-pass is 
completed.  
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Error Log: The Error Log is labeled as “4” in Figure 1. It informs the user 
about the errors and their respective details, which occurs in any of the 
passes of the assembler.  
 

Search: Search is labeled as “5” in Figure 1 and helps the user to search for 
a certain input with the options of searching with “match whole” and 
“match any” parts of the string. The search also has the option of checking 
with/without considering “case-sensitivity”. It searches the List File area 
and highlights the search results using the yellow color. It also indicates the 
total number of matches found.  
 

Start Simulator: This feature is labeled as “6” in Figure 1. The FALCON-A 
Simulator is run using the FALCON-A Assembler’s Start Simulator option. 
The FALCON-A Simulator is invoked by the user from the FALCON-A 
Assembler. Its features are detailed as follows:  
 

Load Binary File: The button labeled as “11” in Figure 6, allows the user to 
choose and open a FALCON-A binary file with a (.binfa) extension. When a 
file is being loaded into the simulator all the register, constants (if any) and 
memory values are set.  
 

Registers: The area labeled as “12” in Figure 6. enables, the user to see 
values present in different registers before during and after execution.  
 

Instruction: This area is labeled as “13” in Figure 6 and contains the value of 
PC, address of an instruction, its representation in Assembly, the Register 
Transfer Language, the op-code and the instruction type.  
 

I/O Ports: I/O ports are labeled as “14” in Figure 6. These ports are available 
for the user to enter input operation values and visualize output operation 
values whenever an I/O operation takes place in the program. The input 
value for an input operation is given by the user before an instruction 
executes. The output values are visible in the I/O port area once the 
instruction has successfully executed.  
 

Memory: The memory is divided into 2 areas and is labeled as “15” in 
Figure 6, to facilitate the view of data stored at different memory locations 
before, during and after program execution.  
 

Processor’s State: Labeled as “16” in Figure 6, this area shows the current 
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values of the Instruction register and the Program Counter while the program 
executes.  
 

Search: The search option for the FALCON-A simulator is labeled as “17” 
in Figure 6. This feature is similar to the way the search feature of the 
FALCON-A Assembler works. It offers to highlight the search string which 
goes as an input, with the “All “ and “ Part “ option. The results of the search 
are highlighted in the color yellow. It also indicates the total number of 
matches.  
 
The following is a description of the options available on the button panel 
labeled as “18” in Figure 6. 
  
Single Step: “Single Step” lets the user execute the program, one instruction 
at a time. The next instruction is not executed unless the user does a “single 
step” again. By default, the instruction to be executed will be the one next in 
the sequence. It changes if the user specifies a different PC value using the 
Change PC option (explained below).  
 

Change PC: This option lets the user change the value of PC 
(Program Counter). By changing the PC the user can execute the 
instruction to which the specified PC points.  
 
Execute: By choosing this button the user is able to execute the 
instructions with the options of execution with/without breakpoint 
insertion (refer to Fig. 5). In case of breakpoint insertion, the user has 
the option to choose from a list of valid breakpoint values. It also has 
the option to set a limit on the time for execution. This “Max 
Execution Time” option restricts the program execution to a time 
frame specified by the user, and helps the simulator in exception 
handling.  
 
Change Register: Using the Change Register feature, the user can 
change the value present in a particular register.  
 
Change Memory Word: This feature enables the user to change values 
present at a particular memory location.  
 
Display Memory: Display Memory shows an updated memory area, 
after a particular memory location other than the pre-existing ones is 
specified by the user.  
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Change I/O: Allows the user to give an I/O port value if the 
instruction to be executed requires an I/O operation. Giving in the 
input in any one of the I/O ports areas before instruction execution, 
indicates that a particular I/O operation will be a part of the program 
and it will have an input from some source. The value given by the 
user indicates the input type and source.  
 
Display I/O: Display I/O works in a manner similar to Display 
Memory. Here the user specifies the starting index of an I/O port. This 
features displays the I/O ports stating from the index specified. 
 
2. Preparing source files for FALSIM: 

 
In order to use the FALCON-A assembler and simulator, FALSIM, 
the source file containing assembly language statements and directives 
should be prepared according to the following guidelines: 

 

• The source file should contain ASCII text only. Each line should be 
terminated by a carriage return. The extension .asmfa should be used 
with each file name. After assembly, a list file with the original 
filename and an extension .lstfa, and a binary file with an extension 
.binfa will be generated by FALSIM.  

• Comments are indicated by a semicolon (;) and can be placed anywhere 
in the source file. The FALSIM assembler ignores any text after the 
semicolon. 

• Names in the source file can be of one of the following types: 

• Variables: These are defined using the .equ directive. A value must 
also be assigned to variables when they are defined. 

• Addresses in the “data and pointer area” within the memory: These 
can be defined using the .dw or the .sw directive. The difference 
between these two directives is that when .dw is used, it is not 
possible to store any value in the memory.  The integer after .dw 
identifies the number of memory words to be reserved starting at the 
current address. (The directive .db can be used to reserve bytes in 
memory.) Using the .sw directive, it is possible to store a constant or 
the value of a name in the memory. It is also possible to use pointers 
with this directive to specify addresses larger than 127. Data tables 
and jump tables can also be set up in the memory using this directive. 
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• Labels: An assembly language statement can have a unique label 
associated with it. Two assembly language statements cannot have the 
same name. Every label should have a colon (:) after it. 

• Use the .org 0 directive as the first line in the program. Although the use 
of this line is optional, its use will make sure that FALSIM will start 
simulation by picking up the first instruction stored at address 0 of the 
memory. (Address 0 is called the reset address of the processor). A jump 

[first] instruction can be placed at address 0, so that control is transferred 
to the first executable statement of the main program.  Thus, the label 
first serves as the identifier of the “entry point” in the source file. The 
.org directive can also be used anywhere in the source file to force code 
at a particular address in the memory. 

• Address 2 in the memory is reserved for the pointer to the Interrupt 
Service Routine (ISR). The .sw directive can be used to store the address 
of the first instruction in the ISR at this location. 

• Address 4 to 125 can be used for addresses of data and pointers1. 
However, the main program must start at address 126 or less2, otherwise 
FALSIM will generate an error at the jump [first] instruction. 

• The main program should be followed by any subprograms or 
procedures. Each procedure should be terminated with a ret instruction. 
The ISR, if any, should be placed after the procedures and should be 
terminated with the iret instruction. 

• The last line in the source file should be the .end directive.   

• The .equ directive can be used anywhere in the source file to assign 
values to variables. 

• It is the responsibility of the programmer to make sure that code does not 
overwrite data when the assembly process is performed, or vice versa. As 
an example, this can happen if care is not exercised during the use of the 
.org directive in the source file. 

 

3. Using FALSIM:   
 

• To start FALSIM (the FALCON-A assembler and simulator), double 
click on the FALSIM icon. This will display the assembler window, 
as shown in the Figure 1. 

 

                                                 
1 Any address between 4 and 14 can be used in place of the displacement field in load or 
store instructions. Recall that the displacement field is just 5 bits in the instruction word.   
2 This restriction is because of the face that the immediate operand in the movi 
instruction must fit an 8-bit field in the instruction word. 
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• Select one or both assembler options shown on the top right corner of 
the assembler window labeled as “2”. If no option is selected, the 
symbol table and the instruction table will not be generated in the list 
(.lstfa) file. 

 

• Click on the select assembly file button labeled as “1”. This will open 
the dialog box as shown in the Figure 2. 

 

• Select the path and file containing the source program that is to be 
assembled. 

 

• Click on the open button. FALSIM will assemble the program and 
generate two files with the same filename, but with different 
extensions. A list file will be generated with an extension .lstfa, and a 
binary (executable) file will be generated with an extension .binfa. 
FALSIM will also display the list file and any error messages in two   
separate panes, as shown in Figure 3. 

 

• Double clicking on any error message highlights and displays the 
corresponding erroneous line in the program listing window pane for 
the user. This is shown in Figure 4. The highlight feature can also be 
used to display any text string, including statements with errors in 
them. If the assembler reported any errors in the source file, then these 
errors should be corrected and the program should be assembled again 
before simulation can be done. Additionally, if the source file had 
been assembled correctly at an earlier occasion, and a correct binary 
(.binfa) file exists, the simulator can be started directly without 
performing the assembly process. 

 

• To start the simulator, click on the start simulation button labeled as 
“6”. This will open the dialog box shown in Figure 6. 

 

• Select the binary file to be simulated, and click open as shown in 
Figure 7. 

 

• This will open the simulation window with the executable program 
loaded in it as shown in Figure 8. The details of the different panes in 
this window were given in section 1 earlier. Notice that the first 
instruction at address 0 is ready for execution.  All registers   are 
initialized to 0. The memory contains the address of the ISR (i.e., 64h 
which is 100 decimal) at location 2 and the address of the printer 
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driver at location 4. These two addresses are determined at assembly 
time in our case.  In a real situation, these addresses will be 
determined at execution time by the operating system, and thus the 
ISR and the printer driver will be located in the memory by the 
operating system (called re-locatable code). Subsequent memory 
locations contain constants defined in the program. 

 

• Click single step button labeled as “19”. FALSIM will execute the 
jump [main] instruction at address 0 and the PC will change to 20h 
(32 decimal), which is the address of the first instruction in the main 
program (i.e., the value of main).  

 
• Although in a real situation, there will be many instructions in the 

main program, those instructions are not present in the dummy calling 
program. The first useful instruction is shown next. It loads the 
address of the printer driver in r6 from the pointer area in the memory. 
The registers r5 and r7 are also set up for passing the starting address 
of the print buffer and the number of bytes to be printed. In our 
dummy program, we bring these values in to these registers from the 
data area in the memory, and then pass these values to the printer 
driver using these two registers. Clicking on the single step button twice, 

executes these two instructions. 
 

• The execution of the call instruction simulates the event of a print 
request by the user. This transfers control to the printer driver. Thus, 
when the call r4, r6 instruction is single stepped, the PC changes to 
32h (50 decimal) for executing the first instruction in the printer 
driver. 

 

• Double click on memory location 000A, which is being used for 
holding the PB (printer busy) flag. Enter a 1 and click the change 
memory button. This will store a 0001 in this location, indicating that 
a previous print job is in progress. Now click single step and note that 
this value is brought from memory location 000E into register r1. 
Clicking single step again will cause the jnz r1, [message] instruction 
to execute, and control will transfer to the message routine at address 
0046h. The nop instruction is used here as a place holder. 

 

• Click again on the single step button.  Note that when the ret r4 
instruction executes, the value in r4 (i.e., 28h) is brought into the PC. 
The blue highlight bar is placed on the next instruction after the call 
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r4, r6 instruction in the main program. In case of the dummy calling 
program, this is the halt instruction. 

 

• Double click on the value of the PC labeled as “20”. This will open a 
dialog box shown below. Enter a 
value of the PC (i.e., 26h) 
corresponding to the call r4, r6 
instruction, so that it can be 
executed again. A “list” of possible 
PC values can also be pulled down 
using, and 0026h can be selected 
from there as well.  

 

• Click single step again to enter the printer driver again. 
 

• Change memory location 000A to a 0, and then single step the first 
instruction in the printer driver. This will bring a 0 in r1, so that when 
the next jnz r1, [message] instruction is executed, the branch will not 
be taken and control will transfer to the next instruction after this 
instruction. This is mivi r1, 1 at address 0036h. 

 

• Continue single stepping. 
 

• Notice that a 1 has been stored in memory location 000A, and r1 
contains 11h, which is then transferred to the output port at address 
3Ch (60 decimal) when the out r1, controlp instruction executes. 
This can be verified by double clicking on the top left corner of the 
I/O port pane, and changing the address to 3Ch. Another way to 
display the value of an I/O port is to scroll the I/O window pane to 
the desired position.  

 

• Continue single stepping till the int instruction and note the changes 
in different panes of the simulation window at each step. 

 

• When the int instruction executes, the PC changes to 64h, which is the 
address of the first instruction in the ISR.  Clicking single step executes 
this instruction, and loads the address of temp (i.e., 0010h) which is a 
temporary memory area for storing the environment. The five store 
instructions in the ISR save the CPU environment (working registers) 
before the ISR change them.  
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• Single step through the ISR while noting the effects on various registers, 
memory locations, and I/O ports till the iret instruction executes. This will 
pass control back to the printer driver by changing the PC to the address of 
the jump [finish] instruction, which is the next instruction after the int 
instruction.  

 

• Double click on the value of the PC. Change it to point to the int 
instruction and click single step to execute it again. Continue to single step 
till the in r1, statusp instruction is ready for execution. 

 

• Change the I/O port at address 3Ah (which represents the status port at 
address 58) to 80 and then single step the in r1, statusp instruction. The 
value in r1 should be 0080.  

 

• Single step twice and notice that control is transferred to the movi r7, 

FFFF
3 instruction, which stores an error code of –1 in r1. 

  

                                                 
3 The instruction was originally movi r7, -1. Since it was converted to machine language 
by the assembler, and then reverse assembled by the simulator, it became movi r7, 

FFFF.  This is because the machine code stores the number in 16-bits after sign-
extension. The result will be the same in both cases.  

Figure 1 
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Figure 2  
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Figure 5 
Figure 6 

 
 
                                                     
 
                                               
 
                                                  

 

 

 

 

 

 

 

 

 

 

 

 

Figur
e 7 

 



Advanced Computer Architecture-CS501                                            

Last Modified: 12-Jan-11                                                                                                  Page 17 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 8 

 

4. FALCON-A assembly language programming techniques:     
 

• If a signed value, x, cannot fit in 5 bits (i.e., it is outside the range -16 to 
+15), FALSIM will report an error with a load r1, [x] or a store r1, [x] 
instruction. To overcome this problem, use movi r2, x followed by load 

r1, [r2].   
 

• If a signed value, x, cannot fit in 8 bits (i.e., it is outside the range      -
128 to +127), even the previous scheme will not work. FALSIM will 
report an error with the movi r2, x instruction. The following instruction 
sequence should be used to overcome this limitation of the FALCON-A. 
First store the 16-bit address in the memory using the .sw directive. Then 
use two load instructions as shown below: 

a:   .sw x 

 load r2, [a] 

 load r1, [r2]  
 
This is essentially a “memory-register-indirect” addressing. It has been 
made possible by the .sw directive. The value of a should be less than 15. 
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• A similar technique can be used with immediate ALU instructions for 
large values of the immediate data, and with the transfer of control (call 
and jump) instructions for large values of the target address. 

 

• Large values (16-bit values) can also be stored in registers using the mul 
instruction combined with the addi instruction. The following 
instructions bring a 201 in register r1. 

 

movi r2, 10 

movi r3, 20 

mul r1, r2, r3  ; r1 contains 200 after this instruction 

addi r1, r1, 1   ; r1 now contains 201 
 

• Moving from one register to another can be done by using the instruction  
addi r2, r1, 0. 

 

• Bit setting and clearing can be done using the logical (and, or, not, etc) 
instructions. 

 
 

• Using shift instructions (shiftl, asr, etc.) is faster that mul and div, if the 
multiplier or divisor is a power of 2. 
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Lecture No. 1 

Introduction  

Reading Material 

 
Vincent P. Heuring & Harry F. Jordan                                                       Chapter 1 
Computer Systems Design and Architecture                                       1.1, 1.2, 1.3, 1.4, 1.5    
 
 

Summary 
1) Distinction between computer architecture, organization and design 
2) Levels of abstraction in digital design 
3) Introduction to the course topics 
4) Perspectives of different people about computers 
5) General operation of a stored program digital computer 
6) The Fetch-Execute process 
7) Concept of an ISA(Instruction Set Architecture) 

 

 

Introduction 

This course is about Computer Architecture. We start by explaining a few key terms. 

The General Purpose Digital Computer 

How can we define a ‘computer’? There are several kinds of devices that can be termed 
“computers”: from desktop machines to the microcontrollers used in appliances such as a 
microwave oven, from the Abacus to the cluster of tiny chips used in parallel processors, 
etc. For the purpose of this course, we will use the following definition of a computer:  

“an electronic device, operating 

under the control of instructions 

stored in its own memory unit, that 

can accept data (input), process data 

arithmetically and logically, produce 

output from the processing, and store 

the results for future use.” [1] 
Thus, when we use the term computer, 
we actually mean a digital computer. 
There are many digital computers, 
which have dedicated purposes, for 
example, a computer used in an 
automobile that controls the spark 
 
timing for the engine. This means that when we use the term computer, we actually mean 
a general-purpose digital computer that can perform a variety of arithmetic and logic 
tasks. 
The Computer as a System 
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Now we examine the notion of a system, and the place of digital computers in the general 
universal set of systems. A “system” is a collection of elements, or components, working 
together on one or more inputs to produce one or more desired outputs.  
There are many types of systems in the world.  Examples include: 

• Chemical systems  
• Optical systems 
• Biological systems 
• Electrical systems 
• Mechanical systems, etc.  

These are all subsets of the general universal set of “systems”. One particular subset of 
interest is an “electrical system”. In case of electrical systems, the inputs as well as the 
outputs are electrical quantities, namely voltage and current. “Digital systems” are a 
subset of electrical systems. The inputs and outputs are digital quantities in this case. 
General-purpose digital computers are a subset of digital systems. We will focus on 
general-purpose digital computers in this course. 

Essential Elements of a General Purpose Digital Computer 

The figure shows the block diagram of 
a modern general-purpose digital 
computer. 
We observe from the diagram that a 
general-purpose computer has three 
main components: a memory 
subsystem, an input/ output subsystem, 
and a central processing unit. 
Programs are stored in the memory, 
the execution of the program 
instructions takes place in the CPU, 
and the communication with the 
external world is achieved through the 
I/O subsystem (including the 
peripherals).  

Architecture 

Now that we understand the term “computer” in our context, let us focus on the term 
architecture. The word architecture, as defined in standard dictionaries, is “the art or 
science of building”, or “a method or style of building”. [2] 

Computer Architecture 

This term was first used in 1964 by Amdahl, Blaauw, and Brooks at IBM [3].  They 
defined it as 

“the structure of a computer that a machine language programmer must understand to 

write a correct (time independent) program for that machine.”  

By architecture, they meant the programmer visible portion of the instruction set. Thus, a  
 
family of machines of the same architecture should be able to run the same software 
(instructions). This concept is now so common that it is taken for granted. The x86 
architecture is a well-known example. 
The study of computer architecture includes 

• a study of the structure of a computer 

• a study of the instruction set of a computer 
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• a study of the process of designing a computer 
Computer Organization versus Computer Architecture   

It is difficult to make a sharp distinction between these two. However, architecture refers 
to the attributes of a computer that are visible to a programmer, including 

• The instruction set 

• The number of bits used to represent various data types 

• I/O mechanisms 

• Memory addressing modes, etc. 
On the other hand, organization refers to the operational units of a computer and their 
interconnections that realize the architectural specifications. These include 

• The control signals 

• Interfaces between the computer and its peripherals 

• Memory technology used, etc.  
It is an architectural issue whether a computer will have a specific instruction or not, 
while it is an organizational issue how that instruction will be implemented. 

Computer Architect 

We can conclude from the discussion above that a computer architect is a person who 
designs computers.  

Design 

Design is defined as   

“the process of devising a system, component, or process to meet desired needs.” 
Most people think of design as a “sketch”.  This is the usage of the term as a noun.  
However, the standard engineering usage of the term, as is quite evident from the above 
definition, is as a verb, i.e., “design is a process”. A designer works with a set of stated 
requirements under a number of constraints to produce the best solution for a given 
problem. Best may mean a “cost-effective” solution, but not always. Additional or 
alternate requirements, like efficiency, the client or the designer may impose robustness, 
etc.. Therefore, design is a decision-making process (often iterative in nature), in which 
the basic sciences, mathematical concepts and engineering sciences are applied to convert 
a given set of resources optimally to meet a stated objective.  

Knowledge base of a computer architect 

There are many people in the world who know how to drive a car; these are the “users” of 
cars who are familiar with the behavior of a car and how to operate it. In the same way, 
there are people who can use computers. There are also a number of people in the world 
who know how to repair a car; these are “automobile technicians”. In the same way, we 
have computer technicians. However, there are a very few people who know how to 
design a car; these are “automobile designers”.  In the same way, there are only very few 
experts in the world who can design computers. In this course, you will learn how to 
design computers!   
 
These computer design experts are familiar with  

• the structure of a computer 

• the instruction set of a computer 

• the process of designing a computer 
as well as  few other related things.  
At this point, we need to realize that it is not the job of a single person to design a 
computer from scratch. There are a number of levels of computer design. Domain experts 
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of that particular level carry out the design activity for each level. These levels of 
abstraction of a digital computer’s design are explained below. 

Digital Design: Levels of Abstraction 

Processor-Memory-Switch level (PMS level) 
The highest is the processor-memory-switch level. This is the level at which an architect 
views the system. It is simply a description of the system components and their 
interconnections. The components are specified in the form of a block diagram.  
Instruction Set Level 
The next level is instruction set level. It defines the function of each instruction. The 
emphasis is on the behavior of the system rather than the hardware structure of the 
system. 
Register Transfer Level 
Next to the ISA (instruction set architecture) level is the register transfer level. Hardware 
structure is visible at this level. In addition to registers, the basic elements at this level are 
multiplexers, decoders, buses, buffers etc.  

The above three levels relate to “system design”. 

Logic Design Level 
The logic design level is also called the gate level. The basic elements at this level are 
gates and flip-flops. The behavior is less visible, while the hardware structure 
predominates.  
The above level relates to “logic design”. 
Circuit Level 
The key elements at this level are resistors, transistors, capacitors, diodes etc.  
 
Mask Level 
The lowest level is mask level dealing with the silicon structures and their layout that 
implement the system as an integrated circuit. 

 The above two levels relate to “circuit design”. 
The focus of this course will be the register transfer level and the instruction set level, 
although we will also deal with the PMS level and the Logic Design Level.  

 Objectives of the course  

This course will provide the students with an understanding of the various levels of 
studying computer architecture, with emphasis on instruction set level and register 
transfer level. They will be able to use basic combinational and sequential building 
blocks to design larger structures like ALUs (Arithmetic Logic Units), memory 
subsystems, I/O subsystems etc. It will help them understand the various approaches used 
to design computer CPUs (Central Processing Units) of the RISC (Reduced Instruction 
Set Computers) and the CISC (Complex Instruction Set Computers) type, as well as the  
 
principles of cache memories. 

Important topics to be covered  

• Review of computer organization 
• Classification of computers and their instructions  
• Machine characteristics and performance  
• Design of a Simple RISC Computer: the SRC 
• Advanced topics in processor design 
• Input-output  (I/O) subsystems 
• Arithmetic Logic Unit implementation 
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• Memory subsystems   

Course Outline 

Introduction: 

• Distinction between Computer Architecture, Organization and design 

• Levels of abstraction in digital design 

• Introduction to the course topics 

Brief review of computer organization: 

• Perspectives of different people about computers 

• General operation of a stored program digital computer 

• The Fetch – Execute process 

• Concept of an ISA 

Foundations of Computer Architecture: 

• A taxonomy of computers and their instructions 

• Instruction set features 

• Addressing Modes 

• RISC and CISC architectures 

• Measures of performance 

An example processor: The SRC: 

• Introduction to the ISA and instruction formats 

• Coding examples and Hand assembly 

• Using Behavioral RTL to describe the SRC 

• Implementing Register Transfers using Digital Logic Circuits 

ISA:  Design and Development 

• Outline of the thinking process for ISA design 

• Introduction to the ISA of the FALCON – A 

• Solved examples for FALCON-A 

• Learning Aids for the FALCON-A 

Other example processors: 

• FALCON-E 

• EAGLE and Modified EAGLE 

• Comparison of the four ISAs 

CPU Design:    

• The Design Process 

• A Uni-Bus implementation for the SRC 

• Structural RTL for the SRC instructions 

• Logic Design for the 1-Bus SRC 

• The Control Unit 

• The 2-and 3-Bus Processor Designs 

• The Machine Reset 

• Machine Exceptions 

Term Exam – I 

Advanced topics in processor design: 

• Pipelining 

• Instruction-Level Parallelism 

• Microprogramming 
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Input-output  (I/O): 

• I/O interface design 

• Programmed I/O 

• Interrupt driven I/O 

• Direct memory access (DMA) 

Term Exam – II 

Arithmetic Logic Shift Unit (ALSU) implementation: 

• Addition, subtraction, multiplication & division for integer unit 

• Floating point unit 
 

Memory subsystems: 

• Memory organization and design 

• Memory hierarchy 

• Cache memories 

• Virtual memory 
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A brief review of Computer Organization 

Perceptions of Different People about Computers 

There are various perspectives that a computer can take depending on the person viewing  
 
it. For example, the way a child perceives a computer is quite different from how a 
computer programmer or a designer views it. There are a number of perceptions of the 
computer, however, for the purpose of understanding the machine, generally the 
following four views are considered. 

The User’s View 
A user is the person for whom the machine is designed, and who employs it to perform 
some useful work through application software. This useful work may be composing 
some reports in word processing software, maintaining credit history in a spreadsheet, or 
even developing some application software using high-level languages such as C or Java.  
The list of “useful work” is not all-inclusive.  Children playing games on a computer may 
argue that playing games is also “useful work”, maybe more so than preparing an internal 
office memo. 
At the user’s level, one is only concerned with things like speed of the computer, the 
storage capacity available, and the behavior of the peripheral devices. Besides 
performance, the user is not involved in the implementation details of the computer, as 
the internal structure of the machine is made obscure by the operating system interface. 
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The Programmer’s View 
By “programmer” we imply machine or assembly language programmer. The machine or 
the assembly language programmer is responsible for the implementation of software 
required to execute various commands or sequences of commands (programs) on the 
computer. Understanding some key terms first will help us better understand this view, 
the associated tasks, responsibilities and tools of the trade. 

Machine Language 

Machine language consists of all the primitive instructions that a computer understands 
and is able to execute. These are strings of 1s and 0s.Machine language is the computer’s 
native language. Commands in the machine language are expressed as strings of 1s and 
0s. It is the lowest level language of a computer, and requires no further interpretation. 

Instruction Set 

A collection of all possible machine language commands that a computer can understand 
and execute is called its instruction set. Every processor has its own unique instruction 
set. Therefore, programs written for one processor will generally not run on another 
processor. This is quite unlike programs written in higher-level languages, which may be 
portable. Assembly/machine languages are generally unique to the processors on which 
they are run, because of the differences in computer architecture.  
Three ways to list instructions in an instruction set of a computer: 

• by function categories 
• by an alphabetic ordering of mnemonics 
• by an ascending order of op-codes 

Assembly Language 

Since it is extremely tiring as well as error-prone to work with strings of 1s and 0s for 
writing entire programs, assembly language is used as a substitute symbolic 
representation using “English like” key words called mnemonics. A pure assembly 
language is a language in which each statement produces exactly one machine 
instruction, i.e. there is a one-to-one correspondence between machine instructions and 
statements in the assembly language. However, there are a few exceptions to this rule, the  
 
Pentium jump instruction shown in the table below serves as an example.  

Example 

The table provides us with some assembly statement and the machine language 
equivalents of the Intel x 86 processor 
families. 
Alpha is a label, and its value will be 
determined by the position of the jmp 
instruction in the program and the position 
of the instruction whose address is alpha. 
So the second byte in the last instruction 
can be different for different programs. 
Hence there is a one-to-many correspondence of the assembly to machine language in 
this instruction. 

Users of Assembly Language 

• The machine designer 

The designer of a new machine needs to be familiar with the instruction sets of 
other machines in order to be able to understand the trade-offs implicit in the 
design of those instruction sets.  
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• The compiler writer 

A compiler is a program that converts programs written in high-level languages to 
machine language. It is quite evident that a compiler writer must be familiar with 
the machine language of the processor for which the compiler is being designed. 
This understanding is crucial for the design of a compiler that produces correct 
and optimized code. 

• The writer of time or space critical code 
A complier may not always produce optimal code. Performance goals may force 
program-specific optimizations in the assembly language. 

• Special purpose or embedded processor programmer 

Higher-level languages may not be appropriate for programming special purpose 
or embedded processors that are now in common use in various appliances. This 
is because the functionality required in such applications is highly specialized. In 
such a case, assembly language programming is required to implement the 
required functionality. 

Useful tools for assembly language programmers 

• The assembler: 
  Programs written in assembly language require translation to the machine 

language, and an assembler performs this translation. This conversion process is 
termed as the assembly process. The assembly process can be done manually as 
well, but it is very tedious and error-prone.  

  An “assembler” that runs on one processor and translates an assembly language 
program written for another processor into the machine language of the other 
processor is called a “cross assembler”. 

• The linker: 

When developing large programs, different people working at the same time can 
develop separate modules of functionality. These modules can then be ‘linked’ to  
 
form a single module that can be loaded and executed. The modularity of 
programs, that the linking step in assembly language makes possible, provides the 
same convenience as it does in higher-level languages; namely abstraction and 
separation of concerns. Once the functionality of a module has been verified for 
correctness, it can be re-used in any number of other modules. The programmer 
can focus on other parts of the program. This is the so-called “modular” approach, 
or the “top-down” approach.   

• The debugger or monitor: 

Assembly language programs are very lengthy and non-intuitive, hence quite 
tedious and error-prone. There is also the disadvantage of the absence of an 
operating system to handle run-time errors that can often crash a system, as 
opposed to the higher-level language programming, where control is smoothly 
returned to the operating system. In addition to run-time errors (such as a divide-
by-zero error), there are syntax or logical errors.   
A “debugger”, also called a “monitor”, is a computer program used to aid in 
detecting these errors in a program. Commonly, debuggers provide functionality 
such as  
o The display and altering of the contents of memory, CPU registers and flags 
o Disassembly of machine code (translating the machine code back to assembly 

language) 
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o Single stepping and breakpoints that allow the examination of the status of the 
program and registers at desired points during execution. 

While syntax errors and many logical errors can be detected by using debuggers, 
the best debugger in the world can catch not every logical error. 

• The development system 

The development system is a complete set of (hardware and software) tools 
available to the system developer. It includes  

o Assemblers 
o Linkers and loaders 
o Debuggers 
o Compilers 
o Emulators 
o Hardware-level debuggers  
o Logic analyzers, etc. 

Difference between Higher-Level Languages and Assembly Language 

Higher-level languages are generally used to develop application software. These high-
level programs are then converted to assembly language programs using compilers. So it 
is the task of a compiler writer to determine the mapping between the high-level-
language constructs and assembly language constructs. Generally, there is a “many-to-
many” mapping between high-level languages and assembly language constructs. This 
means that a given HLL construct can generally be represented by many different 
equivalent assembly language constructs. Alternately, a given assembly language 
construct can be represented by many different equivalent HLL constructs. 
High-level languages provide various primitive data types, such as integer, Boolean and a 
string, that a programmer can use. Type checking provides for the verification of proper  
 
usage of these data types. It allows the compiler to determine memory requirements for 
variables and helping in the detection of bad programming practices.  
On the other hand, there is generally no provision for type checking at the machine level, 
and hence, no provision for type checking in assembly language. The machine only sees 
strings of bits. Instructions interpret the strings as a type, and it is usually limited to 
signed or unsigned integers and floating point numbers. A given 32-bit word might be an 
instruction, an integer, a floating-point number, or 4 ASCII characters. It is the task of the 
compiler writer to determine how high-level language data types will be implemented 
using the data types available at the machine level, and how type checking will be 
implemented.  

The Stored Program Concept 

This concept is fundamental to all the general-purpose computers today. It states that the 
program is stored with data in computer’s memory, and the computer is able to 
manipulate it as data. For example, the computer can load the program from disk, move it 
around in memory, and store it back to the disk.  
Even though all computers have unique machine language instruction sets, the ‘stored 
program’ concept and the existence of a ‘program counter’ is common to all machines. 
The sequence of instructions to perform some useful task is called a program. All of the 
digital computers (the general purpose machine defined above) are able to store these 
sequences of instructions as stored programs. Relevant data is also stored on the 
computer’s secondary memory. These stored programs are treated as data and the 
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computer is able to manipulate them, for example, these can be loaded into the memory 
for execution and then saved back onto the storage.  

General Operation of a Stored Program Computer 

The machine language programs are brought into the memory and then executed 
instruction by instruction. Unless a branch instruction is encountered, the program is 
executed in sequence. The instruction that is to be executed is fetched from the memory 
and temporarily stored in a CPU register, called the instruction register (IR). The 
instruction register holds the instruction while it is decoded and executed by the central 
processing unit (CPU) of the computer. However, before loading an instruction into the 
instruction register for execution, the computer needs to know which instruction to load. 
The program counter (PC), also called the instruction pointer in some texts, is the register 
that holds the address of the next instruction in memory that is to be executed. 
When the execution of an instruction is completed, the contents of the program counter 
(which is the address of the next instruction) are placed on the address bus. The memory 
places the instruction on the corresponding address on the data bus. The CPU puts this 
instruction onto the IR (instruction register) to decode and execute. While this 
instruction is decoded, its length in bytes is determined, and the PC (program counter) 
is incremented by the length, so that the PC will point to the next instruction in the 
memory. Note that the length of the instruction is not determined in the case of RISC 
machines, as the instruction length is fixed in these architectures, and so the program 
counter is always incremented by a fixed number. In case of branch instructions, the 
contents of the PC are replaced by the address of the next instruction contained in the 
present branch instruction, and the current status of the processor is stored in a register 
called the Processor Status Word (PSW). Another name for the PSW is the flag register.   
It contains the status bits, and control bits corresponding to the state of the processor. 
Examples of status bits include the sign bit, overflow bit, etc.  Examples of control bits 
include interrupt enable flag, etc. When the execution of this instruction is completed, the 
contents of the program counter are placed on the address bus, and the entire cycle is 
repeated. This entire process of reading memory, incrementing the PC, and decoding the 
instruction is known as the Fetch and Execute principle of the stored program computer. 
This is actually an oversimplified situation. In case of the advanced processors of this 
age, a lot more is going on than just the simple “fetch and execute” operation, such as 
pipelining etc. The details of some of these more involved techniques will be studied later 
on during the course. 

The Concept of Instruction Set Architecture (ISA) 

Now that we have an understanding of some of the relevant key terms, we revert to the 
assembly language programmer’s perception of the computer. The programmer’s view is 
limited to the set of all the assembly instructions or commands that can the particular 
computer at hand execute understood/, in addition to the resources that these instructions 
may help manage. These resources include the memory space and the entire programmer 
accessible registers. Note that we use the term ‘memory space’ instead of memory, 
because not all the memory space has to be filled with memory chips for a particular 
implementation, but it is still a resource available to the programmer.  
This set of instructions or operations and the resources together form the instruction set 
architecture (ISA). It is the ISA, which serves as an interface between the program and 
the functional units of a computer, i.e., through which, the computer’s resources, are 
accessed and controlled. 
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The Computer Architect’s View 
The computer architect’s view is concerned with the design of the entire system as well 
as ensuring its optimum performance. The optimality is measured against some 
quantifiable objectives that are set out before the design process begins. These objectives 
are set on the basis of the functionality required from the machine to be designed. The 
computer architect  

• Designs the ISA for optimum programming utility as well as for optimum 
performance of implementation 

• Designs the hardware for best implementation of instructions that are made 
available in the ISA to the programmer 

• Uses performance measurement tools, such as benchmark programs, to verify that 
the performance objectives are met by the machine designed 

• Balances performance of building blocks such as CPU, memory, I/O devices, and 
interconnections 

• Strives to meet performance goals at the lowest possible cost 
Useful tools for the computer architect 

 Some of the tools available that facilitate the design process are  

• Software models, simulators and emulators 

• Performance benchmark programs 

• Specialized measurement programs 

• Data flow and bottleneck analysis 

• Subsystem balance analysis 

• Parts, manufacturing, and testing cost analysis 

The Logic Designer’s View 
The logic designer is responsible for the design of the machine at the logic gate level. It is 
the design process at this level that determines whether the computer architect meets cost 
and performance goals. The computer architect and the logic designer have to work in 
collaboration to meet the cost and performance objectives of a machine. This is the 
reason why a single person or a single team may be performing the tasks of system’s 
architectural design as well as the logic design.  

Useful Tools for the Logic Designer 

Some of the tools available that aid the logic designer in the logic design process are 

• CAD tools 
� Logic design and simulation packages 
� Printed circuit layout tools 
� IC (integrated circuit) design and layout tools 

• Logic analyzers and oscilloscopes 

• Hardware development systems 
The Concept of the Implementation Domain 

The collection of hardware devices, with which the logic designer works for the digital 
logic gate implementation and interconnection of the machine, is termed as the 
implementation domain. The logic gate implementation domain may be  

• VLSI (very large scale integration) on silicon  

• TTL (transistor-transistor logic) or ECL (emitter-coupled logic) chips 

• Gallium arsenide chips 

• PLAs (programmable-logic arrays) or sea-of-gates arrays 

• Fluidic logic or optical switches 
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Similarly, the implementation domains used for gate, board and module interconnections 
are 

• Poly-silicon lines in ICs 

• Conductive traces on a printed 
circuit board 

• Electrical cable 

• Optical fiber, etc. 
At the lower levels of logic design, the 
designer is concerned mainly with the 
functional details represented in a 
symbolic form. The implementation 
details are not considered at these 
lower levels. They only become an 
issue at higher levels of logic design. 
An example of a two-to-one 
multiplexer in various implementation 
domains will illustrate this point. 
Figure (a) is the generic logic gate 
(abstract domain) representation of a 
2-to-1 multiplexer.                             
Figure (b) shows the 2-to-1 
multiplexer logic gate implementation  
 
in the domain of TTL (VLSI on Silicon) logic using part number ‘257, with 
interconnections in the domain of printed circuit 
board traces.  
Figure (c) is the implementation of the 2-to-1 
multiplexer with a fiber optic directional coupler 
switch, which has an interconnection domain of 
optical fiber.                                      

Classical logic design versus computer logic 

design 

We have already studied the sequential circuit 
design concepts in the course on Digital Logic Design, and thus are familiar with the 
techniques used. However, these traditional techniques for a finite state machine are not 
very practical when it comes to the design of a computer, in spite of the fact that a 
computer is a finite state machine. The reason is that employing these techniques is much 
too complex as the computer can assume hundreds of states. 

Sequential Logic Circuit Design 

When designing a sequential logic circuit, the problem is first coded in the form of a state 
diagram. The redundant states may be eliminated, and then the state diagram is translated 
into the next state table. The minimum number of flip-flops needed to implement the 
design is calculated by making “state assignments” in terms of the flip-flop “states”. A 
“transition table” is made using the state assignments and the next state table.  The flip-
flop control characteristics are used to complete a set of “excitation tables”. The 
excitation equations are determined through minimization. The logic circuit can then be 
drawn to implement the design.  A detailed discussion of these steps can be found in most 
books on Logic Design. 

IO 

I1 
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Computer Logic Design 

Traditional Finite State Machine (FSM) design techniques are not suitable for the design 
of computer logic. Since there is a natural separation between the data path and the 
control path in case of a digital computer, a modular approach can be used in this case.  
The data path consists of the storage cells, the arithmetic and logic components and their 
interconnections. Control path is the circuitry that manages the data path information 
flow. So considering the behavior first can carry out the design. Then the structure can be 
considered and dealt with. For this purpose, well-defined logic blocks such as 
multiplexers, decoders, adders etc. can be used repeatedly. 

Two Views of the CPU Program Counter Register 

The view of a logic designer is more detailed than that of a programmer. Details of the 
mechanism used to control the machine are unimportant to the programmer, but of vital 
importance to the logic designer. This can be illustrated through the following two views 
of the program counter of a machine. 
As shown in figure (a), to a programmer the program counter is just a register, and in this 
case, of length 32 bits or 4 bytes. 

                                       31                                                      0 

 
 
 
 
Figure (b) illustrates the logic designer’s view of a 32-bit program counter, implemented 
as an array of 32 D flip-flops. It shows the contents of the program counter being gated 
out on ‘A bus’ (the address bus) by applying a control signal PCout. The contents of the 
‘B bus’ (also the address bus), can be stored in the program counter by asserting the 
signal PCin on the leading edge of the clock signal CK, thus storing the address of the 
next instruction in the program counter. 
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(a) Program Counter: Programmer’s view 
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Lecture No. 2 

Instruction Set Architecture 

Reading Material 

 
Vincent P. Heuring&Harry F. Jordan                                                    Chapter 2,Chapter3 
Computer Systems Design and   Architecture                                              2.1, 2.2, 3.2    
 
 

Summary 

1) A taxonomy of computers and their instructions 
2) Instruction set features 
3) Addressing modes 
4) RISC and CISC architectures 

 
 

Foundations Of Computer Architecture 
Taxonomy of computers and their instructions 

Processors can be classified on the basis of their instruction set architectures. The 
instruction set architecture, described in the previous module gives us a ‘programmer’s 
view’ of the machine. This module discussed a number of topics related to the 
classifications of computers and their instructions. 

CLASSES OF INSTRUCTION SET ARCHITECTURE: 
The mechanism used by the CPU to store instructions and data can be used to classify the 
ISA (Instruction Set Architecture). There are three types of machines based on this 
classification. 

• Accumulator based machines 
• Stack based machines 
• General purpose register (GPR) machines 

ACCUMULATOR BASED MACHINES 
Accumulator based machines use special registers called the accumulators to hold one 
source operand and also the result of the arithmetic or logic operations performed. Thus 
the accumulator registers collect (or ‘accumulate’) data. Since the accumulator holds one 
of the operands, one more register may be required to hold the address of another 
operand. The accumulator is not used to hold an address. So accumulator based machines 
are also called 1-address machines. Accumulator machines employ a very small number 
of accumulator registers, generally only one. These machines were useful at the time 
when memory was quite expensive; as they used one register to hold the source operand  
 
as well as the result of the operation. However, now that the memory is relatively 
inexpensive, these are not considered very useful, and their use is severely limited for the 
computation of expressions with many operands.  
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STACK BASED MACHINES 
A stack is a group of registers organized as a last-in-first-out (LIFO) structure. In such a 
structure, the operands stored first, through the push operation, can only be accessed last, 
through a pop operation; the order of access to the operands is reverse of the storage 
operation. An analogy of the stack is a “plate-dispenser” found in several self-service 
cafeterias. Arithmetic and logic operations successively pick operands from the top-of-
the-stack (TOS), and push the results on the TOS at the end of the operation. In stack 
based machines, operand addresses need not be specified during the arithmetic or logical 
operations. Therefore, these machines are also called 0-address machines.  

GENERAL-PURPOSE-REGISTER MACHINES 
In general purpose register machines, a number of registers are available within the CPU. 
These registers do not have dedicated functions, and can be employed for a variety of 
purposes. To identify the register within an instruction, a small number of bits are 
required in an instruction word. For example, to identify one of the 64 registers of the 
CPU, a 6-bit field is required in the instruction.  
CPU registers are faster than cache memory. Registers are also easily and more 
effectively used by the compiler compared to other forms of internal storage. Registers 
can also be used to hold variables, thereby reducing memory traffic.  This increases the 
execution speed and reduces code size (fewer bits required to code register names 
compared to memory) .In addition to data, registers can also hold addresses and pointers 
(i.e., the address of an address). This increases the flexibility available to the 
programmer.  
A number of dedicated, or special purpose registers are also available in general-purpose 
machines, but many of them are not available to the programmer. Examples of 
transparent registers include the stack pointer, the program counter, memory address 
register, memory data register and condition codes (or flags) register, etc. 
We should understand that in reality, most machines are a combination of these machine 
types. Accumulator machines have the advantage of being more efficient as these can 
store intermediate results of an operation within the CPU. 

INSTRUCTION SET 
An instruction set is a collection of all possible machine language commands that are 
understood and can be executed by a processor.  

ESSENTIAL ELEMENTS OF COMPUTER INSTRUCTIONS: 
There are four essential elements of an instruction; the type of operation to be performed, 
the place to find the source operand(s), the place to store the result(s) and the source of 
the next instruction to be executed by the processor. 

Type of operation 

In module 1, we described three ways to list the instruction set of a machine; one way of 
enlisting the instruction set is by grouping the instructions in accordance with the 
functions they perform. The type of operation that is to be performed can be encoded in 
the op-code (or the operation code) field of the machine language instruction. Examples 
of operations are mov, jmp, add; these are the assembly mnemonics, and should not be  
 
 
confused with op-codes. Op-codes are simply bit-patterns in the machine language format 
of an instruction.  

Place to find source operands 
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An instruction needs to specify the place from where the source operands will be 
retrieved and used. Possible locations of the source operands are CPU registers, memory 
cells and I/O locations. The source operands can also be part of an instruction itself; such 
operands are called immediate operands.  

Place to store the results 

An instruction also specifies the location in which the result of the operation, specified by 
the instruction, is to be stored. Possible locations are CPU registers, memory cells and 
I/O locations. 

Source of the next instruction 

By default, in a program the next instruction in sequence is executed. So in cases where 
the next-in-sequence instruction execution is desired, the place of next instruction need 
not be encoded within the instruction, as it is implicit. However, in case of a branch, this 
information needs to be encoded in the instruction. A branch may be conditional or 
unconditional, a subroutine call, as well as a call to an interrupt service routine.  

Example 

The table provides examples of assembly language commands and their machine 
language equivalents. In the instruction 
add cx, dx, the contents of the location 
dx are added to the contents of the 
location cx, and the result is stored in 
cx. The instruction type is arithmetic, 
and the op-code for the add instruction 
is 0000, as shown in this example. 

CLASSIFICATIONS OF 

INSTRUCTIONS: 
We can classify instructions according to the format shown below. 

• 4-address instructions 
• 3-address instructions 
• 2-address instructions  
• 1-address instructions   
• 0-address instructions 

The distinction is based on the fact that some operands are accessed from memory, and 
therefore require a memory address, while others may be in the registers within the CPU 
or they are specified implicitly.  

4-address instructions 

The four address instructions specify the addresses of two source operands, the address of 
the destination 
operand and the next 
instruction address. 
4-address 
instructions are not 
very common because the next instruction to be executed is sequentially stored next to 
the current instruction in the  
 
 
memory.  Therefore, specifying its address is redundant. These instructions are used in 
the micro-coded control unit, which will be studied later. 

3-address instruction 
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A 3-address instruction specifies the addresses of two operands and the address of the 
destination operand.  

2-address instruction  

A 2-address instruction has three fields; one for the op-code, the second field specifies 
the address of one of the source operands as 
well as the destination operand, and the last 
field is used for holding the address of the 
second source operand. So one of the fields serves two purposes; specifying a source 
operand address and a destination operand address.  

1-address instruction 

A 1-address instruction has a dedicated CPU register, 

called the accumulator, to hold one operand and to store 

the result. There is no need of encoding the address of the accumulator register to access 

the operand or to store the result, as its usage is implicit. There are two fields in the 

instruction, one for specifying a source operand address and a destination operand 

address. 

0-address instruction 

A 0-address instruction uses a stack to hold both the operands and the 
result. Operations are performed on the operands stored on the top of the 
stack and the second value on the stack. The result is stored on the top of 
the stack. Just like the use of an accumulator register, the addresses of 
the stack registers need not be specified, their usage is implicit. Therefore, only one field 
is required in 0-address instruction; it specifies the op-code.  

COMPARISON OF INSTRUCTION FORMATS: 
Basis for comparison 

Two parameters are used as the basis for comparison of the instruction sets discussed 
above. These are 

• Code size 
Code size has an effect on the storage requirements for the instructions; the 
greater the code size, the larger the memory required. 

• Number of memory accesses 
The number of memory accesses has an effect on the execution time of 
instructions; the greater the number of memory accesses, the larger the time 
required for the execution cycle, as memory accesses are generally slow. 

Assumptions 

We make a few assumptions, which are 

• A single byte is used for the op code, so 256 instructions can be encoded using 
these 8 bits, as 28 = 256 

• The size of the memory address space is 16 Mbytes 

• A single addressable memory unit is a byte  
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• Size of operands is 24 bits. As the memory size is 16Mbytes, with byte-
addressable memory, 24 bits are required to encode the address of the operands.  

• The size of the address bus is 24 bits 

• Data bus size is 8 bits 

Discussion4-address instruction 
• The code size 

is 13 bytes 
(1+3+3+3+3 
= 13 bytes) 

• Number of 
bytes 
accessed from memory is 22 (13 bytes for instruction fetch + 6 bytes for source 
operand fetch + 3 bytes for storing destination operand = 22 bytes) 

Note that there is no need for an additional memory access for the operand corresponding 
to the next instruction, as it has already been brought into the CPU during instruction 
fetch.  

3-address instruction 
• The code size is 10 bytes 

(1+3+3+3 = 10 bytes) 
• Number of bytes accessed 

from memory is 22  
(10 bytes for instruction fetch 
+ 6 bytes for source operand fetch + 3 bytes for storing destination operand = 19 
bytes)  

2-address instruction 
• The code size is 7 bytes (1+3+3 = 7 

bytes)  
• Number of bytes accessed from 

memory is 16(7 bytes for instruction 
fetch + 6 bytes for source operand 
fetch + 3 bytes for storing destination operand = 16 
bytes) 

1-address instruction 
• The code size is 4 bytes (1+3= 4 bytes) 
• Number of bytes accessed from memory is 7  
(4 bytes for instruction fetch + 3 bytes for source 
operand fetch + 0 bytes for storing destination operand = 7 bytes) 

0-address instruction 
• The code size is 1 byte  
• Number of bytes accessed from memory is 10  
(1 byte for instruction fetch + 6 bytes for source operand fetch + 3 
bytes for storing destination operand = 10 bytes) 

The following table summarizes this information 
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HALF ADDRESSES 
In the preceding discussion we have 
talked about memory addresses. This 
discussion also applies to CPU 
registers. However, to specify/ encode 
a CPU register, less number of bits is 
required as compared to the memory addresses. Therefore, these addresses are also called 
“half-addresses”. An instruction that specifies one memory address and one CPU register 
can be called as a 1½-address instruction 

 Example     

               mov al, [34h] 
THE PRACTICAL SITUATION 
Real machines are not as simple as the classifications presented above. In fact, these 
machines have a mixture of 3, 2, 1, 0, and 1½-address instructions. For example, the 
VAX 11 includes instructions from all classes. 

CLASSIFICATION OF MACHINES ON THE BASIS OF OPERAND 

AND RESULT LOCATION: 
A distinction between machines can be made on the basis of the ALU instructions; 
whether these instructions use data from the memory or not. If the ALU instructions use 
only the CPU registers for the operands and result, the machine type is called “load-

store”. Other machines may have a mixture of register-memory, or memory-memory 
instructions.   
The number of memory operands supported by a typical ALU instruction may vary from 
0 to 3. 

Example  
The SPARC, MIPS, Power PC, ALPHA: 0 memory addresses, max operands allowed = 3 
X86, 68x series: 1 memory address, max operands allowed = 2 

LOAD- STORE MACHINES 
These machines are also called the register-to-register machines. They typically use the 
1½ address instruction format. Only the load and store instructions can access the 
memory. The load instruction fetches the required data from the memory and temporarily 
stores it in the CPU registers. Other instructions may use this data from the CPU 
registers. Then later, the results can be stored back into the memory by the store 
instruction. Most RISC computers fall under this category of machines.  

Advantages (of register-register instructions)  

Register-register instructions use 0 memory operands out of a total of 3 operands. The 
advantages of such a scheme is: 

• The instructions are simple and fixed in length 

• The corresponding code generation model is simple 

• All instructions take similar number of clock cycles for execution 
Disadvantages (register-register instructions) 

• The instruction count is higher; the number of instructions required to complete a 
particular task is more as separate instructions will be required for load and store 
operations of the memory 
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• Since the instruction size is fixed, the instructions that do not require all fields 
waste memory bits 

Register-memory machines 
In register-memory machines, some operands are in the memory and some are in 
registers. These machines typically employ 1 or 1½ address instruction format, in which 
one of the operands is an accumulator or a general-purpose CPU registers.  

Advantages 

Register-memory operations use one memory operand out of a total of two operands. The 
advantages of this instruction format are 

• Operands in the memory can be accessed without having to load these first 
through a separate load instruction 

• Encoding is easy due to the elimination of the need of loading operands into 
registers first 

• Instruction bit usage is relatively better, as more instructions are provided per 
fixed number of bits 

Disadvantages 

• Operands are not equivalent since one operand may have two functions (both 
source operand and destination operand), and the source operand may be 
destroyed 

• Different size encoding for memory and registers may restrict the number of 
registers 

• The number of clock cycles per instruction execution vary, depending on the 
operand location operand fetch from memory is slow as compared to operands in 
CPU registers 

Memory-Memory Machines  
In memory-memory machines, all three of the operands (2 source operands and a 
destination operand) are in the memory. If one of the operands is being used both as a 
source and a destination, then the 2-address format is used. Otherwise, memory-memory 
machines use 3-address formats of instructions.  

Advantages 

• The memory-memory instructions are the most compact instruction where 
encoding wastage is minimal. 

• As operands are fetched from and stored in the memory directly, no CPU registers 
are wasted for temporary storage  

Disadvantages 

• The instruction size is not fixed; the large variation in instruction sizes makes 
decoding complex 

• The cycles per instruction execution also vary from instruction to instruction 

• Memory accesses are generally 
slow, so too many references 
cause performance degradation 

Example 1  
The expression a = (b+c)*d – e is 
evaluated with the 3, 2, 1, and 0-
address machines to provide a  
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comparison of their advantages and disadvantages discussed above. The instructions 
shown in the table are the minimal instructions required to evaluate the given expression. 
Note that these are not machine language instructions, rather the pseudo-code. 

Example 2 

The instruction z = 4(a +b) – 16(c+58) is with the 3, 2, 1, and 0-address machines in the 
table.  

Functional classification of 

instruction sets: 

Instructions can be classified into the 
following four categories based on 
their functionality. 

• Data processing  
• Data storage (main memory) 
• Data movement (I/O) 
• Program flow control 

These are discussed in detail 

• Data processing  

Data processing instructions are the ones that perform some mathematical or logical 
operation on some operands. The Arithmetic Logic Unit performs these operations, 
therefore the data processing instructions can also be called ALU instructions.  

• Data storage (main memory) 

The primary storage for the operands is the main memory. When an operation needs to be 
performed on these operands, these can be temporarily brought into the CPU registers, 
and after completion, these can be stored back to the memory. The instructions for data 
access and storage between the memory and the CPU can be categorized as the data 
storage instructions. 

• Data movement (I/O) 

The ultimate sources of the data are input devices e.g. keyboard. The destination of the 
data is an output device, for example, a monitor, etc. The instructions that enable such 
operations are called data movement instructions.  

• Program flow control 

A CPU executes instructions sequentially, unless a program flow-change instruction is 
encountered. This flow change, also called a branch, may be conditional or unconditional. 
In case of a conditional branch, if the branch condition is met, the target address is loaded 
into the program counter.  

ADDRESSING MODES: 
Addressing modes are the different ways in which the CPU generates the address of 
operands. In other words, they provide access paths to memory locations and CPU 
registers.  

Effective address 

An “effective address” is the address (binary bit pattern) issued by the CPU to the 
memory. The CPU may use various ways to compute the effective address. The memory 
may interpret the effective address differently under different situations.  

COMMONLY USED ADDRESSING MODES 
Some commonly used addressing modes are explained below. 

 

Immediate addressing mode 
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In this addressing mode, data is the part of the instruction itself, and so there is no need of 
address calculation. However, immediate addressing mode is used to hold source 
operands only; cannot be used for storing results. The range of the operands is limited by 
the number of bits available for encoding the operands in the instruction; for n bit fields, 
the range is -2(n-1) to +(2(n-1)-1).  

Example: lda 123 
In this example, the immediate 
operand, 123, is loaded onto the 
accumulator. No address calculation is 
required.  

Direct Addressing Mode 

The address of the operand is specified 
as a constant, and this constant is 
coded as part of the instruction. The address space that can be accessed is limited address 
space by the operand field size (2operand field size locations).  

Example: lda [123] 

As shown in the figure, the address of 
the operand is stored in the instruction. 
The operand is then fetched from that 
memory address. 

Indirect Addressing Mode 

The address of the location where the 
address of the data is to be found is 
stored in the instruction as the operand. 
Thus, the operand is the address of a memory location, which holds the address of the 
operand. Indirect addressing mode can access a large address space (2memory word size 
locations). To fetch the operand in this addressing mode, two memory accesses are 
required. Since memory accesses are slow, this is not efficient for frequent memory 
accesses. The indirect addressing mode 
may be used to implement pointers.  

Example: lda [[123]] 

As shown in the figure, the address of 
the memory location that holds the 
address of the data in the memory is 
part of the instruction.  

 

Register (Direct) Addressing Mode 

The operand is contained in a CPU register, and the address of this register is encoded in 
the instruction. As no memory access is needed, operand fetch is efficient. However, 
there are only a limited number of CPU registers available, and this imposes a limitation 
on the use of this addressing mode. 

Example: lda R2 

This load instruction specifies the address of the register and the operand is fetched from 
this register. As is clear from the diagram, no memory access is involved in this 
addressing mode. 
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REGISTER INDIRECT 
ADDRESSING MODE 
In the register indirect mode, the 
address of memory location that 
contains the operand is in a CPU 
register. The address of this CPU 
register is encoded in the instruction. A 
large address space can be accessed 
using this addressing mode (2register size 
locations). It involves fewer memory 
accesses compared to indirect addressing. 

Example: lda [R1] 

The address of the register that 
contains the address of memory 
location holding the operand is 
encoded in the instruction. There is 
one memory access involved.  

Displacement addressing mode 

The displacement-addressing mode is 
also called based or indexed 
addressing mode. Effective memory address is calculated by adding a constant (which is 
usually a part of the instruction) to the value in a CPU register. This addressing mode is 
useful for accessing arrays. The addressing mode may be called ‘indexed’ in the situation 
when the constant refers to the first element of the array (base) and the register contains 
the ‘index’. Similarly, ‘based’ refers to the situation when the constant refers to the offset 
(displacement) of an array element with respect to the first element. The address of the 
first element is stored in a register.  

Example: lda [R1 + 8] 

In this example, R1 is the address of 
the register that holds a memory 
address, which is to be used to 
calculate the effective address of the 
operand. The constant (8) is added to 
this address held by the register and 
this effective address is used to 
retrieve the operand.  

Relative addressing mode 

The relative addressing mode is similar to the indexed addressing mode with the 
exception that the PC holds the base address. This allows the storage of memory 
operands at a fixed offset from the current instruction and is useful for ‘short’ jumps. 

Example: jump 4 

The constant offset (4) is a part of the 
instruction, and it is added to the 
address held by the Program Counter. 

 

 

 

RISC and CISC architectures: 
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Generally, computers can be classified as being RISC machines or CISC machines. These 
concepts are explained in the following discussion. 

RISC (Reduced instruction set computers) 

RISC is more of a philosophy of computer design than a set of architectural features. The 
underlying idea is to reduce the number and complexity of instructions. However, new 
RISC machines have some instructions that may be quite complex and the number of 
instructions may also be large. The common features of RISC machines are 

• One instruction per clock period 

This is the most important feature of the RISC machines. Since the program execution 
depends on throughput and not on individual execution time, this feature is achievable by 
using pipelining and other techniques. In such a case, the goal is issuing an average of 
one instruction per cycle without increasing the cycle time.  

• Fixed size instructions 

Generally, the size of the instructions is 32 bits. 

• CPU accesses memory only for Load and Store operations 

This means that all the operands are in the CPU registers at the time these are used in an 
instruction. For this purpose, they are first brought into the CPU registers from the 
memory and later stored back through the load and store operation respectively.  

• Simple and few addressing modes  

The disadvantage associated with using complex addressing modes is that complex 
decoding is required to calculate these addresses, which reduces the processor 
performance as it takes significant time. Therefore, in RISC machines, few simple 
addressing modes are used.  

• Less work per instruction 

As the instructions are simple, less work is done per instruction, and hence the clock 
period T can be reduced. 

• Improved usage of delay slots 

A ‘delay slot’ is the waiting time for a load or store operation to access memory or for a 
branch instruction to access the target instruction. RISC designs allow the execution of 
the next instruction after these instructions are issued. If the program or compiler places 
an instruction in the delay slot that does not depend on the result of the previous 
instruction, the delay slot can be used efficiently. For the implementation of this feature, 
improved compilers are required that can check the dependencies of instructions before 
issuing them to utilize the delay slots.  

• Efficient usage of Pre-fetching and Speculative Execution Techniques 

Pre-fetching and speculative execution techniques are used with a pipelined architecture. 
Instruction pipelining means having multiple instructions in different stages of execution 
as instructions are issued before the previous instruction has completed its execution; 
pipelining will be studied in detail later. The RISC machines examine the instructions to 
check if operand fetches or branch instructions are involved. In such a case, the operands 
or the branch target instructions can be ‘pre-fetched’. As instructions are issued before 
the preceding instructions have completed execution, the processor will not know in case 
of a conditional branch instruction, whether the condition will be met and the branch will 
be taken or not. But instead of waiting for this information to be available, the branch can 
be “speculated” as taken or not taken, and the instructions can be issued. Later if the  
 
speculation is found to be wrong, the results can be discarded and actual target 
instructions can be issued. These techniques help improve the performance of processors. 
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CISC (Complex Instruction Set Computers) 
The complex instruction set computers does not have an underlying philosophy. The 
CISC machines have resulted from the efforts of computer designers to efficiently utilize 
memory and minimize execution time, yet add in more instruction formats and 
addressing modes. The common attributes of CISC machines are discussed below. 

• More work per instruction 

This feature was very useful at the time when memory was expensive as well as slow; it 
allows the execution of compact programs with more functionality per instruction. 

• Wide variety of addressing modes 

CISC machines support a number of addressing modes, which helps reduce the program 
instruction count. There are 14 addressing modes in MC68000 and 25 in MC68020. 

• Variable instruction lengths and execution times per instruction 

The instruction size is not fixed and so the execution times vary from instruction to 
instruction. 

• CISC machines attempt to reduce the “semantic gap” 

‘Semantic gap’ is the gap between machine level instruction sets and high-level language 
constructs. CISC designers believed that narrowing this gap by providing complicated 
instructions and complex-addressing modes would improve performance. The concept 
did not work because compiler writes did not find these “improvements” useful. The 
following are some of the disadvantages of CISC machines. 

• Clock period T, cannot be reduced beyond a certain limit 
When more capabilities are added to an instruction the CPU circuits required for the 
execution of these instructions become complex. This results in more stages of logic 
circuitry and adds propagation delays in signal paths. 
This in turn places a limit on the smallest possible value of T and hence, the maximum 
value of clock frequency. 

• Complex addressing modes delay operand fetch from memory 

The operand fetch is delayed because more time is required to decode complex 
instructions. 

• Difficult to make efficient use of speedup techniques 

These speedup techniques include  

• Pipelining 

• Pre-fetching (Intel 8086 has a 6 byte queue) 

• Super scalar operation 

• Speculative execution 
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Lecture No. 3 

Introduction to SRC Processor 
 

Reading Material 
 
Vincent P. Heuring&Harry F. Jordan                                                   Chapter2, Chapter 3 
Computer Systems Design and Architecture                                                2.3, 2.4, 3.1    
 
 
 

Summary 
1) Measures of performance 
2) Introduction to an example processor SRC 
3) SRC:Notation 
4) SRC features and instruction formats 

 
 

Measures of performance: 

Performance testing 

To test or compare the performance of machines, programs can be run and their 
execution times can be measured. However, the execution speed may depend on the 
particular program being run, and matching it exactly to the actual needs of the customer 
can be quite complex. To overcome this problem, standard programs called “benchmark 
programs” have been devised. These programs are intended to approximate the real 
workload that the user will want to run on the machine. Actual execution time can be 
measured by running the program on the machines. 

Commonly used measures of performance 

The basic measure of performance of a machine is time. Some commonly used measures 
of this time, used for comparison of the performance of various machines, are 

• Execution time 
• MIPS 
• MFLOPS 
• Whetstones 
• Dhrystones 
• SPEC 

Execution time 

Execution time is simply the time it takes a processor to execute a given program. The 
time it takes for a particular program depends on a number of factors other than the 
performance of the CPU, most of which are ignored in this measure. These factors 
include waits for I/O, instruction fetch times, pipeline delays, etc. 
The execution time of a program with respect to the processor, is defined as  

                                Execution Time = IC x CPI x T 

Where,  IC   = instruction count  
                       CPI  = average number of system clock periods to execute an instruction 
  T     = clock period 
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Strictly speaking, (IC×CPI) should be the sum of the clock periods needed to execute 
each instruction.  The manufacturers for each instruction in the instruction set usually 
provide such information.  Using the average is a simplification. 
MIPS (Millions of Instructions per Second) 
Another measure of performance is the millions of instructions that are executed by the 
processor per second. It is defined as  
MIPS = IC/ (ET x 106) 
This measure is not a very accurate basis for comparison of different processors. This is 
because of the architectural differences of the machines; some machines will require 
more instructions to perform the same job as compared to other machines. For example, 
RISC machines have simpler instructions, so the same job will require more instructions. 
This measure of performance was popular in the late 70s and early 80s when the VAX 
11/780 was treated as a reference. 

MFLOPS (Millions of Floating Point Instructions per Second) 
For computation intensive applications, the floating-point instruction execution is a better 
measure than the simple instructions. The measure MFLOPS was devised with this in 
mind. This measure has two advantages over MIPS: 

• Floating point operations are complex, and therefore, provide a better picture of 
the hardware capabilities on which they are run 

• Overheads (operand fetch from memory, result storage to the memory, etc.) are 
effectively lumped with the floating point operations they support 

Whetstones  

Whetstone is the first benchmark program developed specifically as a benchmark 
program for performance measurement. Named after the Whetstone Algol compiler, this 
benchmark program was developed by using the statistics collected during the compiler 
development. It was originally an Algol program, but it has been ported to FORTRAN, 
Pascal and C. This benchmark has been specifically designed to test floating point 
instructions. The performance is stated in MWIPS (millions of Whetstone instructions per 
second).  

Dhrystones  
Developed in 1984, this is a small benchmark program to measure the integer instruction 
performance of processors, as opposed to the Whetstone’s emphasis on floating point 
instructions. It is a very small program, about a hundred high-level-language statements, 
and compiles to about 1~ 1½ kilobytes of code. 

Disadvantages of using Whetstones and Dhrystones 
Both Whetstones and Dhrystones are now considered obsolete because of the following 
reasons. 

• Small, fit in cache 

• Obsolete instruction mix 

• Prone to compiler tricks 

• Difficult to reproduce results 

• Uncontrolled source code   
We should note that both the Whetstone and Dhrystone benchmarks are small programs, 
which encourage ‘over-optimization’, and can be used with optimizing compilers to 
distort results. 
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SPEC 

SPEC, System Performance Evaluation Cooperative, is an association of a number of 
computer companies to define standard benchmarks for fair evaluation and comparison of 
different processors. The standard SPEC benchmark suite includes: 

• A compiler 

• A Boolean minimization program 

• A spreadsheet program 

• A number of other programs that stress arithmetic processing speed 
The latest version of these benchmarks is SPEC CPU2000.  

Advantages  
• It provides for ease of publication. 

• Each benchmark carries the same weight. 

• SPEC ratio is dimensionless. 

• It is not unduly influenced by long running programs. 

• It is relatively immune to performance variation on individual benchmarks. 

• It provides a consistent and fair metric. 

An example computer: the SRC: “simple RISC computer” 
An example machine is introduced here to facilitate our understanding of various design 
steps and concepts in computer architecture. This example machine is quite simple, and 
leaves out a lot of details of a real machine, yet it is complex enough to illustrate the 
fundamentals.  

SRC Introduction 
Attributes of the SRC 

• The SRC contains 32 General Purpose Registers: R0, R1, …, R31; each register is 
of size 32-bits. 

• Two special purpose registers are included: Program Counter (PC) and Instruction 
Register (IR) 

• Memory word size is 32 bits 
• Memory space size is 232 bytes 
• Memory organization is 232 x 8 bits, this means that the memory is byte aligned 
• Memory is accessed in 32 bit words ( i.e., 4 byte chunks) 
• Big-endian byte storage is used 

Programmer’s View of the SRC 

The figure shows the attributes of the 
SRC; the 32 ,32-bit registers that are a 
part of the CPU, the two additional 
CPU registers (PC & IR), and the main 
memory which is 232  1-byte cells.  

SRC Notation  

We examine the notation used for the 
SRC with the help of some examples.  

• R[3] means contents of register 
3 (R for register) 

• M[8] means contents of memory location 8 (M for memory) 
• A memory word at address 8 is 

defined as the 32 bits at address 
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8,9,10 and 11 in the memory. This is shown in the figure. 
• A special notation for 32-bit memory words is  

 M[8]<31…0>:=M[8]M[9]M[10]M[11]                        

             is used for concatenation. 

 Some more SRC Attributes 

• All instructions are 32 bits long (i.e., instruction size is 1 word) 
• All ALU instructions have three operands 
• The only way to access memory is through load and store operations 
• Only a few addressing modes are supported 

SRC: Instruction Formats 
Four types of instructions are 
supported by the SRC. Their 
representation is given in the figure 
shown. 
Before discussing these instruction 
types in detail, we take a look at the 
encoding of general purpose registers 
(the ra, rb and rc fields).  

Encoding of the General Purpose 

Registers 

The encoding for the general purpose 
registers is shown in the table; it will 
be used in place of ra, rb and rc in the 
instruction formats shown above. Note 
that this is a simple 5 bit encoding. ra, 
rb and rc are names of fields used as 
“place-holders”, and can represent any 
one of  these 32 registers. An 
exception is rb = 0; it does not mean the register R0, rather it means no operand. This will 
be explained in the following discussion. 

Type A 
Type A is used for only two 
instructions:  

• No operation or nop, for which the op-code = 0. This is useful in pipelining 

• Stop operation stop, the op-code is 31 for this instruction.  
Both of these instructions do not need an operand (are 0-operand instructions).  

Type B 
Type B format includes three 
instructions; all three use relative 
addressing mode. These are  

• The ldr instruction, used to load register from memory using a relative address. 
(op-code = 2).  

o Example: 
ldr R3, 56  
This instruction will load the register R3 with the contents of the memory 
location M [PC+56] 

• The lar instruction, for loading a register with relative address  (op-code = 6) 
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o Example:  
lar R3, 56 
This instruction will load the register R3 with the relative address itself 
(PC+56).  

• The str is used to store register to memory using relative address  (op-code = 4) 
o Example: 

str R8, 34 
This instruction will store the register R8 contents to the memory location 
M [PC+34] 

The effective address is computed at run-time by adding a constant to the PC. This makes 
the instructions ‘re-locatable’.  

Type C 
Type C format has three load/store 
instructions, plus three ALU 
instructions. These load/ store instructions are 

• ld, the load register from memory instruction (op-code = 1) 
o Example 1: 

ld R3, 56 

This instruction will load the register R3 with the contents of the memory 
location M [56]; the rb field is 0 in this instruction, i.e., it is not used. This 
is an example of direct addressing mode. 

o Example 2: 
ld R3, 56(R5) 
The contents of the memory location M [56+R [5]] are loaded to the 
register R3; the rb field ≠ 0. This is an instance of indexed addressing 
mode. 

• la is the instruction to load a register with an immediate data value (which can be 
an address) (op-code = 5 )  

o Example1:  
la R3, 56 
The register R3 is loaded with the immediate value 56. This is an instance 
of immediate addressing mode. 

o Example 2: 
la R3, 56(R5) 
The register R3 is loaded with the indexed address 56+R [5]. This is an 
example of indexed addressing mode. 

• The st instruction is used to store register contents to memory (op-code = 3)   
o Example 1: 

st R8, 34 
This is the direct addressing mode; the contents of register R8 (R [8]) are 
stored to the memory location M [34]   

o Example 2: 
st R8, 34(R6) 
An instance of indexed addressing mode, M [34+R [6]] stores the contents 
of R8(R [8]) 

The ALU instructions are 

• addi, immediate 2’s complement addition (op-code = 13)  
o Example: 
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addi R3, R4, 56 
R[3]        R[4]+56  (rb field = R4) 

• andi, the instruction to obtain immediate logical AND, (op-code = 42  ) 
o Example: 

andi R3, R4, 56 
R3 is loaded with the immediate logical AND of the contents of register 
R4 and 56(constant value) 

• ori, the instruction to obtain immediate logical OR (op-code = 23 ) 
o Example: 

ori R3, R4, 56 
R3 is loaded with the immediate logical OR of the contents of register R4 
and 56(constant value) 

                          Note: 
1. Since the constant c2 field is 17 bits,  

� For direct addressing mode, only the first 216 bytes of memory can 
be accessed (or the last 216 bytes if c2 is negative) 

� In case of the la instruction, only constants with magnitudes less 
than ±216 can be loaded 

� During address calculation using c2, sign extension to 32 bits must 
be performed before the addition 

2. Type C instructions, with some modifications, may also be used for 
shift instructions. Note 
the modification in the 
following figure. 

The four shift instructions are 

• shr is the instruction used to shift the bits right by using value in (5-bit) c3 
field(shift count) 

•  (op-code = 26)  
o Example: 

shr R3, R4, 7 
shift R4 right 7 times in to R3. Immediate addressing mode is used. 

• shra, arithmetic shift right by using value in c3 field (op-code = 27) 
o Example: 

shra R3, R4, 7  
This instruction has the effect of shift R4 right 7 times in to R3. Immediate 
addressing mode is used. 

• The shl instruction is for shift left by using value in (5-bit) c3 field (op-code = 28) 
o Example:  

shl R8, R5, 6 
shift R5 left 6 times in to R8. Immediate addressing mode is used. 

• shc, shift left circular by using value in  c3  field (op-code = 29) 
o Example:  

shc R3, R4, 3 
shift R4 circular 3 times in to R3. Immediate addressing mode is used.  
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Lecture No. 4 

ISA and Instruction Formats 
 

Reading Material 
 
Vincent P. Heuring&Harry F. Jordan                                                              Chapter 2 
Computer Systems Design and   Architecture                                              2.3, 2.4,slides    
 
 
 

Summary 
1) Introduction to ISA and instruction formats 
2) Coding examples and Hand assembly 

 
 

An example computer: the SRC: “simple RISC computer” 
An example machine is introduced here to facilitate our understanding of various design 
steps and concepts in computer architecture. This example machine is quite simple, and 
leaves out a lot of details of a real machine, yet it is complex enough to illustrate the 
fundamentals.  

SRC Introduction 
Attributes of the SRC 

• The SRC contains 32 General Purpose Registers: R0, R1, …, R31; each register is 
of size 32-bits. 

• Two special purpose registers are included: Program Counter (PC) and Instruction 
Register (IR) 

• Memory word size is 32 bits 
• Memory space size is 232 bytes 
• Memory organization is 232 x 8 bits, this means that the memory is byte aligned 
• Memory is accessed in 32 bit 

words ( i.e., 4 byte chunks) 
• Big-endian byte storage is used 

Programmer’s View of the 

SRC 
The figure below shows the attributes 
of the SRC; the 32 ,32-bit registers that 
are a part of the CPU, the two 
additional CPU registers (PC & IR), 
and the main memory which is 232  1-
byte cells.  

SRC Notation  

We examine the notation used for the SRC with the help of some examples.  
• R[3] means contents of register 3 (R for register) 
• M[8] means contents of memory location 8 (M for memory) 
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• A memory word at address 8 is 
defined as the 32 bits at address 
8,9,10 and 11 in the memory. 
This is shown in the figure 
below. 

• A special notation for 32-bit 
memory words is  

 M[8]<31…0>:=M[8]M[9]M[10]M[11]                        

             is used for concatenation. 

 Some more SRC Attributes 

• All instructions are 32 bits long (i.e., instruction size is 1 word) 
• All ALU instructions have three operands 
• The only way to access memory is through load and store operations 
• Only a few addressing modes 

are supported 

SRC: Instruction Formats 
Four types of instructions are 
supported by the SRC. Their 
representation is given in the following 
figure. Before discussing these 
instruction types in detail, we take a 
look at the encoding of general-
purpose registers (the ra, rb and rc 
fields).  

Encoding of the General Purpose 

Registers 

The encoding for the general purpose 
registers is shown in the following 
table; it will be used in place of ra, rb 
and rc in the instruction formats shown 
above. Note that this is a simple 5 bit 
encoding. ra, rb and rc are names of fields used as “place-holders”, and can represent any 
one of  these 32 registers. An exception is rb = 0; it does not mean the register R0, rather 
it means no operand. This will be explained in the following discussion. 

Type A 
Type A is used for only two instructions:  
 
 

• No operation or nop, for which 
the op-code = 0. This is useful 
in pipelining 

• Stop operation stop, the op-code is 31 for this instruction.  
Both of these instructions do not need an operand (are 0-operand instructions).  

Type B 
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Type B format includes three 
instructions; all three use relative 
addressing mode. These are  

• The ldr instruction, used to load register from memory using a relative address. 
(op-code = 2).  

o Example: 
ldr R3, 56  
This instruction will load the register R3 with the contents of the memory 
location M [PC+56] 

• The lar instruction, for loading a register with relative address  (op-code = 6) 
o Example:  

lar R3, 56 
This instruction will load the register R3 with the relative address itself 
(PC+56).  

• The str is used to store register to memory using relative address  (op-code = 4) 
o Example: 

str R8, 34 
This instruction will store the register R8 contents to the memory location 
M [PC+34] 

The effective address is computed at run-time by adding a constant to the PC. This makes 
the instructions ‘re-locatable’.  

Type C 
Type C format has three load/store 
instructions, plus three ALU 
instructions. These load/ store instructions are 

• ld, the load register from memory instruction (op-code = 1) 
o Example 1: 

ld R3, 56 

This instruction will load the register R3 with the contents of the memory 
location M [56]; the rb field is 0 in this instruction, i.e., it is not used. This 
is an example of direct addressing mode. 

o Example 2: 
ld R3, 56(R5) 
The contents of the memory location M [56+R [5]] are loaded to the 
register R3; the rb field ≠ 0. This is an instance of indexed addressing 
mode. 

• la is the instruction to load a register with an immediate data value (which can be 
an address) (op-code = 5 )  

o Example1:  
la R3, 56 
The register R3 is loaded with the immediate value 56. This is an instance 
of immediate addressing mode. 

o Example 2: 
la R3, 56(R5) 
The register R3 is loaded with the indexed address 56+R [5]. This is an 
example of indexed addressing mode. 

• The st instruction is used to store register contents to memory (op-code = 3)   
o Example 1: 
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st R8, 34 
This is the direct addressing mode; the contents of register R8 (R [8]) are 
stored to the memory location M [34]   

o Example 2: 
st R8, 34(R6) 
An instance of indexed addressing mode, M [34+R [6]] stores the contents 
of R8(R [8]) 

The ALU instructions are 

• addi, immediate 2’s complement addition (op-code = 13)  
o Example: 

addi R3, R4, 56 

R[3]  ← R[4]+56  (rb field = R4) 

• andi, the instruction to obtain immediate logical AND, (op-code = 21  ) 
o Example: 

andi R3, R4, 56 
R3 is loaded with the immediate logical AND of the contents of register 
R4 and 56(constant value) 

• ori,  the instruction to obtain immediate logical OR (op-code = 23 ) 
o Example: 

ori R3, R4, 56 
R3 is loaded with the immediate logical OR of the contents of register R4 
and 56(constant value) 

 

Note: 
1. Since the constant c2 field is 17 bits,  

� For direct addressing mode, only the first 216 bytes of memory can 
be accessed (or the last 216 bytes if c2 is negative) 

� In case of the la instruction, only constants with magnitudes less 
than ±216 can be loaded 

� During address calculation using c2, sign extension to 32 bits must 
be performed before the addition 

2. Type C instructions, with some modifications, may also be used for 
shift instructions. Note the modification in the following figure. 

The four shift instructions are 

• shr is the instruction used to 
shift the bits right by using 
value in (5-bit) c3 field(shift count) (op-code = 26)  

o Example: 
shr R3, R4, 7 
shift R4 right 7 times in to R3 and shifts zeros in from the left as the value  
is shifted right. Immediate addressing mode is used. 

• shra, arithmetic shift right by using value in c3 field (op-code = 27) 
o Example: 

shra R3, R4, 7  
This instruction has the effect of shift R4 right 7 times in to R3 and copies 
the msb into the word on left as contents are shifted right. Immediate 
addressing mode is used. 

• The shl instruction is for shift left by using value in (5-bit) c3 field (op-code = 28) 
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o Example:  
shl R8, R5, 6 
shift R5 left 6 times in to R8 and shifts zeros in from the right as the value 
is shifted left. Immediate addressing mode is used. 

• shc, shift left circular by using value in  c3  field (op-code = 29) 
o Example:  

shc R3, R4, 3 
shift R4 circular 3 times in to R3 and copies the value shifted out of the  
register on the left is placed back into the register on the right. Immediate  
addressing mode is used.  

Type D 
Type D includes four ALU 
instructions, four register based shift 
instructions, two logical instructions 
and two branch instructions. 
The four ALU instructions are given below 

• add,  the instruction for 2’s complement  register addition (op-code = 12) 
o Example: 

add R3, R5, R6 
result of 2’s complement addition R[5] + R[6] is stored in R3. Register 
addressing mode is used.    

• sub , the instruction for 2’s complement register subtraction (op-code = 14) 
o Example: 

sub R3, R5, R6 
R3 will store the 2’s complement subtraction, R[5] - R[6]. Register 
addressing mode is used. 

• and, the instruction for logical AND operation between  registers (op-code = 20) 
o Example:  

and R8, R3, R4 
R8 will store the logical AND of registers R3 and R4. Register addressing 

mode is used. 

• or ,the instruction for logical OR operation between  registers (op-code = 22) 
o Example:  

or R8, R3, R4 
R8 is loaded with the value R[3] v R[4], the logical OR of registers R3 and 
R4. Register addressing mode is used. 

The four register based shift instructions use register addressing mode. These use a 
modified form of type D, as shown in 
figure 

• shr, shift right by using value in 
register rc (op-code = 26) 

o Example:  
shr R3, R4, R5 
This instruction will shift R4 right in to R3 using number in R5 

• shra, the arithmetic shift right by using register rc (op-code = 27) 
o Example:  

shra R3, R4, R5 
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A shift of R4 right using R5, and the result is stored in R3 

• shl is shift left by using register rc (op-code = 28) 
o Example: 

shl R8, R5, R6  
The instruction shifts R5 left in to R8 using number in R6 

• shc, shifts left circular by using register rc (op-code = 29) 
o Example:  

shc R3, R4, R6 
This instruction will shift R4 circular in to R3 using value in R6 

The two logical instructions also use a modified form of the Type D, and are the 
following.  

o neg stores the 2’s complement 
of register rc in ra (op-code = 
15) 

o Example: 
neg R3, R4 
Negates (obtains 2’s complement) of R4 and stores in R3. 2-address 
format and register addressing mode is used. 

• not stores the 1’s complement of register rc in ra (op-code = 24) 
o Example:  

not R3, R4 
Logically inverts R4 and stores in R3. 2-address format with register 
addressing mode is 
used. 

Type D has two-branch instruction, 
modified forms of type D. 

• br , the instruction to branch to address in rb depending on the condition in rc. 
There are five possible conditions, explained through examples. (op-code = 8). 
All branch instructions use register-addressing mode.   

o Example 1: 
brzr R3, R4 
Branch to address in R3 (if R4 == 0) 

o Example 2: 
brnz R3, R4 
Branch to address in R3 (if R4 ≠ 0) 

o Example 3: 
brpl R3, R4 
Branch to address in R3 (if R4 ≥ 0) 

o Example 4: 
brmi R3, R4 
 
Branch to address in R3 (if R4 < 0) 

o Example 5: 
br R3, R4 
Branch to address in R3 (unconditional) 

• Brl the instruction to branch to address in rb depending on condition in rc. 
Additionally, it copies the PC in to ra before branching (op-code = 9) 

o Example 1: 
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brlzr R1,R3, R4 
R1 will store the contents of PC, then branch to address in R3 (if R4 == 0) 

o Example 2: 
brlnz R1,R3, R4 
R1 stores the contents of PC, then a branch is taken, to address in R3 (if 

R4 ≠ 0) 
o Example 3: 

brlpl R1,R3, R4 
R1 will store PC, then 
branch to address in R3 
(if R4≥ 0) 

o Example 4: 
brlmi R1,R3, R4 
R1 will store PC and 

then branch to address in 
R3 (if R4 < 0) 
o Example 5: 

brl R1,R3, R4 
R1 will store PC, then it will ALWAYS branch to address in R3 

o Example 6: 
brlnv R1,R3, R4 
R1 just stores the contents of PC but a branch is not taken (NEVER 
BRANCH) 

In the modified type D instructions for branch, the bits <2..0> are used for specifying the 
condition; these condition codes are shown in the table. 

The SRC Instruction Summary 

The instructions implemented by the SRC 
are listed, grouped on functionality basis. 

Functional Groups of Instructions 

Alphabetical Listing based on SRC 

Mnemonics 

Notice that the op code field for all br instructions is the same. The difference is in the 
condition code field, which is in effect, an op code extension.  

Examples 
Some examples are studied in this section to enhance the student’s understanding of the 
SRC. 
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Example 1: Expression Evaluation 
Write an SRC assembly language program to evaluate the expression:   

z = 4(a +b) – 16(c+58)   

Your code should not change the source operands. 
Solution A:  Notice that the SRC does not have a multiply instruction. We will make use 
of the fact that multiplication with powers of 2 can be achieved by repeated shift left 
operations. A possible solution is give below: 
ld R1, c   ; c is a label used for a memory location 
addi R3, R1, 58   ; R3 contains (c+58) 
shl R7, R3, 4  ; R7 contains 16(c+58) 
ld R4, a 
ld R5, b 
add R6, R4, R5  ; R6 contains (a+b) 
shl R8, R6, 2  ; R8 contains 4(a+b) 
sub R9, R7, R8  ; the result is in R9 
st R9, z  ; store the result in memory location z 

Note:  

The memory labels a, b, c and z can be defined by using assembler directives like .dw or 
.db, etc. in the source file.  
A semicolon ‘;’ is used for comments in assembly language.   
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Solution B:  

We may solve the problem by assuming that a multiply instruction, similar to the add 
instruction, exists in the instruction set of the SRC. The shl instruction will be replaced 
by the mul instruction as given below.  
ld R1, c   ; c is a label used for a memory location 
addi R3, R1, 58   ; R3 contains (c+58) 
mul R7, R3, 4  : R7 contains 16(c+58) 
ld R4, a 
ld R5, b 
add R6, R4, R5  ; R6 contains (a+b) 
mul R8, R6, 2  ; R8 contains 4(a+b) 
sub R9, R7, R8  ; the result is in R9 
st R9, z  ; store the result in memory location z 

Note:  

The memory labels a, b, c and z can be defined by using assembler directives like .dw or 
.db, etc. in the source file.  

Solution C:  

We can perform multiplication with a multiplier that is not a power of 2 by doing 
addition in a loop.  The number of times the loop will execute will be equal to the 
multiplier. 

Example 2: Hand Assembly 

Convert the given SRC assembly language program in to an equivalent SRC machine 
language program.   
ld R1, c   ; c is a label used for a memory location 
addi R3, R1, 58   ; R3 contains (c+58) 
shl R7, R3, 4  ; R7 contains 16(c+58) 
ld R4, a 
ld R5, b 
add R6, R4, R5  ; R6 contains (a+b) 
shl R8, R6, 2  ; R8 contains 4(a+b) 
sub R9, R7, R8  ; the result is in R9 
st R9, z  ; store the result in memory location z 

Note:  

This program uses memory labels a,b,c and z. We need to define them for the assembler 
by using assembler directives like .dw or .equ etc. in the source file. 

Assembler Directives 

Assembler directives, also called pseudo op-codes, are commands to the assembler to 
direct the assembly process. The directives may be slightly different for different 
assemblers. All the necessary directives are available with most assemblers. We explain 
the directives as we encounter them. More information on assemblers can be looked up in 
the assembler user manuals.  
Source program with directives 
 .ORG 200 ; start the next line at address 200 
a:                              .DW      1       ; reserve one word for the label a in the memory 
b:                              .DW      1       ; reserve a word for b, this will be at address 204 
c:                              .DW      1       ; reserve a word for c, will be at address 208 
z:                           .DW       1        ; reserve one word for the result 
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                                 .ORG   400 ; start the code at address 400 
; all numbers are in decimal unless otherwise stated 
ld R1, c               ; c is a label used for a memory location 
addi R3, R1, 58 ; R3 contains (c+58) 
shl R7, R3, 4   ; R7 contains 16(c+58) 
ld R4, a 
ld R5, b 
add R6, R4, R5   ; R6 contains (a+b) 
shl R8, R6, 2   ; R8 contains 4(a+b) 
sub R9, R7, R8   ; the result is in R9 
st R9, z   ; store the result in memory location z 
This is the way an assembly program will appear in the source file.  Most assemblers 
require that the file be saved with an .asm extension. 

Solution: 

Observe the first line of the program 

                                       .ORG  200        ; start the next line at address 200 

This is a directive to let the following code/ variables ‘originate’ at the specified address 
of the memory, 200 in this case.  
Variable statements, and another .ORG directive follow the .ORG directive. 
a:                              .DW      1       ; reserve one word for the label a in the memory 
b:                              .DW      1       ; reserve a word for b, this will be at address 204 
c:                              .DW      1       ; reserve a word for c, will be at address 208 
z:                           .DW       1        ; reserve one word for the result 
                                 .ORG 400 ; start the code at address 400 
We conclude the following from the above statements: 
The code starts at address 400 and each instruction takes 32 
bits in the memory. The memory map for the program is 
shown in given table. 

Memory Map for the SRC example program 
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We have to convert these instructions to machine language. Let us start with the first 
instruction: 

 

ld R1, c 

Notice that this is a type C instruction with the rb field missing.  
1. We pick the op-code for this load instruction from the SRC instruction tables 

given in the SRC instruction summary section. The op-code for the load register 
‘ld’ instruction is 00001.  

2. Next we pick the register code corresponding to register R1 from the register table 
(given in the section ‘encoding of general 
purpose registers’). The register code for 
R1 is 00001.  

3. The rb field is missing, so we place zeros 
in the field: 00000 

4. The value of c is provided by the 
assembler, and should be converted to 17 
bits. As c has been assigned the memory 
address 208, the binary value to be 
encoded is 00000 0000 1101 0000.  

5. So the instruction ld R1, c is  00001 00001 
00000 00000 0000 1101 0000 in the 
machine language.  

6. The hexadecimal representation of this 
instruction is 0 8 4 0 0 0 D 0 h.       

We can update the memory map with these 
values. 
We consider the next instruction,  

addi R3, R1, 58.  

Notice that this is a type C instruction. 
1. We pick the op-code for the instruction addi from 

the SRC instruction table. It is 01101 
2. We pick the register codes for the registers R3 and 

R1, these codes are 00011 and 00001 respectively 
3. For the immediate data, 58, we use the binary 

value, 00000 0000 0011 1010  
4. So the complete instruction becomes: 01101 

00011 00001 00000 0000 0011 1010 
5. The hexadecimal representation of the instruction 

is 6 8 C 2 0 0 3 A h 
We update the memory map, as shown in table. 
The next instruction is shl R7,R3, 4, at address 408. 
Again, this is a type C instruction. 

1. The op-code for the instruction shl is picked from 
the SRC instruction table. It is 11100 

2. The register codes for the registers R7 and R3 
from the register table are 00111 and 00011 
respectively 
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3. For the immediate data, 4, the corresponding binary value 00000 0000 0000 0100 
is used.  

4. We can place these codes in accordance with the type C instruction format to 
obtain the complete instruction: 11100 00111 00011 00000 0000 0000 0100 

5. The hexadecimal representation of the instruction is E1C60004  
The memory map is updated, as shown in table. 
The next instruction, ld R4, a, is also a type C instruction. 
Rb field is missing in this instruction. To obtain the 
machine equivalent, we follow the steps given below. 

1. The op-code of the load instruction ‘ld’ is 00001 
2. The register code corresponding to the register R4 

is obtained from the register table, and it is 00100 
3. As the 5 bit rb field is missing, we can encode 

zeros in its place: 00000 
4. The value of a is provided by the assembler, and 

is converted to 17 bits. It has been assigned the 
memory address 200, the binary equivalent of 
which is: 00000 0000 1100 1000 

5. The complete instruction becomes: 00001 00100 00000 00000 0000 1100 1000 
6. The hexadecimal equivalent of the instruction is 0 9 0 0 0 0 C 8 h 

Memory map can be updated with this value. 
The next instruction is also a load type C instruction, with 
the rb field missing.  

ld R5, b 

The machine language conversion steps are 
1. The op-code of the load instruction is obtained 

from the SRC instruction table; it is 00001 
2. The register code for R5, obtained from the 

register table, is 00101 
3. Again, the 5 bit rb field is missing. We encode 

zeros in its place: 00000 
4. The value of label b is provided by the assembler, 

and should be converted to 17 bits. It has been 
assigned the memory address 204, so the binary 
value is: 00000 0000 1100 1100 

5. The complete instruction is: 00001 00101 00000 00000 0000 1100 1100 
6. The hexadecimal value of this instruction is 0 9 4 

0 0 0 C C h 
Memory map is then updated with this value. 
The next instruction is a type D-add instruction, with the 
constant field missing: 

add R6,R4,R5 
The steps followed to obtain the assembly code for this 
instruction are 

1. The op-code of the instruction is obtained from 
the SRC instruction table; it is 01100 

2. The register codes for the registers R6, R4 and R5 
are obtained from the register table; these are 
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00110, 00100 and 00101 respectively.  
3. The 12 bit constant field is unused in this instruction, therefore we encode zeros 

in its place: 0000 0000 0000 
4. The complete instruction becomes: 01100 00110 00100 00101 0000 0000 0000 
5. The hexadecimal value of the instruction is 6 1 8 8 5 0 0 0 h 

Memory map is then updated with this value. 
The instruction shl R8,R6, 2 is a type C instruction with 
the rc field missing. The steps taken to obtain the 
machine code of the instruction are 

1. The op-code of the shift left instruction ‘shl’, 
obtained from the SRC instruction table, is 11100 

2. The register codes of R8 and R6 are 01000 and 
00110 respectively 

3. Binary code is used for the immediate data 2: 
00000 0000 0000 0010 

4. The complete instruction becomes: 11100 01000 
00110 00000 0000 0000 0010 

5. The hexadecimal equivalent of the instruction is E 
2 0 C 0 0 0 2 

Memory map is then updated with this value. 
The instruction at the memory address 428 is sub R9, R7, R8. This is a type D 
instruction. 
We decode it into the machine language, as follows: 

1. The op-code of the subtract instruction ‘sub’ is 
01110 

2. The register codes of R9, R7 and R8, obtained 
from the register table, are 01001, 00111 and 
01000 respectively 

3. The 12 bit immediate data field is not used, zeros 
are encoded in its place: 0000 0000 0000 

4. The complete instruction becomes: 01110 01001 
00111 01000 0000 0000 0000 

5. The hexadecimal equivalent is 7 2 4 E 8 0 0 0 h 
We again update the memory map 
The last instruction is is a type C instruction with the rb 
field missing: 

st R9, z 

The machine equivalent of this instruction is obtained 
through the following steps: 

1. The op-code of the store instruction ‘st’, obtained 
from the SRC instruction table, is 00011 

2. The register code of R9 is 01001 
3. Notice that there is no register coded in the 5 bit 

rb field, therefore, we encode zeros: 00000 
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4. The value of the label z is provided by the assembler, and should be converted to 
17 bits. Notice that the memory address assigned to z is 212. The 17 bit binary 
equivalent is: 00000 0000 1101 0100 

5. The complete instruction becomes: 00011 01001 00000 
00000 0000 1101 0100 

6. The hexadecimal form of this instruction is 1 A 4 0 0 0 D 4 
h 

The memory map, after the conversion of all the instructions, is 
We have shown the memory map as an array of 4 byte cells in the 
above solution. However, since the memory of the SRC is arranged 
in 8 bit cells (i.e. memory is byte aligned), the real representation of 
the memory map is :                       

Example 3: SRC instruction analysis 

Identify the formats of following SRC instructions and specify the 
values in the fields 

 
 

 

 

 
 

 

 

Solution: 
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Lecture No. 5 

Description of SRC in RTL 

Reading Material 

            Handouts                                                                                                  Slides                                          
                                                                                                                             
 

 

 
Summary 

1) Reverse Assembly 
2) Description of SRC in the form of RTL 
3) Behavioral and Structural description in terms of RTL 
 
 

Reverse Assembly 

Typical Problem: 
Given a machine language instruction for the SRC, it may be required to find the 
equivalent SRC assembly language instruction 

Example: 

 Reverse assemble the following SRC machine language instructions: 
 68C2003A h 
     E1C60004 h 
     61885000 h 

     724E8000 h 

     1A4000D4 h 
 084000D0 h 

Solution: 

1. Write the given hexadecimal instruction in binary form 

68C2003A h → 0110 1000 1100 0010 0000 0000 0011 1010 b 
2. Examine the first five bits of the instruction, and pick the corresponding mnemonic 
from the SRC instruction set listing arranged according to ascending order of op-codes 

01101 b → 13 d → addi → add immediate 
3. Now we know that this instruction uses the type C format, the two 5-bit fields after the 
op-code field represent the destination and the source registers respectively, and that the 
remaining 17-bits in the instruction represent a constant 
 
      0110 1000 1100 0010 0000 0000 0011 1010 b 
      op-code ra field  rb field               17-bit c1 field 

          ↓        ↓        ↓                          ↓ 
        addi     R3      R1                3A h=58 d 
 
4. Therefore, the assembly language instruction is 
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  addi R3, R1, 58 

Summary 
 

 

 

 

 

 

 

 

 

We can do it a bit faster now! Step1: Here is step1 for all instructions 
 

 

 

 

 

 

 

 

 

 

Step 2: Pick up the op code for each instruction 

 

 

 

 

 

 

 

 

 

Step 3: Determine the instruction type for each instruction 
 
 
 
 
 
 
 
 
 
 
 

The meaning of the remaining fields will depend on the instruction type (i.e., the 
instruction format) 

Summary 
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Note: est of the fields of above given tables are left as an exercise for students. 

Using RTL to  describe the SRC 

 RTL stands for Register Transfer Language. The Register Transfer Language provides a 
formal way for the description of the behavior and structure of a computer. The RTL 
facilitates the design process of the computer as it provides a precise, mathematical 
representation of its functionality. In this section, a Register Transfer Language is 
presented and introduced, for the SRC (Simple ‘RISC’ Computer), described in the 
previous discussion.  
 Behavioral RTL 
Behavioral RTL is used to describe the ‘functionality’ of the machine only, i.e. what the 
machine does.  
 Structural RTL 
Structural RTL describes the ‘hardware implementation’ of the machine, i.e. how the 
functionality made available by the machine is implemented.  
 Behavioral versus Structural RTL: 
In computer design, a top-down approach is adopted. The computer design process 
typically starts with defining the behavior of the overall system. This is then broken down 
into the behavior of the different modules. The process continues, till we are able to 
define, design and implement the structure of the individual modules. Behavioral RTL is 
used for describing the behavior of machine whereas structural RTL is used to define the 
structure of machine, which brings us to the some more hardware features. 

Using RTL to describe the static properties of the SRC 
In this section we introduce the RTL by using it to describe the various static properties 
of the SRC.  

Specifying Registers 
The format used to specify registers is  
Register Name<register bits> 
For example, IR<31..0> means bits numbered 31 to 0 of a 32-bit register named “IR” 
(Instruction Register). 
 “Naming” using the := naming operator: 
The := operator is used to ‘name’ registers, or part of registers, in the Register Transfer 
Language. It does not create a new register; it just generates another name, or “alias” for 
an already existing register or part of a register. For example, 
Op<4..0>: = IR<31..27> means that the five most significant bits of the register IR will 
be called op, with bits 4..0.  

Fields in the SRC instruction 

In this section, we examine the various fields of an SRC instruction, using the RTL.  
op<4..0>: = IR<31..27>; operation code field 
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The five most significant bits of an SRC instruction, (stored in the instruction register in 
this example), are named op, and this field is used for specifying the operation.  
ra<4..0>: = IR<26..22>; target register field 
The next five bits of the SRC instruction, bits 26 through 22, are used to hold the address 
of the target register field, i.e., the result of the operation performed by the instruction is 
stored in the register specified by this field. 
rb<4..0>: = IR<21..17>; operand, address index, or branch target register 
The bits 21 through 17 of the instruction are used for the rb field. rb field is  used to hold 
an operand, an address index, or a branch target register. 
rc<4..0>: = IR<16..12>; second operand, conditional test, or shift count register 
The bits 16 through 12, are the rc field. This field may hold the second operand, 
conditional test, or a shift count.   
c1<21..0>: = IR<21..0>; long displacement field 
In some instructions, the bits 21 through 0 may be used as long displacement field. 
Notice that there is an overlap of fields. The fields are distinguished in a particular 
instruction depending on the operation.  
c2<16..0>: = IR<16..0>; short displacement or immediate field 
The bits 16 through 0 may be used as short displacement or to specify an immediate 
operand.   
c3<11..0>: = IR<11..0>; count or modifier field 
The bits 11 through 0 of the SRC instruction may be used for count or modifier field.  

Describing the processor state using RTL 

The Register Transfer Language can be used to describe the processor state. The 
following registers and bits together form the processor state set.  
PC<31..0>;                            program counter (it holds the memory address of next   
                                              instruction to be executed)         
IR<31..0>;   instruction register, used to hold the current instruction 
Run;   one bit run/halt indicator 
Strt;   start signal 

R [0..31]<31..0>; 32, 32 bit general purpose registers 

 

SRC in a Black Box 
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Difference between our notation and notation used by the text (H&J) 

 
Difference between “,” and “;” in RTL 

Statements separated by a “,” take place during the same clock pulse. In other words, the 
order of execution of statements separated by  “,” does not matter.  
On the other hand, statements separated by a “;” take place on successive clock pulses. In 
other words, if statements are separated by  “;” the one on the left must complete before 
the one on the right starts. However, some things written with one RTL statement can 
take several clocks to complete.  
So in the instruction interpretation, fetch-execute cycle, we can see that the first 
statement. ! Run & Strt : Run ←  1, executes first. After this statement has executed and 
set run to 1, the statements IR ←  M [PC] and PC ←  PC + 4 are executed concurrently. 
Note that in statements separated by “,”, all right hand sides of Register Transfers are 
evaluated before any left hand side is modified (generally though assignment). 

Using RTL to describe the dynamic properties of the SRC 
The RTL can be used to describe the dynamic properties.  
Conditional expressions can be specified through the use of RTL. The following example 
will illustrate this 
(op=14) :  R [ra] ←  R [rb] - R[rc]; 
The ←  operator is the RTL assignment operator. ‘;’ is the termination operator. This 
conditional expression implies that “IF the op field is equal to 14, THEN calculate the 
difference of the value in the register specified by the rb field and the value in the register 
specified by the rc field, and store the result in the register specified by the ra field.” 

Effective address calculations in RTL (performed at runtime) 
In some instructions, the address of an operand or the destination register may not be 

specified directly. Instead, the effective address may have to be calculated at runtime. 

These effective address calculations can be represented in RTL, as illustrated through the 

examples below.  

Displacement address  

disp<31..0> := ((rb=0) : c2<16..0> {sign extend},  



Advanced Computer Architecture-CS501                                            

Last Modified: 12-Jan-11                                                                                                  Page 69 

   (rb≠0) : R [rb] + c2<16..0> {sign extend}), 
The displacement (or the direct) address is being calculated in this example. The “,” 
operator separates statements in a single instruction, and indicates that these statements 
are to be executed simultaneously. However, since in this example these are two disjoint 
conditions, therefore, only one action will be performed at one time.  
Note that register R0 cannot be added to displacement. rb = 0 just implies we do not need 
to use the R [rb] field.  

Relative address 

rel<31..0> := PC<31..0> + c1<21..0> {sign extend}, 
In the above example, a relative address is being calculated by adding the displacement 
after sign extension to the contents of the program counter register (that holds the next 
instruction to be executed in a program execution sequence). 

Range of memory addresses 

The range of memory addresses that can be accessed using the displacement (or the 
direct) addressing and the relative addressing is given. 

• Direct addressing (displacement with rb=0) 
o If c2<16>=0 (positive displacement) absolute addresses range from 

00000000h to 0000FFFFh 
o If c2<16>=1 (negative displacement) absolute addresses range from 

FFFF0000h to FFFFFFFFh 

• Relative addressing 
o The largest positive value of C1<21..0> is 221-1 and its most negative 

value is -221, so addresses up to 221-1 forward and 221 backward from the 
current PC value can be specified 

Instruction Interpretation 

(Describing the Fetch operation using RTL) 

The action performed for all the instructions before they are decoded is called ‘instruction 
interpretation’. Here, an example is that of starting the machine. If the machine is not 
already running (¬Run, or ‘not’ running), AND (&) it the condition start (Strt) becomes 
true, then Run bit (of the processor state) is set to 1 (i.e. true).  

instruction_Fetch := (  

                          ! Run & Strt: Run ←  1                   ; instruction_Fetch 

   Run : (IR ←  M [PC], PC ←  PC + 4;      instruction_Execution ) ); 

The := is the naming operator. The ; operator is used to add comments in RTL. The , 
operator, specifies that the statements are to be executed simultaneously, (i.e. in a single 
clock pulse). The ; operator is used to separate sequential statements. ←  is an assignment 
operator. & is a logical AND, ~ is a logical OR, and ! is the logical NOT. In the 
instruction interpretation phase of the fetch-execute cycle, if the machine is running (Run 
is true), the instruction register is loaded with the instruction at the location M [PC] (the 
program counter specifies the address of the memory at which the instruction to be 
executed is located). Simultaneously, the program counter is incremented by 4, so as to 
point to the next instruction, as shown in the example above. This completes the 
instruction interpretation. 

Instruction Execution  

(Describing the Execute operation using RTL) 

Once the instruction is fetched and the PC is incremented, execution of the instruction 
starts. In the following, we denote instruction Fetch by “iF” and instruction execution by 
“iE”.  
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iE:= (  

           (op<4..0>= 1) : R [ra] ←  M [disp],   

           (op<4..0>= 2) : R [ra] ←  M [rel],  

                                 . . . 

                                 . . .       

           (op<4..0>=31) : Run ←  0,); iF); 

As shown above, Instruction Execution can be described by using a long list of 
conditional operations, which are inherently “disjoint”.  
One of these statements is executed, depending on the condition met, and then the 
instruction fetch statement (iF) is invoked again at the end of the list of concurrent 
statements. Thus, instruction fetch (iF) and instruction execution statements invoke each 
other in a loop. This is the fetch-execute cycle of the SRC.  

Concurrent Statements 

  The long list of concurrent, disjoint instructions of the instruction execution (iE) is 
basically the complete instruction set of the processor. A brief overview of these 
instructions is given below. 

Load-Store Instructions 

(op<4..0>= 1) : R [ra] ←  M [disp], load register (ld) 

This instruction is to load a register using a displacement address specified by the 
instruction, i.e. the contents of the memory at the address ‘disp’ are placed in the register 
R [ra]. 
 (op<4..0>= 2) : R [ra] ←  M [rel], load register relative (ldr) 

If the operation field ‘op’ of the instruction decoded is 2, the instruction that is executed 
is loading a register (target address of this register is specified by the field ra) with 
memory contents at a relative address, ‘rel’. The relative address calculation has been 
explained in this section earlier.  
(op<4..0>= 3) : M [disp] ←  R [ra], store register (st) 

If the op-code is 3, the contents of the register specified by address ra, are stored back to 
the memory, at a displacement location ‘disp’.  
(op<4..0>= 4) : M[rel] ←  R[ra], store register relative (str) 

If the op-code is 4, the contents of the register specified by the target register address ra, 
are stored back to the memory, at a relative address location ‘rel’.  
(op<4..0>= 5) : R [ra] ←  disp, load displacement address (la) 

For op-code 5, the displacement address disp is loaded to the register R (specified by the 
target register address ra).  
(op<4..0>= 6) : R [ra] ←  rel, load relative address (lar) 

For op-code 6, the relative address rel is loaded to the register R (specified by the target 
register address ra).  

Branch Instructions 

(op<4..0>= 8) : (cond : PC ←  R [rb]),    conditional branch (br) 

If the op-code is 8, a conditional branch is taken, that is, the program counter is set to the 
target instruction address specified by rb, if the condition ‘cond’ is true. 
(op<4..0>= 9) : (R [ra] ←  PC,  

                           cond : (PC ←  R [rb]) ),  branch and link (brl) 

If the op field is 9, branch and link instruction is executed, i.e. the contents of the 
program counter are stored in a register specified by ra field, (so control can be returned 
to it later), and then the conditional branch is taken to a branch target address specified by 
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rb. The branch and link instruction is useful for returning control to the calling program 
after a procedure call returns.  
The conditions that these ‘conditional’ branches depend on are specified by the field c3 
that has 3 bits. This simply means that when c3<2..0> is equal to one of these six values. 
We substitute the expression on the right hand side of the : in place of cond 
These conditions are explained here briefly. 

     cond := (  

                           c3<2..0>=0 : 0,      never 

                          If the c3 field is 0, the branch is never taken. 

                           c3<2..0>=1 : 1,      always 

                           If the field is 1, branch is taken 

                           c3<2..0>=2 : R [rc]=0,            if register is zero 

                           If c3 = 2, a branch is taken if the register rc = 0. 

                           c3<2..0>=3 : R [rc] ≠ 0,      if register is nonzero 

                           If c3 = 3, a branch is taken if the register rc is not equal to 0. 

                           c3<2..0>=4 : R [rc]<31>=0     if positive or zero 

                           If c3 is 4, a branch is taken if the register value in the register specified        
                           by rc is greater than or equal to 0. 

                           c3<2..0>=5 : R [rc]<31>=1),   if negative 

                           If c3 = 5, a branch is taken if the value stored in the register specified by  
                           rc is negative. 

Arithmetic and Logical instructions 

(op<4..0>=12) : R [ra] ←  R [rb] + R [rc], 

If the op-code is 12, the contents of the registers rb and rc are added and the result is 
stored in the register ra. 
(op<4..0>=13) : R [ra] ←  R [rb] + c2<16..0> {sign extend}, 

If the op-code is 13, the content of the register rb is added with the immediate data in the 
field c2, and the result is stored in the register ra. 
(op<4..0>=14) : R [ra] ←  R [rb] – R [rc], 

If the op-code is 14, the content of the register rc is subtracted from that of rb, and the 
result is stored in ra. 
(op<4..0>=15) : R [ra] ←  -R [rc], 

If the op-code is 15, the content of the register rc is negated, and the result is stored in ra. 
(op<4..0>=20) : R [ra] ←  R [rb] & R [rc], 

If the op field equals 20, logical AND of the contents of the registers rb and rc is obtained 
and the result is stored in register ra. 
(op<4..0>=21) : R [ra] ←  R [rb] & c2<16..0> {sign extend}, 

If the op field equals 21, logical AND of the content of the registers rb and the immediate 
data in the field c2 is obtained and the result is stored in register ra. 
(op<4..0>=22) : R [ra] ←  R [rb] ~ R [rc], 

If the op field equals 22, logical OR of the contents of the registers rb and rc is obtained 
and the result is stored in register ra. 
(op<4..0>=23) : R [ra] ←  R [rb] ~ c2<16..0> {sign extend}, 

If the op field equals 23, logical OR of the content of the registers rb and the immediate 
data in the field c2 is obtained and the result is stored in register ra. 
(op<4..0>=24) : R [ra] ←   ¬R [rc], 

If the op-code equals 24, the content of the logical NOT of the register rc is obtained, and 
the result is stored in ra. 
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Shift instructions 
(op<4..0>=26): R [ra]<31..0 > ←  (n α 0) © R [rb] <31..n>, 

If the op-code is 26, the contents of the register rb are shifted right n bits times. The bits 
that are shifted out of the register are discarded. 0s are added in their place, i.e. n number 
of 0s is added (or concatenated) with the register contents. The result is copied to the 
register ra. 
(op<4..0>=27) : R [ra]<31..0 > ←  (n α R [rb] <31>) © R [rb] <31..n>, 

For op-code 27, shift arithmetic operation is carried out. In this operation, the contents of 
the register rb are shifted right n times, with the most significant bit, bit 31, of the register 
rb added in their place. The result is copied to the register ra. 
(op<4..0>=28) : R [ra]<31..0 > ←  R [rb] <31-n..0> © (n α 0), 

For op-code 28, the contents of the register rb are shifted left n bits times, similar to the 
shift right instruction. The result is copied to the register ra. 
(op<4..0>=29) : R [ra]<31..0 > ←  R [rb] <31-n..0> © R [rb]<31..32-n >, 

The instruction corresponding to op-code 29 is the shift circular instruction. The contents 
of the register rb are shifted left n times, however, the bits that move out of the register in 
the shift process are not discarded; instead, these are shifted in from the other end (a 
circular shifting). The result is stored in register ra. 

where 

n := ( (c3<4..0>=0) : R [rc],  

 (c3<4..0>!=0) : c3 <4..0> ), 

Notation:    α means replication  

 ©  Means concatenation 

Miscellaneous instructions 

(op<4..0>= 0) ,    No operation (nop) 

If the op-code is 0, no operation is carried out for that clock period. This instruction is 
used as a stall in pipelining.  
(op<4..0>= 31) : Run ←  0, Halt the processor (Stop)  

         );      iF  ); 

If the op-code is 31, run is set to 0, that is, the processor is halted. 
After one of these disjoint instructions is executed, iF, i.e. instruction Fetch is carried out 
once again, and so the fetch-execute cycle continues.  

Flow diagram 

Flow diagram is the symbolic 
representation of Fetch-Execute cycle. Its 
top block indicates instruction fetch and 
then next block shows the instruction 
decode by looking at the first 5-bits of the 
fetched instruction which would represent 
op-code which may be from 0 to 
31.Depending upon the contents of this 
op-code the appropriate processing would 
take place. After the appropriate 
processing, we would move back to top 
block, next instruction is fetched and the 
same process is repeated until the instruction with op-code 31 would reach and halt the 
system. 

Note:For SRC Assembler and Simulator consult Appendix. 
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Lecture No. 6 
 

RTL Using Digital Logic Circuits 
 

Reading Material 
 
           
  Handouts                                                                                            Slides 
    

Summary 
 

• Using Behavioral RTL to Describe the SRC (continued) 

• Implementing Register Transfer using Digital Logic Circuits 
 

Using behavioral RTL to Describe the SRC (continued) 
 

Once the instruction is fetched and the PC is incremented, execution of the instruction 
starts. In the following discussion, we denote instruction fetch by “iF” and instruction 
execution by “iE”.  
 

iE:= (  

           (op<4..0>= 1) : R [ra] ←  M [disp],   

           (op<4..0>= 2) : R [ra] ←  M [rel],  

                                 . . . 

                                 . . .       

           (op<4..0>=31) : Run ←  0,); iF); 

 
As shown above, instruction execution can be described by using a long list of 
conditional operations, which are inherently “disjoint”. Only one of these statements is 
executed, depending on the condition met, and then the instruction fetch statement (iF) is 
invoked again at the end of the list of concurrent statements. Thus, instruction fetch (iF) 
and instruction execution statements invoke each other in a loop. This is the fetch-execute 
cycle of the SRC.  
 

Concurrent Statements 

The long list of concurrent, disjoint instructions of the instruction execution (iE) is 
basically the complete instruction set of the processor. A brief overview of these 
instructions is given below: 
 

Load-Store Instructions 

(op<4..0>= 1) : R [ra] ←  M [disp], load register (ld) 

This instruction is to load a register using a displacement address specified by the 
instruction, i.e., the contents of the memory at the address ‘disp’ are placed in the register 
R [ra]. 
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(op<4..0>= 2) : R [ra] ←  M [rel], load register relative (ldr) 

If the operation field ‘op’ of the instruction decoded is 2, the instruction that is executed 
is loading a register (target address of this register is specified by the field ra) with 
memory contents at a relative address, ‘rel’. The relative address calculation has been 
explained in this section earlier.  
(op<4..0>= 3) : M [disp] ←  R [ra], store register (st) 

If the op-code is 3, the contents of the register specified by address ra, are stored back to 
the memory, at a displacement location ‘disp’.  
(op<4..0>= 4) : M[rel] ←  R[ra], store register relative (str) 

If the op-code is 4, the contents of the register specified by the target register address ra, 
are stored back to the memory, at a relative address location ‘rel’.  
(op<4..0>= 5) : R [ra] ←  disp, load displacement address (la) 

For op-code 5, the displacement address disp is loaded to the register R (specified by the 
target register address ra).  
(op<4..0>= 6) : R [ra] ←  rel, load relative address (lar) 

For op-code 6, the relative address rel is loaded to the register R (specified by the target 
register address ra).  
 

Branch Instructions 

(op<4..0>= 8) : (cond : PC ←  R [rb]),    conditional branch (br) 

If the op-code is 8, a conditional branch is taken, that is, the program counter is set to the 
target instruction address specified by rb, if the condition ‘cond’ is true. 
(op<4..0>= 9) : (R [ra] ←  PC,  

                           cond : (PC ←  R [rb]) ),  branch and link (brl) 

If the op field is 9, branch and link instruction is executed, i.e. the contents of the 
program counter are stored in a register specified by ra field, (so control can be returned 
to it later), and then the conditional branch is taken to a branch target address specified by 
rb. The branch and link instruction is useful for returning control to the calling program 
after a procedure call returns.  
The conditions that these ‘conditional’ branches depend on, are specified by the field c3 
that has 3 bits. This simply means that when c3<2..0> is equal to one of these six values, 
we substitute the expression on the right hand side of the : in place of cond. 
These conditions are explained here briefly. 

     cond := (  

                           c3<2..0>=0 : 0,      never 

                          If the c3 field is 0, the branch is never taken. 

                           c3<2..0>=1 : 1,      always 

                           If the field is 1, branch is taken 

                           c3<2..0>=2 : R [rc]=0,            if register is zero 

                           If c3 = 2, a branch is taken if the register rc = 0. 

                           c3<2..0>=3 : R [rc] ≠ 0,      if register is nonzero 

                           If c3 = 3, a branch is taken if the register rc is not equal to 0. 

                           c3<2..0>=4 : R [rc]<31>=0     if positive or zero 

                           If c3 is 4, a branch is taken if the register value in the register specified        
                           by rc is greater than or equal to 0. 

                           c3<2..0>=5 : R [rc]<31>=1),   if negative 

                           If c3 = 5, a branch is taken if the value stored in the register specified by  
                           rc is negative. 
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Arithmetic and Logical instructions 

(op<4..0>=12) : R [ra] ←  R [rb] + R [rc], 

If the op-code is 12, the contents of the registers rb and rc are added and the result is 
stored in the register ra. 
(op<4..0>=13) : R [ra] ←  R [rb] + c2<16..0> {sign extended}, 

If the op-code is 13, the content of the register rb is added with the immediate data in the 
field c2, and the result is stored in the register ra. 
(op<4..0>=14) : R [ra] ←  R [rb] – R [rc], 

If the op-code is 14, the content of the register rc is subtracted from that of rb, and the 
result is stored in ra. 
(op<4..0>=15) : R [ra] ←  -R [rc], 

If the op-code is 15, the content of the register rc is negated, and the result is stored in ra. 
(op<4..0>=20) : R [ra] ←  R [rb] & R [rc], 

If the op field equals 20, logical AND of the contents of the registers rb and rc is obtained 
and the result is stored in register ra. 
(op<4..0>=21) : R [ra] ←  R [rb] & c2<16..0> {sign extended}, 

If the op field equals 21, logical AND of the content of the registers rb and the immediate 
data in the field c2 is obtained and the result is stored in register ra. 
(op<4..0>=22) : R [ra] ←  R [rb] ~ R [rc], 

If the op field equals 22, logical OR of the contents of the registers rb and rc is obtained 
and the result is stored in register ra. 
(op<4..0>=23) : R [ra] ←  R [rb] ~ c2<16..0> {sign extended}, 

If the op field equals 23, logical OR of the content of the registers rb and the immediate 
data in the field c2 is obtained and the result is stored in register ra. 
(op<4..0>=24) : R [ra] ←   !R [rc], 

If the op-code equals 24, the content of the logical NOT of the register rc is obtained, and 
the result is stored in ra. 

 

Shift instructions 
(op<4..0>=26): R [ra]<31..0 > ←  (n α 0) © R [rb] <31..n>, 

If the op-code is 26, the contents of the register rb are shifted right n bits times. The bits 
that are shifted out of the register are discarded. 0s are added in their place, i.e. n number 
of 0s is added (or concatenated) with the register contents. The result is copied to the 
register ra. 
(op<4..0>=27) : R [ra]<31..0 > ←  (n α R [rb] <31>) © R [rb] <31..n>, 

For op-code 27, shift arithmetic operation is carried out. In this operation, the contents of 
the register rb are shifted right n times, with the most significant bit, i.e., bit 31, of the 
register rb added in their place. The result is copied to the register ra. 
(op<4..0>=28) : R [ra]<31..0 > ←  R [rb] <31-n..0> © (n α 0), 

For op-code 28, the contents of the register rb are shifted left n bits times, similar to the 
shift right instruction. The result is copied to the register ra. 
(op<4..0>=29) : R [ra]<31..0 > ←  R [rb] <31-n..0> © R [rb]<31..32-n >, 

The instruction corresponding to op-code 29 is the shift circular instruction. The contents 
of the register rb are shifted left n times, however, the bits that move out of the register in 
the shift process are not discarded; instead, these are shifted in from the other end (a 
circular shifting). The result is stored in register ra. 

where 
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 n := ( (c3<4..0>=0) : R [rc],  

 (c3<4..0>!=0) : c3 <4..0> ), 

 

Notation:    

α means replication  

© means concatenation 

 

Miscellaneous instructions 

(op<4..0>= 0) ,    No operation (nop) 

If the op-code is 0, no operation is carried out for that clock period. This instruction is 
used as a stall in pipelining.  
(op<4..0>= 31) : Run ←  0, Halt the processor (Stop)  

         );      iF  ); 

If the op-code is 31, run is set to 0, that is, the processor stops execution. 
After one of these disjoint instructions is executed, iF, i.e. instruction Fetch is carried out 
once again, and so the fetch-execute cycle continues.  
 

Implementing Register Transfers using Digital Logic Circuits 

 
We have studied the register transfers in the previous sections, and how they help in 
implementing assembly language. In this section we will review how the basic digital 
logic circuits are used to implement instructions register transfers. The topics we will 
cover in this section include: 

1. A brief (and necessary) review of logic circuits 
2. Implementing simple register transfers 
3. Register file implementation using a bus 
4. Implementing register transfers with mathematical operations 
5. The Barrel Shifter 
6. Implementing shift operations 
 

Review of logic circuits 

Before we study the implementation of register transfers using logic circuits, a brief 
overview of some of the important logic circuits will prove helpful. The topics we review 
in this section include  

1. The basic D flip flop 
2. The n-bit register 
3. The n-to-1 multiplexer 
4. Tri-state buffers 

 

 

 

The basic D flip flop 

A flip-flop is a bi-stable device, 
capable of storing one bit of 
Information. Therefore, flip-flops 
are used as the building blocks of a 
computer’s memory as well as CPU 
registers. 
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There are various types of flip-flops; most common type, the D flip-flop is shown in the 
figure given. The given truth table for this positive-edge triggered D flip-flop shows that 
the flip-flop is set (i.e. stores a 1) when the data input is high on the leading (also called 
the positive) edge of the clock; it is reset (i.e., the flip-flop stores a 0) when the data input 
is 0 on the leading edge of the clock. The clear input will reset the flip-flop on a low 
input. 

The n-bit register 

A n-bit register can be formed by 
grouping n flip-flops together. So a 
register is a device in which a 
group of flip-flops operate 
synchronously.  
A register is useful for storing 
binary data, as each flip-flop can 
store one bit. The clock input of 
the flip-flops is grouped 
together, as is the enable input. 
As shown in the figure, using 
the input lines a binary number 
can be stored in the register by 
applying the corresponding 
logic level to each of the flip-
flops simultaneously at the 
positive edge of the clock.  
The next figure shows the 
symbol of a 4-bit register used 
for an integrated circuit. In0 
through In3 are the four input 
lines, Out0 through Out3 are the 
four output lines, Clk is the 
clock input, and En is the enable 
line. To get a better 
understanding of this register, 
consider the situation where we want 
to store the binary number 1000 in the 
register. We will apply the number to 
the input lines, as shown in the figure given.  
On the leading edge of the clock, the number will be stored in the register. The enable 
input has to be high if the number is to be stored into the register. 
.  
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Waveform/Timing diagram 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

The n-to-1 multiplexer 

A multiplexer is a device, constructed 
through combinational logic, which 
takes n inputs and transfers one of 
them as the output at a time. The input 
that is selected as the output depends 
on the selection lines, also called the 
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control input lines. For an n-to-1 multiplexer, there are n input lines, log2n control lines, 
and 1 output line. The given figure shows a 4-to-1 multiplexer. There are 4 input lines; 
we number these lines as line 0 through line 3. Subsequently, there are 2 select lines (as 
log24 = 2). 
For a better understanding, let us consider a case where we want to transfer the input of 
line 3 to the output of the multiplexer. We will need to apply the binary number 11 on the 
select lines (as the binary number 11 represents the decimal number 3). By doing so, the 
output of the multiplexer will be the input on line 3, as shown in the test circuit given. 

Timing waveform 

 
 

 

 

Tri-state buffers 

The tri-state buffer, also called the three-
state buffer, is another important 
component in the digital logic domain. It 
has a single input, a single output, and 
an enable line. The input is concatenated 
to the output only if it is enabled through 
the enable line, otherwise it gives a high 
impedance output, i.e. it is tri-stated, or 
electrically disconnected from the input 
These buffers are available both in the 
inverting and the non-inverting form. The 
inverting tri-state buffers output the 
‘inverted’ input when they are enabled, 
as opposed to their non-inverting 
counterparts that simply output the input 
when enabled. The circuit symbol of the 
tri-state buffers is shown. The truth table 
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further clarifies the working of a non-inverting tri-state buffer. 
 We can see that when the enable input (or the control input) c is low (0), the output is 
high impedance Z. The symbol of a 4-bit tri-state buffer unit is shown in the figure. There 
are four input lines, an equal number of 
output lines, and an enable line in this 
unit. If we apply a high on the input 3 
and 2, and a low on input 1 and 0, we 
get the output 1100, only when the 
enable input is high, as shown in the 
given 
figure.

 
 

Implementing simple register transfers 

We now build on our knowledge of the primitive logic circuits to understand how register 
transfers are implemented. In this section we will study the implementation of the 
following 

• Simple conditional transfer 

• Concept of control signals 

• Two-way transfers 

• Connecting multiple registers 

• Buses 

• Bus implementations 
Simple conditional transfer 

In a simple conditional transfer, a condition is checked, and if it is true, the register 
transfer takes place. Formally, a conditional transfer is represented as  
                Cond: RD ← RS 
This means that if the condition ‘Cond’ is true, the contents of the register named RS (the 
source register) are copied to the register RD (the destination register). The following 
figure shows how the registers may be interconnected to achieve a conditional transfer. In 
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this circuit, the output of the source register RS is connected to the input of the 
destination registers RD. However, notice that the transfer will not take place unless the 
enable input of the destination register is activated. We may say that the ‘transfer’ is 
being controlled by the enable line (or the control signal). Now, we are able to control the 
transfer by selectively enabling the control signal, through the use of other combinational 
logic that may be the equivalent of our condition. The condition is, in general, a Boolean 
expression, and in this example, the condition is equivalent to LRD =1.   

Two-way transfers 

In the above example, only one-way transfer was possible, i.e., we could only copy the 
contents of RS to RD if the condition was met. In order to be able to achieve two-way 
transfers, we must also provide a path from the output of the register RD to input of 
register RS. This will enable us to implement  

Cond1: RD ← RS 
Cond2: RS ← RD 

Connecting multiple registers 

We have seen how two registers can be connected. However, in a computer we need to 
connect more than just two registers. In order to connect these registers, one may argue 
that a connection between the input and output of each be provided. This solution is 
shown for a scenario where there are 5 registers that need to be interconnected.   
We can see that in this solution, an m-bit register requires two connections of m-wires 
each.  Hence five m-bit registers in a “point-to-point” scheme require 20 connections; 
each with m wires. In general, n registers in a point to point scheme require n (n-1) 
connections. It is quite obvious that this solution is not going to scale well for a large 
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number of registers, as is the case in real machines. The solution to this problem is the 
use of a bus architecture, which is explained in the following sections. 

 

 

 

Buses 

A bus is a device that provides a shared data 
path to a number of devices that are connected 
to it, via a ‘set of wires’ or a ‘set of 
conductors’. The modern computer systems 
extensively employ the bus architecture. 
Control signals are needed to decide which two 
entities communicate using the shared medium, 
i.e.  the bus, at any given time. This control 
signals can be open collector 
gate based, tri-state buffer 
based, or they can be 
implemented using 
multiplexers.  

 
Register file implementation 

using the bus architecture 

A number of registers can be 
inter-connected to form a 
register file, through the use of a 
bus. The given diagram shows 
eight 4-bit registers (R0, R1, …, 
R7) interconnected through a 4-
bit bus using 4-bit tri-state 
buffer units (labeled AA_TS4). 
The contents of a particular 
register can be transferred onto 
the bus by applying a logical 
high input on the enable of the 
corresponding tri-state buffer. 
For instance, R1out can be used 
to enable the tri-state buffers of 
the register R1, and in turn 
transfer the contents of the 
register on the bus.  
Once the contents of a particular 
register are on the bus, the 
contents may be transferred, or 
read into any other register. 
More than one register may be 
written in this manner; however, 
only one register can write its 
value on the bus at a given time. 
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Implementing register transfers with mathematical operations 

We have studied the implementation of simple register transfers; however, we frequently 
encounter register transfers with mathematical operations. An example is 
(opc=1): R4← R3 + R2; 
These mathematical operations may be achieved by introducing appropriate 
combinational logic; the above operation can be implemented in hardware by including a  
4-bit adder with the register files connected through the bus. There are two more registers 
in this configuration, one for holding one of the operands, and the other for holding the 
result before it is transferred to the destination register. This is shown in the figure below.  
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We now take a look at 
the steps taken for the 
(conditional, 
mathematical) transfer 
(opc=1): R4← R3 + R2. 
First of all, if the 
condition opc = 1 is met, 
the contents of the first 
operand register, R3, are 
transferred to the 
temporary register A 
through the bus. This is 
done by activating 
R3out. It lets the contents of the register R3 to be loaded on the bus. At the same time, 
applying a logical high input to LA enables the load for the register A. This lets the 
binary number on the bus (the contents of register R3) to be loaded into the register A. 
The next step is to enable R2out to load the contents of the register R2 onto the bus. As 
can be observed from the figure, the output of the register A is one of the inputs to the 4-
bit adder; the other input to the adder is the bus itself. Therefore, as the contents of 
register R2 are loaded onto the bus, both the operands are available to the adder. The 
output can then be stored to the register RC by enabling its write. So a high input is 
applied to LC to store the result in register RC.  
The third and final step is to store (transfer) the resultant number in the destination 
register R4. This is done by enabling Cout, which writes the number onto the bus, and 
then enabling the read of the register R4 by activating the control signal to LR4. These 
steps are summarized in the given table. 
 

The barrel shifter 

Shift operations are frequently used operations, as shifts can be used for the 
implementation of multiplication and division etc. A bi-directional shift register with a 
parallel load capability can be used to perform shift operations. However, the delays in 
such structures are  dependent on the number of shifts that are to be performed, e.g., a 9 
bit shift requires nine clock periods, as one shift is performed per clock cycle. This is not 
an optimal solution. The barrel shifter is an alternative, with any number of shifts 
accomplished during a single clock period. Barrel shifters are constructed by using 
multiplexers. An n-bit barrel shifter is a combinational circuit implemented using n 
multiplexers. The barrel provides a shifted copy of the input data at its output. Control 
inputs are provided to specify the number of times the input data is to be shifted. The 
shift process can be a simple one with 0s used as fillers, or it can be a rotation of the input 
data. The corresponding figure shows a barrel shifter that shifts right the input data; the 
number of shifts depends on the bit pattern applied on the control inputs S0, S1.  
 The function table for the barrel shifter is given. We see from the table that in order to 
apply single shift to the input number, the control signal is 01 on (S1, S0), which is the 
binary equivalent of the decimal number 1. Similarly, to apply 2 shifts, control signal 10 
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(on S1, S0) is applied; 10 is the binary 
equivalent of the decimal number 2. A 
control input of 11 shifts the number 3 
places to the right. 
Now we take a look at an example of 
the shift operation being implemented 
through the use of the barrel shifter: 
R4← ror R3 (2 times); 
The shift functionality can be 
incorporated into the register file 
circuit with the bus architecture we 
have been building, by introducing the 
barrel shifter, as shown in the given 
figure. 
To perform the operation,  
R4← ror R3 (2 times),  
the first step is to activate R3out, nb1 
and LC. Activating R3out will load the 
contents of the register R3 onto the bus. 
Since the bus is directly connected to 
the input of the barrel shifter, this 
number is applied to the input side. nb1 
and nb0 are the barrel shifter’s control 
lines for specifying the number of shifts 
to be applied. Applying a high input to 
nb1 and a low input to nb0 will shift the 
number two places to the right. 
Activating LC will load the shifted 
output of the barrel shifter into the  
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register C. The second step is to transfer the contents of the register C to the register R4. 
This is done by activating the control Cout, which will load the contents of register C 
onto the data bus, and by activating the control LR4, which will let the contents of the 
bus be written to the register R4. This will complete the conditional shift-and-store 
operation. These steps are summarized in the table shown below.  
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Lecture No. 7 

Design Process for ISA of FALCON-A 
Reading Material 
        Hnadouts                                                                                                    Slides  
 
 
 

Summary 
8) Outline of the thinking process for ISA Design 
9) Introduction to the ISA of FALCON-A 

Instruction Set Architecture (ISA) Design: Outline of the thinking 

process 
In this module we will learn to appreciate, understand and apply the approach adopted in 
designing an instruction set architecture. We do this by designing an ISA for a new 
processor. We have named our processor FALCON-A, which is an acronym for First 
Architecture for Learning Computer Organization and Networks (version A). The term 
Organization is intended to include Architecture and Design in this acronym.  

Elements of the ISA 
Before we go onto designing the instruction set architecture for our processor FALCON-
A, we need to take a closer look at the defining components of an ISA. The following 
three key components define any instruction set architecture.  

1. The operations the processor can execute 
2. Data access mode for use as operands in the operations defined 
3. Representation of the operations in memory 

We take a look at all three of the components in more detail, and wherever appropriate, 
apply these steps to the design of our sample processor, the FALCON-A. This will help 
us better understand the approach to be adopted for the ISA design of a processor. A 
more detailed introduction to the FALCON-A will be presented later. 

The operations the processor can execute 
All processors need to support at least three categories (or functional groups) of 
instructions 
– Arithmetic, Logic, Shift 
– Data Transfer 
– Control 

ISA Design Steps – Step 1 
We need to think of all the instructions of each type that ought to be supported by our 
processor, the FALCON-A. The following are the instructions that we will include in the 
ISA for our processor.  

 

 

Arithmetic: 

 add, addi (and with an immediate operand), subtract, subtract-immediate, 
multiply, divide 

Logic: 
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 and, and-immediate, or, or-immediate, not 

Shift: 

 shift left, shift right, arithmetic shift right 

Data Transfer: 

 Data transfer between registers, moving constants to registers, load operands from 
memory to registers, store from registers to memory and the movement of data between 
registers and input/output devices 

Control: 

 Jump instructions with various conditions, call and return from subroutines, 
instructions for handling interrupts 

Miscellaneous instructions: 
 Instructions to clear all registers, the capability to stop the processor, ability to 
“do nothing”, etc. 

ISA Design Steps – Step 2 
Once we have decided on the instructions that we want to add support for in our 
processor, the second step of the ISA design process is to select suitable mnemonics for 
these instructions. The following mnemonics have been selected to represent these 
operations. 

Arithmetic: 
add, addi, sub ,subi ,mul ,div 

Logic: 

and, andi, or, ori, not 

Shift: 

shiftl, shiftr, asr 

Data Transfer: 

load, store, in, out, mov, movi 

Control: 

jpl, jmi, jnz, jz, jump, call, ret, int.iret 

Miscellaneous instructions: 
nop, reset, halt 

ISA Design Steps – Step 3 
The next step of the ISA design is to decide upon the number of bits to be reserved for 
the op-code part of the instructions. Since we have 32 instructions in the instruction set, 5 
bits will suffice (as 25 =32) to encode these op-codes.  

ISA Design Steps – Step 4 
The fourth step is to assign op-codes to these instructions. The assigned op-codes are 
shown below.  

Arithmetic: 
add (0), addi (1), sub (2), subi (3), mul (4),div (5) 

Logic: 

and (8), andi (9), or (10), ori (11), not (14) 

 

Shift: 

shiftl (12), shiftr (13), asr (15) 

Data Transfer: 

load (29), store (28), in (24), out (25), mov (6), movi (7) 

Control: 

jpl (16), jmi (17), jnz (18), jz (19), jump (20), call (22), ret (23), int (26), iret (27) 
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Miscellaneous instructions: 
nop (21), reset (30), halt (31) 

Now we list these instructions with 
their op-codes in the binary form, as 
they would appear in the machine 
instructions of the FALCON-A. 

Data access mode for 

operations 
As mentioned earlier, the instruction 
set architecture of a processor defines 
a number of things besides the 
instructions implemented; the 
resources each instruction can access, 
the number of registers available to the processor, the number of registers each 
instruction can access, the instructions that are allowed to access memory, any special 
registers, constants and any alternatives to the general-purpose registers. With this in 
mind, we go on to the next steps of our ISA design. 

ISA Design Steps – Step 5 
We now need to select the number and types of operands for various instructions that we 
have selected for the FALCON-A ISA.  
ALU instructions may have 2 to 3 registers as operands. In case of 2 operands, a constant 
(an immediate operand) may be included in the instruction.  
For the load/store type instructions, we require a register to hold the data that is to be 
loaded from the memory, or stored back to the memory. Another register is required to 
hold the base address for the memory access. In addition to these two registers, a field is 
required in the instruction to specify the 
constant that is the displacement to the base 
address.  
In jump instructions; we require a field for 
specifying the register that holds the value that 
is to be compared as the condition for the 
branch, as well as a destination address, which 
is specified as a constant.  
Once we have decided on the number and 
types of operands that will be required in each 
of the instruction types, we need to address the 
issue of assigning specific bit-fields in the 
instruction for each of these operands. The number of bits required to represent each of 
these operands will eventually determine the instruction word size. In our example 
processor, the FALCON-A, we reserve eight general-purpose registers. To encode a 
register in the instructions, 3 bits are required (as 23 =8). The registers are encoded in the 
binary as shown in the given table. 
Therefore, the instructions that we will add support for FALCON-A processor will have 
the given general format. The instructions 
in the FALCON-A processor are going to 
be variations of this format, with four 
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different formats in all. The exact format is dependent on the actual number of operands 
in a particular instruction.  

ISA Design Steps – Step 6 
The next step towards completely defining the instruction set architecture of our 
processor is the design of memory and its organization. The number of the memory cells 
that we may have in the organization depends on the size of the Program Counter register 
(PC), and the size of the address bus. This is because the size of the program counter and 
the size of the address bus put a limitation on the number of memory cells that can be 
referred to for loading an instruction for execution. Additionally, the size of the data bus 
puts a limitation on the size of the memory word that can be referred to in a single clock 
cycle.  

ISA Design Steps – Step 7 
Now we need to specify which instructions will be allowed to access the memory. Since 
the FALCON-A is intended to be a RISC-like machine, only the load/ store instructions 
will be allowed to access the memory.  

ISA Design Steps – Step 8 
Next we need to select the memory-
addressing modes. The given table lists 
the types of addressing modes that will 
be supported for the load/store 
instructions. 

FALCON-A: Introduction 
FALCON stands for First Architecture for Learning Computer Organization and 
Networks. It is a ‘RISC-like’ general-purpose processor that will be used as a teaching 
aid for this course. Although the FALCON-A is a simple machine, it is powerful enough 
to explain a variety of fundamental concepts in the field of Computer Architecture .  

Programmer’s view of the FALCON-A 
FALCON-A, an example of a GPR 
(General Purpose Register) computer, 
is the first version of the FALCON 
processor. The programmer’s view of 
the FALCON-A is given in the figure 
shown. As it is clear from the figure, 
the CPU contains a register file of 8 
registers, named R0 through R7. Each 
of these registers is 16 bits in length. 
Aside from these registers, there are 
two special-purpose registers, the Program Counter (PC), and the Instruction Register 
(IR). The main memory is organized as 216 x 8 bits, i.e. 216 cells of 1 byte each. The 
memory word size is 2 bytes (or 16 bits). The input/output space is 256 bytes (8 bit I/O 
ports). The storage in these registers and memory is in the big-endian format. 
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Introduction to the ISA of the FALCON-A 

 
We take a look at the notation that we are going to employ when studying the FALCON-
A. We will refer to the contents of a register by enclosing in square brackets the name of 
the register, for instance, R [3] refers to the contents of the register 3. Memory contents 
are to be referred to in a similar fashion; for instance, M [8] refers to the contents of 
memory at location 8 (or the 8th 
memory cell).  
Since memory is organized into cells 
of 1 byte, whereas the memory word 
size is 2 bytes, two adjacent memory 
cells together make up a memory 
word. So, memory word at the 
memory address 8 would be defined 
as 1 byte at address 8 and 1 byte at 
address 9.  To refer to 16-bit memory 
words, we make use of a special 
notation, the concatenation of two memory locations. Therefore, to refer to the 16-bit 
memory word at location 8, we would write M[8]©M[9]. As we employ the big-endian 
format,  
M [8]<15…0>:=M[8]©M[9] 
So in our notation © is used to represent concatenation.  
Little endian puts the smallest numbered byte at the least-significant position in a word, 
whereas in big endian, we place the largest numbered byte at the most significant 
position. Note that in our case, we use the big-endian convention of ordering bytes. 
However, within each byte itself, the ordering of the bits is little endian.  

FALCON-A  Features 

The FALCON-A processor has fixed-length instructions, each 16 bits (2 bytes) long. 
Addressing modes supported are limited, and memory is accessed through the load/store 
instructions only.  
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FALCON-A Instruction Formats 

Three categories of instructions are going to be supported by the FALCON-A processor; 
arithmetic, control, and data transfer instructions. Arithmetic instructions enable 
mathematical computations. Control instructions help change the flow of the program as 
and when required. Data transfer operations move data between the processor and 
memory. The arithmetic category also includes the logical instructions. Four different 
types of instruction formats are used to specify these instructions. A brief overview of the 
various fields in these instructions formats follows.  
Type I instruction format is shown in 
the given figure. In it, 5 bits are 
reserved for the op-code (bits 11 
through 15). The rest of the bits are 
unused in this instruction type, 
which means they are not 
considered. 
Type II instruction shown in the 
given figure, has a 5-bit op-code 
field, a 3-bit register field, and an 8-bit 
constant (or immediate operand) field. 
Type III instructions contain the 5-bit 
op-code field, two 3-bit register fields 
for source and destination registers, 
and an immediate operand field of 
length 5 bits. 
Type IV instructions contain the op-
code field, two 3-bit register fields, a 
constant filed on length 3 bits as well 
as two unused bits. This format is shown in  
the given  figure. 

Encoding of registers 

We have a register file comprising of 
eight general-purpose registers in the 
CPU. To encode these registers in the 
binary, so they can be referred to in 
various instructions, we require log2(8) 
= 3 bits. Therefore, we have already 
allocated three bits per register in the 
instructions, as seen in the various 
instruction formats. The encoding of 
registers in the binary format is shown 
in the given table.  
It is important to note here that the 
register R0 has special usage in some 
cases. For instance, in load/ store 
operations, if register R0 is used as a 
second operand, its value is considered to be zero. R0 has special usage in the multiply 
and divide (mul & div) instructions as well.  
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Instructions and instruction formats 

We return to our discussion of instruction formats in this section. We will now classify 
which instructions belong to what instruction format types.  

Type I 

Five of the instructions included in the instruction set of FALCON-A belong to type I 
instruction format. These are 

1. nop  (op-code = 21) 
This instruction is to instruct the processor to ‘do nothing’, or, in other words, do 
‘no operation’. This instruction is generally useful in pipelining. We will study 
pipelining later in the course. 

2. reset  (op-code = 30) 
3. halt  (op-code=31) 
4. int  (opcode= 26) 
5. iret  (op-code= 27) 

All of these instructions take no operands, therefore, besides the 5 bits used for the op-
code, the rest of the bits are unused.  

Type II 

There are nine FALCON-A instructions that belong to this type. These are listed below. 
1. movi (op-code = 7 )   
The movi instruction loads a register with the constant (or the immediate value) 
specified as the second operand. An example is 

   movi R3, 56  R[3] ← 56 
This means that the register R3 will have the value 56 stored in it as this instruction 
is executed. 

2. in (op-code = 24)   
This instruction is to load the specified register from input device. An example 
and its interpretation in register transfer language are 
in R3, 57  R [3] ← IO [57] 

3. out (op-code = 25)   
The ‘out’ instruction will move data from the register to the output device 
specified in the instruction, as the example demonstrates: 
out R7, 34  IO [34] ←  R [7] 

4. ret (op-code=23)   
This instruction is to return control from a subroutine. This is done using a 
register, where the return address is stored. As shown in the example, to return 
control, the program counter is assigned the contents of the register. 

 ret R3   PC ← R [3]  
5. jz (op-code= 19)  

When this instruction is executed, the value of the register specified in the field ra 
is checked, and if it is equal to zero, the Program Counter is advanced by the 
jump(value) specified in the instruction.  
jz  r3, [4]   (R[3]=0): PC← PC+ 4; 
In this example, register r3’s value is checked, and if found to be zero, PC is 
advanced by 4. 

6. jnz (op-code= 18)  This instruction is the reverse of the jz instruction, i.e., the 
jump (or the branch) is taken, if the contents of the register specified are not equal 
to zero. 

      jnz r4, [variable]  (R[4]≠0): PC← PC+ variable; 
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7. jpl  (op-code= 16)  In this instruction, the value contained in the register specified 

in the field ra is checked, and if it is positive, the jump is taken. 
      jpl r3, [label]   (R[3]≥0): PC ← PC+ (label-PC); 
  

8. jmi (op-code= 17) In this case, PC is advanced (jump/branch is taken) if the 
register value is negative 

      jmi r7, [address]  (R[7]<0): PC← PC+ address;  
 
Note that, in all the instructions for jump, the jump can be specified by a constant, a 
variable, a label or an address (that holds the value by which the PC is to be advanced).  
A variable can be defined through the use of the ‘.equ’ directive. An address (of data) can 
be specified using the directive ‘.db’ or ‘.dw’. A label can be specified with any 
instruction. In its usage, we follow the label by a colon ‘:’ before the instruction itself. 
For example, the following is an instruction that has a label ‘alfa’ attached to it 
alfa: movi r3 r4 
Labels implement relative jumps, 128 locations backwards or 127 locations forward 
(relative to the current position of program control, i.e. the value in the program counter). 
The compiler handles the interpretation of the field c2 as a constant/ variable/ label/ 
address. The machine code just contains an 8-bit constant that is added to the program 
counter at run-time.  

9. jump (op-code= 20)   
This instruction instructs the processor to advance the program counter by the 
displacement specified, unconditionally (an unconditional jump). The assembler 
allows the displacement (or the jump) to be specified in any of the following ways 

jump [ra + constant]   
 jump [ra + variable]  
 jump [ra + address]  
 jump [ra + label]  

The types of unconditional jumps that are possible are  

• Direct 

• Indirect 

• PC relative (a ‘near’ jump) 

• Register relative (a ‘far’ jump) 
The c2 field may be a constant, variable, an address or a label. 
A direct jump is specified by a PC-label.  
An indirect jump is implemented by using the C2 field as a variable.  
In all of the above instructions, if the value of the register ra is zero, then the Program 
Counter is incremented (or decremented) by the sign-extended value of the constant 
specified in the instruction. This is called the PC-relative jump, or the ‘near’ jump. It is 
denoted in RTL as: 
(ra=0):PC← PC+(8αC2<7>)©C2<7..0>; 
If the register ra field is non-zero, then the Program Counter is assigned the sum of the 
sign-extended constant and the value of register specified in the field ra. This is known as 
the register-relative, or the ‘far’ jump. In RTL, this is denoted as:          
(ra≠0):PC← R[ra]+(8αC2<7>)©C2<7..0>; 
Note that C2 is computed by sign extending the constant, variable, address, or (label –
PC). Since we have 8 bits available for the C2 field (which can be a constant, variable, 
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address or a PC-label), the range for the field is -128 to + 127. Also note that the compiler 
does not allow an instruction with a negative sign before the register name, such as ‘jump 
[-r2]’. If the C2 field is being used as an address, it should always be an even value for 
the jump instruction. This is because our instruction word size is 16 bits, whereas in 
instruction memory, the instruction memory cells are of 8 bits each. Two consecutive 
cells together make an instruction.  

Type III 

There are nine instructions of the FALCON-A that belong to Type III. These are: 
1. andi  (op-code = 9)  

The andi instruction bit-wise ‘ands’ the constant specified in the instruction with 
the value stored in the register specified in the second operand register and stores 
the result in the destination register. An example is:                                            
andi r4, r3, 5 
This instruction will bit-wise and the constant 5 and R[3], and assign the value 
thus obtained to the register R[4], as given . 
  R [4]   ←   R [3] & 5 

2. addi  (op-code = 1)   
This instruction is to add a constant value to a register; the result is stored in a 
destination register. An example:  

            addi  r4, r3,4 R [4]   ←   R [3] + 4 
3. subi  (op-code = 3)   

The subi instruction will subtract the specified constant from the value stored in a 
source register, and store to the destination register. An example follows. 
subi r5, r7, 9 R [5]   ←   R [7] – 9 

4. ori  (op-code= 11)   
Similar to the andi instruction, the ori instruction bit-wise ‘ors’ a constant with a 
value stored in the source register, and assigns it to the destination register. The 
following instruction is an example. 
ori r4, r7, 3 R[4]   ←   R[7] ~ 3 

5. shiftl  (op-code = 12)  
This instruction shifts the value stored in the source register (which is the second 
operand), and shifts the bits left as many times as is specified by the third 
operand, the constant value. For instance, in the instruction                               
shiftl r4, r3, 7  
The contents of the register are shifted left 7 times, and the resulting number is 
assigned to the register r4. 

6. shiftr  (op-code = 13)   
This instruction shifts to the right the value stored in a register. An example is: 
shiftr r4, r3,9  

7. asr  (op-code = 15) 
  An arithmetic shift right is an operation that shifts a signed binary number 
stored in the source register (which is specified by the second operand), to the 
right, while leaving the sign-bit unchanged. A single shift has the effect of 
dividing the number by 2. As the number is shifted as many times as is specified 
in the instruction through the constant value, the binary number of the source 
register gets divided by the constant value times 2. An example is 
asr r1, r2, 5 
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This instruction, when executed, will divide the value stored in r2 by 10, and 
assign the result to the register r1. 

8. load  (op-code= 29)   
This instruction is to load a register from the memory. For instance, the 
instruction 
load r1, [r4 +15] 
will add the constant 15 to the value stored in the register r4, access the memory 
location that corresponds to the number thus resulting, and assign the memory 
contents of this location to the register r1; this is denoted in RTL by:  
  R[1]   ←   M[R[4]+15]  

9. store  (op-code= 28) 
This instruction is to store a value in the register to a particular memory location. 
In the example:                                                                                                     
store r6, [r7+13] 
The contents of the register r6  are being stored to the memory location that 
corresponds to the sum of the constant 13 and the value stored in the register r7.   
  M[R[7]+13]   ←   R[6]  

Type III Modified 

There are 3 instructions in the modified form of the Type III instructions. In the modified 
Type III instructions, the field c1 is unused. 

1. mov  (op-code = 6 )   
This instruction will move (copy) data of a source register to a destination 
register. For instance, in the following example, the contents of the register r3 are 
copied to the register r4. 

   mov r4, r3 
In RTL, this can be represented as  
                    R[4]   ←    R[3] 

2. not  (op-code = 14 )  
This instruction inverts the contents of the source register, and assigns the value 
thus obtained to the destination register. In the following example, the contents of 
register r2 are inverted and assigned to register r4.                                                   
not r4, r2 
In RTL: 
                     R[4]   ←   !R[2] 

3. call  (op-code = 22 ) 
Procedure calls are often encountered in programming languages. To add support 
for procedure (or subroutine) calls, the instruction call is used. This instruction 
first stores the return address in a register and then assigns the Program Counter a 
new value (that specifies the address of the subroutine). Following is an example 
of the call instruction                                                                                                
call  r4, r3 
This instruction saves the current contents (the return address) of the Program 
Counter into the register r4 and assigns the new value to the PC from register r3. 
                      R[4]  ←  PC, PC ←  R[3] 

Type IV 

Six instructions belong to the instruction format Type IV. These are 
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1. add  (op-code = 0 )  
This instruction adds contents of a register to those of another register, and 
assigns to the destination register. An example: 

    and r4, r3, r5 
  R[4]  ←  R[3] +R[5] 

2. sub  (op-code = 2 )  
This instruction subtracts value of a  register from another the value stored in 
another register, and assigns to the destination register. For example, 

sub  r4, r3, r5 
In RTL, this is denoted by 
 R[4]  ←  R[3] – R[5] 

3. mul  (op-code = 4 )  
The multiply instruction will store the product of two register values, and stores in 
the destination register. An example is 

        mul r5, r7, r1   
 The RTL notation for this instruction will be 
                          R[0] © R[5] ← R[7]*R[1]  
      4.   div  (op-code= 5)  
This instruction will divide the value of the register that is the second operand, by the 
number in the register specified by the third operand, and assign the result to the 
destination register.  
       div r4, r7, r2   R[4]←R[0] ©R[7]/R[2],R[0]←R[0] ©R[7]%R[2]  
      5.   and  (op-code= 8)   
This ‘and’ instruction will obtain a bit-wise ‘and’ of the values of two registers and 
assigns it to a destination register. For instance, in the following example, contents of 
register r4 and r5 are bit-wise ‘anded’ and the result is assigned to the register r1. 

and r1, r4, r5 
In RTL we may write this as 
 R[1]   ←   R[4] & R[5] 

6.   or   (op-code= 10)   
       To bit-wise ‘or’ the contents of two registers, this instruction is used. For instance, 

or r6, r7,r2 
In RTL this is denoted as 
 R[6] ←  R[7] ~ R[2]  

 

FALCON-A: Instruction Set Summary 

We have looked at the various types of instruction formats for the FALCON-A, as well as 
the instructions that belong to each of these instruction format types. In this section, we 
have simply listed the instructions on the basis of their functional groups; this means that 
the instructions that perform similar class of operations have been listed together. 
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Examples for FALCON-A 
In this section we take up a few sample problems related to the FALCON-A processor. 
This will enhance our understanding of the FALCON-A processor, as well as of the 
general concepts related to general processors and their instruction set architectures. The 
problems we will look at include  
1. Identification of the instruction types and operands 
2. Addressing modes and RTL description 
3. Branch condition and status of the PC 
4. Binary encoding for instructions 
Example 1:  
Identify the types of given FALCON-A instructions and specify the values in the fields 
 

 

 

 

 

Solution 

The solution to this problem is quite straightforward. The types of these instructions, as 
well as the fields, have already been discussed in the preceding sections.  
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We can also find the machine code for these instructions. The machine code (in the 
hexadecimal representation) is given for these instructions in the given table. 

 
 

 

 

Example 2: 
Identify the addressing modes and Register Transfer Language (RTL) description  
(meaning) for the given FALCON-A instructions 
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Solution 

Addressing modes relate to the way architectures specify the address of the objects they 
access. These objects may be constants and registers, in addition to memory locations. 

 
  

 

Example 3: Specify the condition for the branch instruction and the status of the PC after 
the branch instruction executes with a true branch condition 
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Solution 

We have looked at the various jump instructions in our study of the FALCON-A. Using 
that knowledge, this problem can be solved easily.  

 
 
 
 
Example 4: Specify the binary encoding of the different fields in the given FALCON-A 
instructions. 
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Solution 

We can solve this problem by referring back to our discussion of the instruction format 
types. The op-codes for each of the instructions can also be looked up from the tables. ra, 
rb and rc (where applicable) registers’ values are obtained from the register encoding 
table we looked at. The constants C1 and C2 are there in instruction type III and II 
respectively. The immediate constant specified in the instruction can also be simply 
converted to binary, as shown. 
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Use of Behavioral Register Transfer Language (RTL) to describe the 

FALCON-A 
The use of RTL (an acronym for the Register Transfer Language) to describe the 
FALCON-A is discussed in this section. FALCON-A is the sample machine we are 
building in order to enhance our understanding of processors and their architecture.  

Behavior vs. Structure 

Computer design involves various levels of abstraction. The behavioral description of a 
machine is a higher level of abstraction, as compared with the structural description. Top-
down approach is adopted in computer design. Designing a computer typically starts with 
defining the behavior of the overall system. This is then broken down into the behavior of 
the different modules. The process continues, till we are able to define, design and 
implement the structure of the individual modules. 
As mentioned earlier, we are interested in the behavioral description of our machine, the 
FALCON-A, in this section.  

Register Transfer Language 

The RTL is a formal way of expressing the behavior and structure of a computer. 

Behavioral RTL 

Behavioral Register Transfer Language is used to describe what a machine does, i.e. it is 
used to define the functionality the machine provides. Basically, the behavioral 
architecture describes the algorithms used in a machine, written as a set of process 
statements. These statements may be sequential statements or concurrent statements, 
including signal assignment statements and wait statements. 

Structural RTL 

Structural RTL is used to describe the hardware implementation of the machine. The 
structural architecture of a machine is the logic circuit implementation (components and 
their interconnections), that facilitates a certain behavior (and hence functionality) for 
that machine.  

Using RTL to describe the static properties of the FALCON-A 
We can employ the RTL for the description of various properties of the FALCON-A that 
we have already discussed.  
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Specifying Registers 

In RTL, we will refer to a register by its abbreviated, alphanumeric name, followed by 
the number of bits in the register enclosed in angle brackets ‘< >’. For instance, the 
instruction register (IR), of 16 bits (numbered 0 to 15), will be referred to as, 
IR<15..0> 

Naming of the Fields in a Register 

We can name the different fields of a register using the := notation. For example, to name 
the most significant bits of the instruction register as the operation code (or simply op), 
we may write: 
op<4..0> := IR<15..11>  
Note that using this notation to name registers or register fields will not create a new copy 
of the data or the register fields; it is simply an alias for an already existing register, or 
part of a register. 

Fields in the FALCON-A Instructions 
We now use the RTL naming operator to name the various fields of the RTL instructions. 
Naming the fields appropriately helps us make the study of the behavior of a processor 
more readable.  

op<4..0>:= IR<15..11>:        operation code field 

ra<2..0> := IR<10..8>: target register field 

rb<2..0> := IR<7..5>: operand or address index 

rc<2..0> := IR<4..2>: second operand 

c1<4..0> := IR<4..0>: short displacement field 

c2<7..0> := IR<7..0>: long displacement or the immediate field 

We are already familiar with these fields, and their usage in the various instruction 
formats of the RTL.  

Describing the Processor State using RTL 
The processor state defines the contents of all the register internal to the CPU at a given 
time. Maintaining or restoring the machine or processor state is important to many 
operations, especially procedure calls and interrupts; the processor state needs to be 
restored after a procedure call or an interrupt so normal operation can continue.  
Our processor state consists of the following:  

PC<15..0>:  program counter (the PC holds the memory address of the next 

instruction) 

     IR<15..0>:  instruction register (used to hold the current instruction) 

     Run:  one bit run/halt indicator 

     Strt:  start signal 

     R [0..7]<15..0>: 8 general purpose registers, each consisting of 16 bits 

 

FALCON-A in a black 

box  

The given figure shows 
what a processor appears as 
to a user. We see a start 
button that is basically used 
to start up the processor, 
and a run indicator that 
turns on when the processor 
is in the running state. 
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There may be several other indicators as well. The start button as well as the run indicator 
can be observed on many machines. 

Using RTL to describe the dynamic properties of the FALCON-A 

We have just described some of the static properties of the FALCON-A. The RTL can 
also be employed to describe the dynamic behavior of the processor in terms of 
instruction interpretation and execution.  
Conditional expressions can be specified using the RTL. For instance, we may specify a 

conditional subtraction operation employing RTL as 

     (op=2) : R[ra] ← R[rb] - R[rc];     
This instruction means that “if” the operation code of the instruction equals 2 (00010 in 
binary), then subtract the value stored in register rc from that of register rb, and store the 
resulting value in register ra. 

Effective address calculations in RTL (performed at runtime) 

The operand or the destination address may not be specified directly in an instruction, 
and it may be required to compute the effective address at run-time. Displacement and 
relative addressing modes are instances of such situations. RTL can be used to describe 
these effective address calculations.  

Displacement address  

A displacement address is calculated, as shown: 
disp<15..0> := (R[rb]+ (11α c1<4>)© c1<4..0>); 
This means that the address is being calculated by adding the constant value specified by 
the field c1 (which is first sign extended), to the value specified by the register rb. 

Relative address 
A relative address is calculated by adding the displacement to the contents of the program 
counter register (that holds the instruction to be executed next in a program flow). The 
constant is first sign-extended. In RTL this is represented as, 
rel<15..0>:=PC+(8αc2<7>)©c2<7..0>;  

Range of memory addresses 
Using the displacement or the relative addressing modes, there is a specific range of 
memory addresses that can be accessed. 

• Range of addresses when using direct addressing mode (displacement with rb=0) 
o If c1<4>=0 (positive displacement) absolute addresses range: 00000b to 

01111b (0 to +15) 
o If c1<4>=1 (negative displacement) absolute addresses range: 11111b to 

10000b (-1 to -16) 

• Address range in case of relative addressing 
o The largest positive value that can be specified using 8 bits (since we have 

only 8 bits available in c2<7..0>), is 27-1, and the most negative value that 
can be represented using the same is 27. Therefore, the range of addresses 
or locations that can be referred to using this addressing mode is 127 
locations forward or 128 locations backward from the Program Counter 
(PC). 

Instruction Fetch Operation (using RTL) 
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We will now employ the notation that we have learnt to understand the fetch-execute 

cycle of the FALCON-A processor.  

The RTL notation for the instruction fetch process is 
instruction_Fetch := (  
 !Run&Strt : Run ← 1, 
 Run : (IR ← M[PC], PC ← PC + 2;  
             instruction_Execution) ); 
This is how the instruction-fetch phase of the fetch-execute cycle for FALCON-A can be 
represented using RTL. Recall that “:=’ is the naming operator, “!” implies a logical 
NOT, “&” implies a logical AND, “←” represents a transfer operation, “;” is used to 
separate sequential statements, and concurrent statements are separated by “,”. We can 
observe that in the instruction_Fetch phase, if the machine is not in the running state and 
the start bit has been set, then the run bit is also set to true. Concurrently, an instruction is 
fetched from the instruction memory; the program counter (PC) holds the next instruction 
address, so it is used to refer to the memory location from where the instruction is to be 
fetched. Simultaneously, the PC is incremented by 2 so it will point to the next 
instruction. (Recall that our instruction word is 2 bytes long, and the instruction memory 
is organized into 1-byte cells). The next step is the instruction execution phase.  
Difference between “,” and “;” in RTL 

 

We again highlight the difference between the “,” and “;”. Statements separated by a “,” 

take place during the same clock pulse. In other words, the order of execution of 
statements separated by “,” does not matter.  
On the other hand, statements separated by a “;” take place on successive clock pulses. In 
other words, if statements are separated by  “;” the one on the left must complete before 
the one on the right starts. However, some things written with one RTL statement can 
take several clocks to complete. 
We return to our discussion of the instruction-fetch phase. The statement 

 !Run&Strt : Run ← 1 

is executed when ‘Run’ is 0, and ‘Strt’ is 1, that is, Strt has been set. It is used to set the 
Run bit. No action takes place when both ‘Run’ and ‘Strt’ are 0.  
The following two concurrent register transfers are performed when ‘Run’ is set to 1, (as 
‘:’ is a conditional operator; if the condition is met, the specified action is taken). 

 IR ← M[PC] 

 PC ← PC + 2 

Since these instructions appear concurrent, and one of the instructions is using the value 
of PC that the other instruction is updating, a question arises; which of the two values of 
the PC is used in the memory access? As a rule, all right hand sides of the register 
transfers are evaluated before the left hand side is evaluated/updated. In case of 
simultaneous register transfers (separated by a “,”), all the right hand side expressions are 
evaluated in the same clock-cycle, before they are assigned. Therefore, the old, un-
incremented value of the PC is used in the memory access, and the incremented value is 
assigned to the PC afterwards. This corresponds to “master-slave” flip-flop operation in 
logic circuits.  
This makes the PC point to the next instruction in the instruction memory. Once the 
instruction has been fetched, the instruction execution starts. We can also use i.F for 
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instruction_Fetch and i.E for instruction_Execution. This will make the Fetch operation 
easy to write. 

iF := ( !Run&Strt : Run ← 1,  Run : (IR ← M[PC], PC ← PC + 2;  
iE ) ); 

Instruction Execution (Describing the Execute operation using RTL) 

Once an instruction has been fetched from the instruction memory, and the program 
counter has been incremented to point to the next instruction in the memory, instruction 
execution commences. In the instruction fetch-execute cycle we showed in the preceding 
discussion, the entire instruction execution code was aliased iE (or 
instruction_Execution), through the assignment operator “:=”. Now we look at the 
instruction execution in detail. 

iE := (  

     (op<4..0>= 1) : R[ra] ← R[rb]+ (11α c1<4>)© c1<4..0>,    
 (op<4..0>= 2) : R[ra] ← R[rb]-R[rc],  

      . . . 

 . . .       

      (op<4..0>=31) : Run ← 0,);  iF ); 
As we can see, the instruction execution can be described in RTL by using a long list of 
concurrent, conditional operators that are inherently ‘disjoint’. Being inherently 
disjointed implies that at any instance, only one of the conditions can be met; hence one 
of the statements is executed. The long list of statements is basically all of the 
instructions that are a part of the FALCON-A instruction set, and the condition for their 
execution is related to the operation code of the instruction fetched. We will take a closer 
look at the entire list in our subsequent discussion. Notice that in the instruction execute 
phase, besides the long list of concurrent, 
disjoint instructions, there is also the 
instruction fetch or iF sequenced at the 
end. This implies that once one of the 
instructions from the list is executed, the 
instruction fetch is called to fetch the next 
instruction. As shown before, the 
instruction fetch will call the instruction 
execute after fetching a certain instruction, 
hence the instruction fetch-execute cycle 
continues. 
The instruction fetch-execute cycle is shown schematically in the above given figure.  
We now see how the various instructions in the execute code of the fetch-execute cycle 
of FALCON-A, are represented using the RTL. These instructions form the instruction 
set of the FALCON-A. 

jump instructions 

Some of the instructions listed for the instruction execution phase are jump instruction, as 
shown. (Note ‘.  .  .’ implies that more instructions may precede or follow, depending on 
whether it is placed before the instructions shown, or after).  

iE := ( 

  .  .  .  

       .  .  .  

If op-code is 20, the branch is taken unconditionally (the jump instruction).  

(op<4..0>=20) : (cond  PC ← R[ra]+C2(sign extended)),     
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If the op-code is 16, the condition for branching is checked, and if the condition is being 
met, the branch is taken; otherwise it remains untaken, and normal program flow will 
continue. 

(op<4..0>= 16) : cond : (PC ← PC+C2 (sign extended )) 

.  .  .  

.  .  . 

Arithmetic and Logical Instructions 

Several instructions provide arithmetic and logical operations functionality. Amongst the 
list of concurrent instructions of the iE phase, the instructions belonging to this category 
are highlighted: 

iE := ( 

  .  .  .  

       .  .  .  
If op-code is 0, the instruction is ‘add’. The values in register rb and rc are added and the 
result is stored in register rc 

(op<4..0>=0) : R[ra] ← R[rb] + R[rc], 
Similarly, if op-code is 1, the instruction is addi; the immediate constant specified by the 
constant field C1 is sign extended and added to the value in register rb. The result is 
stored in the register ra.   

(op<4..0>=1) : R[ra] ←R[rb] + (11α C1<4>)© C1<4..0>, 
For op-code 2, value stored in register rc is subtracted from the value stored in register rb, 
and the result is stored in register ra. 

(op<4..0>=2) : R[ra] ← R[rb] - R[rc], 

If op-code is 3, the immediate constant C1 is sign-extended, and subtracted from the 
value stored in rb. Result is stored in ra.   

(op<4..0>=3) : R[ra] ← R[rb]- (11α C1<4>)© C1<4..0>, 

For op-code 4, values of rb and rc register are multiplied and result is stored in the 
destination register. 

(op<4..0>=4) : R[ra] ← R[rb] * R[rc], 

If the op-code is 5, contents of register rb are divided by the value stored in rc, result is 
concatenated with 0s, and stored in ra. The remainder is stored in R0. 

 (op<4..0>=5) : R[ra] ← R[0] ©R[rb]/R[rc],  

                         R[0] ← R[0] ©R[rb]%R[rc], 
If op-code equals 8, bit-wise logical AND of rb and rc register contents is assigned to ra. 

(op<4..0>=8) : R[ra] ← R[rb] & R[rc], 
If op-code equals 8, bit-wise logical OR of rb and rc register contents is assigned to ra. 

(op<4..0>=10) : R[ra] ← R[rb] ~ R[c], 

 
For op-code 14, the contents of register specified by field rc are inverted (logical NOT is 
taken), and the resulting value is stored in register ra. 

(op<4..0>=14) : R[ra] ← ! R[rc], 

            .  .  .  
      .  .  . 

Shift Instructions 
The shift instructions are also a part of the instruction set for FALCON-A, and these are 
listed in the instruction execute phase in the RTL as shown.  

iE := ( 

  .  .  .  
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       .  .  .  
If the op-code is 12, the contents of the register rb are shifted right N bits. N is the 
number specified in the constant field. The space that has been created due to the shift out 
of bits is filled with 0s through concatenation. In RTL, this is shown as:   

(op<4..0>=12) : R[ra]<15..0> ← R [rb]<(15-N)..0>©(Nα0), 
If op-code is 13, rb value is shifted left, and 0s are inserted in place of shifted out 
contents at the right side of the value. The result is stored in ra. 

(op<4..0>=13) : R[ra]<15..0> ← (Nα0)©R [rb]<(15)..N>, 

For op-code 15, arithmetic shift right operation is carried out on the value stored in rb. 
The arithmetic shift right shifts a signed binary number stored in the source register to the 
right, while leaving the sign-bit unchanged. Note that α means replication, and © means 
concatenation. 

(op<4..0>=15) : R[ra]<15..0> ← Nα(R [rb]<15>)© (R [rb]<15..N>),   
.  .  .  

.  .  . 

Data transfer instructions 

Several of the instructions belong to the data transfer category.  

iE := ( 

  .  .  .  

       .  .  .  

Op-code 29 specifies the load instruction, i.e. a memory location is referenced and the 
value stored in the memory location is copied to the destination register. The effective 
address of the memory location to be referenced is calculated by sign extending the 
immediate field, and adding it to the value specified by register rb. 

(op<4..0>=29) : R[ra]← M[R[rb]+ (11α C1<4>)© C1<4..0>], 

A value is stored back to memory from a register using the op-code 28. The effective 
address in memory where the value is to be stored is calculated in a similar fashion as the 
load instruction. 

(op<4..0>=28) : M[R[rb]+ (11α C1<4>)© C1<4..0>] ← R [ra], 

The move instruction has the op-code 6. The contents of one register are copied to 
another register through this instruction. 

(op<4..0>=6) : R[ra] ← R[rb], 

To store an immediate value (specified by the field C2 of the instruction) in a register, the 
op-code 7 is employed. The constant is first sign-extended. 

(op<4..0>=7) :  R[ra] ← (8αC2<7>)©C2<7..0>, 

 
If the op-code is 24, an input is obtained from a certain input device, and the input word 

is stored into register ra. The input device is selected by specifying its address through the 

constant C2. 

(op<4..0>=24) : R[ra] ← IO[C2],  

Unconditional branch (jump)If the op-code is 25, an output (the register ra value) is sent 
to an output device (where the address of the output device is specified by the constant 
C2).  

(op<4..0>=25) : IO[C2] ← R[ra], 

            .  .  .  
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      .  .  . 
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Miscellaneous instructions 
Some more instruction included in the FALCON-A are 

iE := ( 

  .  .  .  

       .  .  .  

The no-operation (nop) instruction, if the op-code is 21. This instructs the processor to do 
nothing.  

(op<4..0>= 21) :    ,  

If the op-code is 31, setting the run bit to 0 halts the processor. 

(op<4..0>= 31) : Run ← 0, Halt the processor (halt) 
At the end of this concurrent list of instructions, there is an instruction i.F (the instruction 
fetch). Hence when an instruction is executed, the next instruction is fetched, and the 
cycle continues, unless the processor is halted. 

         );      iF  ); 

 

Note: For Assembler and Simulator Consult Appendix.  

 

The EAGLE 
(Original version) 

Another processor that we are going to study is the EAGLE. We have developed two 
versions of it, an original version, and a modified version that takes care of the limitations 
in the original version. The study of multiple processors is going to help us get 
thoroughly familiar with the processor design, and the various possible designs for the 
processor. However, note that these machines are simplified versions of what a real 
machine might look like.  

Introduction 
The EAGLE is an accumulator-based machine. It is a simple processor that will help us 
in our understanding of the processor design process.  
EAGLE is characterized by the following:  

• Eight General Purpose Registers of the CPU. These are named R0, R1…R7. Each 
register is 16-bits in length. 

• Two 16-bit system registers transparent to the programmer are the Program 
Counter (PC) and the Instruction Register (IR). (Being transparent to the 
programmer implies the programmer may not directly manipulate the values to 
these registers. Their usage is the same as in any other processor) 

• Memory word size is 16 bits 

• The available memory space size is 216 bytes 

• Memory organization is 216 x 8 bits. This means that there are 216 memory cells, 
each one byte long. 

• Memory is accessed in 16 bit words (i.e., 2 byte chunks) 

• Little-endian byte storage is employed. 
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Programmer’s View of the EAGLE 
The programmer’s view of the 
EAGLE processor is shown by 
means of the given figure. 

EAGLE: Notation 
Let us take a look at the 
notation that will be employed 
for the study of the EAGLE.  
Enclosing the register name in 
square brackets refers to 

register contents; for instance, 
R[3] means contents of register 
R3.  
Enclosing the location address in square brackets, preceded by ‘M’, lets us refer to 
memory contents. Hence M [8] means contents of memory location 8.  
As little endian storage is employed, a 
memory word at address x is defined 
as the 16 bits at address x +1 and x. 
For instance, the bits at memory 
location 9,8 define the memory word at 
location 8. So employing the special 
notation for 16-bit memory words, we 
have 
M [8]<15…0>:=M [9]©M [8] 
Where © is used to represent concatenation 
 

EAGLE Features 
The following features characterize the EAGLE. 

• Instruction length is variable. Instructions are either 8 bits or 16 long, i.e., 
instruction size is either 8-bits or 16-bits. 

• The instructions may have either one or two operands. 

• The only way to access memory is through load and store instructions.  

• Limited addressing modes are supported 
EAGLE: Instruction Formats 

There are five instruction formats for the EAGLE. These are 

Type Z Instruction Format 
The Z format instructions are half-word (1 byte) 
instructions, containing just the op-code field of 8 bits, 
as shown 

Type Y Instruction Format 
The type Y instructions are also half-word. There is 
an op-code field of 5 bits, and a register operand field 
ra.  

Type X Instruction Format 

Type X instructions are also half-word instructions, 
with a 2-bit op-code field, and two 3-bit operand 
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register fields, as shown. 

Type W instruction format 

The instructions in this type are 1-
word (16-bit) in length. 8 bits are 
reserved for the op-code, while the remaining 8 bits form the constant (immediate value) 
field. 

Type V instruction format 

Type V instructions are also 1-word 
instructions, containing an op-code 
field of 5 bits, an operand register field 
of 3 bits, and 8 bits for a specifying a constant. 

Encoding of the General Purpose Registers 

The encoding for the eight 
GPRs is shown in the table. 
These binary codes are to 
be used in place of the 
‘place-holders’ ra, rb in the 
actual instructions of the 
processor EAGLE. 

 

 

Listing of EAGLE instructions with respect to instruction formats 
The following is a brief introduction to the various instructions of the processor EAGLE, 
categorized with respect to the instruction formats. 

Type Z 

There are four type Z instructions,  

• halt(op-code=250) 
This instruction halts the processor 

• nop(op-code=249) 
nop, or the no-operation instruction stalls the processor for the time of execution 
of a single instruction. It is useful in pipelining.  

• init(op-code=251) 
This instruction is used to initialize all the registers, by setting them to 0 

• reset(op-code=248) 
This instruction is used to initialize the processor to a known state.In this 
instruction the control step counter is set to zero so that the operation begins at the 
start of the instruction fetch and besides this PC is also set to a known value so 
that machine operation begins at a known instruction.       

Type Y 

Seven instructions of the processor are of type Y. These are 

• add(op-code=11) 
The type Y add instruction adds register ra’s contents to register R0. For example, 
add r1   
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In the behavioral RTL, we show this as  
R[0] ← R[1]+R[0] 
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• and(op-code=19)  
This instruction obtains the logical AND of the value stored in register specified 
by field ra and the register R0, and assigns the result to R0, as shown in the 
example: 
and r5 
which is represented in RTL as 
R[0] ← R[1]&R[0] 

• div(op-code=16)  
This instruction divides the contents of register R0 by the value stored in the 
register ra, and assigns result to R0. The remainder is stored in the divisor 
register, as shown in example, 
div r6 
In RTL, this is 
R[0] ← R[0]/R[6] 
R[6] ← R[0]%R[6] 

• mul (op-code = 15) 
This instruction multiplies the values stored in register R0 and the operand 
register, and assigns the result to R0). For example, 
mul r4 
In RTL, we specify this as  
R[0]  ←   R[0]*R[4] 

• not (op-code =  23) 
The not instruction inverts the operand register’s value and assigns it back to the 
same register, as shown in the example 
not r6 
R[6] ← ! R[6] 

• or (op-code=21) 
The or instruction obtains the bit-wise OR of the operand register’s and R0’s 
value, and assigns it back to R0. An example, 
or r5 
R[0]  ←  R[0] ~ R[5] 

• sub (op-code=12) 
The sub instruction subtracts the value of the operand register from R0 value, 
assigning it back to register R0. Example: 
sub r7 
In RTL: 
R[0] ← R[0] – R[7] 

Type X 

Only one instruction falls under this type. It is the ‘mov’ instruction that is useful for 
register transfers 

• mov (op-code = 0) 
The contents of one register are copied to the destination register ra. 
Example:  mov r5, r1 
RTL Notation:    R[5]← R[1] 
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Type W 

Again, only one instruction belongs to this type. It is the branch instruction 

• br (op-code = 252) 
This is the unconditional branch instruction, and the branch target is specified by 
the 8-bit immediate field. The branch is taken by incrementing the PC with the 
new value. Hence it is a ‘near’ jump. For instance, 
br 14 
PC ← PC+14 

Type V 

Most of the instructions of the processor EAGLE are of the format type V. These are 

• addi (op-code = 13) 
The addi instruction adds the immediate value to the register ra, by first sign-
extending the immediate value. The result is also stored in the register ra. For 
example, 
addi r4, 31   
In behavioral RTL, this is 
R[4] ← R[4]+(8αc<7>)©c<7…0>; 

• andi (op-code = 20 ) 
Logical ‘AND’ of the immediate value and register ra value is obtained when this 
instruction is executed, and the result is assigned back to register ra. An example, 
andi r6, 1 
R[6] ←  R[6] &1                      

• in (op-code=29) 
This instruction is to read in a word from an IO device at the address specified by 
the immediate field, and store it in the register ra. For instance,  
in r1, 45 
In RTL this is  
R[1]  ← IO[45] 

• load (op-code=8) 
The load instruction is to load the memory word into the register ra. The 
immediate field specifies the location of the memory word to be read. For 
instance,   
load r3, 6 
R[3] ← M[6] 

• brn (op-code = 28) 
Upon the brn instruction execution, the value stored in register ra is checked, and 
if it is negative, branch is taken by incrementing the PC by the immediate field 
value. An example is 
brn r4, 3 
In RTL, this may be written as  
if R[4]<0, PC ← PC+3  

• brnz (op-code = 25 ) 
For a brnz instruction, the value of register ra is checked, and if found non-zero, 
the PC-relative branch is taken, as shown in the example, 
brnz r6, 12 
Which, in RTL is 
if R[6]!=0, PC ← PC+12                      
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• brp (op-code=27) 
brp is the ‘branch if positive’. Again, ra value is checked and if found positive, the 
PC-relative near jump is taken, as shown in the example: 
brp r1, 45 
In RTL this is 
if R[1]>0, PC ← PC+45 

• brz (op-code=8) 
In this instruction, the value of register ra is checked, and if it equals zero, PC-relative 
branch is taken, as shown,  
brz r5, 8 
In RTL: 
if R[5]=0, PC ← PC+8 

• loadi (op-code=9) 
The loadi instruction loads the immediate constant into the register ra, for 
instance,  
loadi r5,54 
R[5] ← 54 

• ori (op-code=22) 
The ori instruction obtains the logical ‘OR’ of the immediate value with the ra 
register value, and assigns it back to the register ra, as shown, 
ori r7, 11 
In RTL, 
R[7] ← R[7]~11 

• out (op-code=30) 
The out instruction is used to write a register word to an IO device, the address of 
which is specified by the immediate constant. For instance, 
out 32, r5  
In RTL, this is represented by 
IO[32] ← R[5] 

• shiftl (op-code=17) 
This instruction shifts left the contents of the register ra, as many times as is 
specified through the immediate constant of the instruction. For example: 
shiftl r1, 6    

• shiftr( op-code=18) 
This instruction shifts right the contents of the register ra, as many times as is 
specified through the immediate constant of the instruction. For example: 
shiftr r2, 5 

• store (op-code=10) 
The store instruction stores the value of the ra register to a memory location 
specified by the immediate constant. An example is, 
store r4, 34 
RTL description of this instruction is 
M[34]  ←  R[4] 

• subi (op-code=14) 
The subi instruction subtracts the immediate constant from the value of register 
ra, assigning back the result to the register ra. For instance,  
subi r3, 13  
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RTL description of the instruction 
R[3] ←  R[3]-13 

(ORIGINAL) ISA for the EAGLE 
(16-bit registers, 16-bit PC and IR, 8-bit memory) 

mnemonic 

opcode 

 

operand1

3 bits 

operand2 

3 bits 

constant

 

  8 bits 
Format Behavioral RTL 

add 01011 ra - - Y  R [0] ← R [ra]+R [0];  

addi 01101 ra  - c V  R [ra] ← R [ra]+(8αc<7>)©c; 

and 10011 ra - - Y  R[0] ← R[ra]&R[0]; 

andi 10100 ra - c V  R [ra] ← R [ra]& (8αc<7>)©c; 

br 11111100 - - c W  PC ← PC+(8αc<7>)©c; 

brnv 11100 ra - c V  (R [ra]<0): PC ← PC+(8αc<7>)©c;  

brnz 11001 ra - c V  (R [ra]<>0): PC ← PC+(8αc<7>)©c; 

brpl 11011 ra - c V   (R [ra]>0): PC ← PC+(8αc<7>)©c; 

brzr 11010 ra - c V  (R [ra]=0): PC ← PC+(8αc<7>)©c; 

div 10000 ra - - Y  R [0] ← R [0]/R [a], R [ra] ←R [0]%R [ra], 

halt 11111010 - - - Z  RUN← 0; 

in 11101 ra - c V  R [ra] ←IO[c]; 

init 11111011 - - - Z  R [7…0] ← 0; 

load 01000 ra - c V  R [ra] ←M[c]; 

loadi 01001 ra - c V  R [ra] ←  (8αc<7>)©c; 

mov 00 ra rb - X  R [ra] ← R [rb]; 

mul 01111 ra - - Y  R [ra] © R [r0] ← R [ra]*R [0]; 

nop 11111001 - - - Z    ; 

not 10111 ra - - Y  R [ra] ←! (R [ra]); 

or 10101 ra - - Y  R [0] ← R [ra]~R [0]; 

ori 10110 ra - c V  R [ra] ← R [ra]~ (8αc<7>)©c; 

out 11110 ra - c V  IO[c] ←R [ra]; 

reset 11111000 - - - Z   TBD; 

shiftl 10001 ra - c V  R [ra] ← R [ra]<(7-n)..0>©(nα0); 

shiftr 10010 ra - c V  R [ra] ← (nα0)©R [ra]<7...n>;  

store 01010 ra - c V  M[c]← R [ra]; 

sub 01100 ra - - Y  R [0] ← R [0]-R [a];  

subi 01110 ra - c V  R [ra] ← R [ra]- (8αc<7>)©c; 

  
 

Symbol Meaning Symbol Meaning 

α Replication % Remainder after integer division 

© Concatenation & Logical AND 

: Conditional constructs (IF-THEN) ~ Logical OR 

; Sequential constructs ! Logical NOT or complement 

, Concurrent constructs ← LOAD or assignment operator 
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Limitations of the ORIGINAL EAGLE ISA 
The original 16-bit ISA of EAGLE has severe limitations, as outlined below. 

1. Use of R0 as accumulator 

In most cases, the register R0 is being used as one of the source operands as well as the 
destination operand. Thus, R0 has essentially become the accumulator. However, this 
will require some additional instructions for use with the accumulator. That should not be 
a problem since there are some unused op-codes available in the ISA. 
Unequal and inefficient op-code assignment 
The designer has apparently tried to extend the number of operations in the ISA by op-
code extension. Op-code 11111 combine three additional bits of the instruction for five 
instructions: unconditional branch, nop, halt, reset and init.while there is a possibility of 
including three more instructions in this scheme, notice that op-code 00 for register to 
register mov is causing a “loss” of eight “slots” in the original 5-bit op-code assignment. 
(The mov instruction is, in effect, using eight op-codes). A better way would be to assign 
a 5-bit op-code to mov and use the remaining op-codes for other instructions. 
Number of the operands 
Looking at the mov instruction again, it can be noted that this is the only instruction that 
uses two operands, and thus requires a separate format (Format#1) for instruction 
enoding. If the job of this instruction is given to two instructions (copy register to 
accumulator, and copy accumulator to register), the number of instruction formats can be 
reduced thereby, simplifying the assembler and the compiler needed for this ISA. 

2. Use of registers for branch conditions 

Note that one of the GPRs is being used to hold the branch condition. This would require 
that the result from the accumulator be copied to the particular GPR before the branch 
instruction. Including flags with the ALSU can eliminate this restriction 

 

The Modified EAGLE 
The modified EAGLE is an improved version of the processor EAGLE. As we have 
already discussed, there were several limitations in EAGLE, and these have been 
remedied in the modified EAGLE processor.  

Introduction 

The modified EAGLE is also an accumulator-based processor. It is a simple, yet complex 
enough to illustrate the various concepts of a processor design. 
The modified EAGLE is characterized by  

• A special purpose register, the 16-bit accumulator:  ACC 

• 8 General Purpose Registers of the CPU: R0, R1, …, R7; 16-bits each 

• Two 16-bit system registers transparent to the programmer are the Program 
Counter (PC) and the Instruction Register (IR). 

• Memory word size:  16 bits 

• Memory space size: 216 bytes 

• Memory organization: 216 x 8 bits 

• Memory is accessed in 16 bit words (i.e., 2 byte chunks) 

• Little-endian byte storage is employed 
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Programmer’s View of the Modified EAGLE 
The given figure is the 
programmer’s view of the 
modified EAGLE processor. 

Notation 
The notation that is employed for 
the study of the modified EAGLE 
is the same as the original EAGLE 
processor. Recall that we know 
that: 
Enclosing the register name in 
square brackets refers to register 
contents; for instance, R [3] means 
contents of register R3.  
Enclosing the location address in square brackets, preceded by ‘M’, lets us refer to 
memory contents. Hence M [8] means contents of memory location 8.  
As little endian storage is employed, a memory word at address x is defined as the 16 
bits at address x+1 and x. For instance, the bits at memory location 9,8 define the 
memory word at location 8. So employing the special notation for 16-bit memory words, 
we have 
M[8]<15…0>:=M[9]©M[8] 
Where © is used to represent 
concatenation 
The memory word access and copy to a 
register is shown in the figure. 

Features 
The following features characterize the 
modified EAGLE processor. 

• Instruction length is variable. Instructions are either 8 bits or 16 long, i.e., 
instruction size is either half a word or 1 word. 

• The instructions may have either one or two operands. 

• The only way to access 
memory is through load and 
store instructions  

• Limited addressing modes are 
supported 

Note that these properties are the same 
as the original EAGLE processor 

Instruction formats 

There are four instruction format types 
in the modified EAGLE processor as 
well. These are 
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Encoding of the General Purpose Registers 

The encoding for the eight 
GPRs is shown in the table. 
These are binary codes 
assigned to the registers 
that will be used in place of 
the ra, rb in the actual 
instructions of the modified 
processor EAGLE. 
 

ISA for the Modified EAGLE 

(16-bit registers, 16-bit ACC, PC and IR, 8-bit wide memory, 256 I/O ports) 

Mnemonic Op-code 
Operand  

3bits 

Constant

8 bits 
Format Behavioral RTL 

Unused 00111     

addi 00100 ra  C1 X  ACC ← R[ra] +(8αC1<7>)©C1; 

subi 00101 ra C1 X  ACC ← R[ra] - (8αC1<7>)©C1; 

shiftl 01010 ra C1 X  R[ra] ← R[ra]<(15-n)..0>©(nα0); 

shiftr 01011 ra C1 X  R[ra] ← (nα0)©R[ra]<15...n>;  

andi 01100 ra C1 X  ACC ← R[ra] & (8αC1<7>)©C1; 

ori 01101 ra C1 X  ACC ← R[ra]  ~ (8αC1<7>)©C1; 

asr 01110 ra C1 X  R[ra] ← (nαR[ra}<15>)©R[ra]<15...n>;  

in 10001 ra C1 X  R[ra] ←IO[C1]; 

ldacc 10010 ra C1 X  ACC ←M[R[ra] +(8αC1<7>)©C1]; 

movir 10100 ra C1 X  R[ra] ←  (8αC1<7>)©C1; 

out 10101 ra C1 X  IO[C1] ←R[ra]; 

stacc 10111 ra C1 X  M[R[ra] +(8αC1<7>)©C1]← ACC; 

movia 10011  C1 W  ACC ←  (8αC1<7>)©C1; 

br 11000 - C1 W  PC ← PC + 8αC1<7>)©C1; 

brn 11001  C1 W  (S=1): PC ←  PC+(8αC1<7>)©C1;  

brnz 11010  C1 W  (Z=0): PC  ← PC+(8αC1<7>)©C1; 

brp 11011  C1 W  (S=0): PC ← PC+(8αC1<7>)©C1; 

brz 11100  C1 W  (Z=1): PC ← PC+(8αC1<7>)©C1; 

add 00000 ra - Y  ACC ← ACC + R[ra];      

sub 00001 ra - Y  ACC ← ACC - R[a];      

div 00010 ra - Y 

 ACC ← (R[ra] ©ACC)/R[a], 

 R[ra] ← (R[ra] ©ACC)%R[a]; 

mul 00011 ra - Y  R[ra] © ACC ← R[ra]*ACC; 

and 01000 ra - Y  ACC ← ACC & R[ra];      

or 01001 ra - Y  ACC ← ACC ~ R[ra]; 

not 01111 ra - Y  ACC ← !( R[ra]); 

a2r  10000 ra - Y  R[ra] ← ACC 

r2a 10110 ra  Y   ACC ← R[ra] 

cla 00110   Z  ACC ← 0; 

halt 11101 - - Z  RUN← 0; 

nop 11110 - - Z    ; 
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reset 11111 - - Z   TBD; 

  
 

Symbol Meaning Symbol Meaning 

α Replication % Remainder after integer division 

© Concatenation & Logical AND 

: Conditional constructs (IF-THEN) ~ Logical OR 

; Sequential constructs ! Logical NOT or complement 

, Concurrent constructs ← LOAD or assignment operator 
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Lecture No. 10 
 

The FALCON-E and ISA Comparison 

Reading Material 

        Handouts                                                                                                Slides    
 

Summary 
3) The FALCON-E 
4) Instruction Set Architecture Comparison 

THE FALCON-E 

Introduction 
FALCON stands for First Architecture for Learning Computer Organization and 
Networks. We are already familiar with our example processor, the FALCON-A, which 
was the first version of the FALCON processor. In this section we will develop a new 
version of the processor. Like its predecessor, the FALCON-E is a General-Purpose 
Register machine that is simple, yet is able to elucidate the fundamentals of computer 
design and architecture.  
The FALCON-E is characterized by the following  

• Eight General Purpose Registers (GPRs), named R0, R1…R7. Each registers is 4 
bytes long (32-bit registers). 

• Two special purposes registers, named BP and SP. These registers are also 32-bit 
in length. 

• Two special registers, the Program Counter (PC) and the Instruction Register 
(IR). PC points to the next instruction to be executed, and the IR holds the current 
instruction. 

• Memory word size is 32 bits (4 
bytes).  

• Memory space is 232 bytes 

• Memory is organized as 1-byte 
cells, and hence it is 232 x 8 
bits.  

• Memory is accessed in 32-bit 
words (4-byte chunks, or 4 
consecutive cells) 

• Byte storage format is little 
endian. 

 

Programmer’s view of the FALCON-E 

The programmer’s view of the FALCON-E is shown in the given figure.  

FALCON-E Notation 

We take a brief look at the notation that we will employ for the FACLON-E. 
Register contents are referred to in a similar fashion as the FALCON-A, i.e. the register 
name in square brackets. So R[3] means contents of register R3. 
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Memory contents (or the memory 
location) can be referred to in a similar 
way. Therefore, M[8] means contents 
of memory location 8. 
A memory word is stored in the 
memory in the little endian format. 
This means that the least significant 
byte is stored first (or the little end comes first!). For instance, a memory word at address 
8 is defined as the 32 bits at addresses 11, 10, 9, and 8 (little-endian). So we can employ a 
special notation to refer to the memory words. Again, we will employ © as the 
concatenation operator. In our notation for the FALCON-E, the memory word stored at 
address 8 is represented as: 
M[8]<31…0>:=M[11]©M[10]©M[9]©M[8] 
The shown figure will make this easier to understand.  

FALCON-E Features 

The following features characterize the FALCON-E 

• Fixed instruction size, which is 32 bits. So the instruction size is 1 word. 

• All ALU instructions have three operands 

• Memory access is possible only through the load and store instructions. Also, only 
a limited addressing modes are supported by the FALCON-E 

FALCON-E Instruction Formats 

Four different instruction formats are supported by the FALCON-E. These are  

Type A instructions 

The type A instructions have 5 bits reserved for the operation code (abbreviated op-code), 
and the rest of the bits are either not used or specify a displacement. 

 
Type B instructions 

The type B instructions also have 5 bits (27 through 31) reserved for the op-code. There 
is a register operand field, ra, and an immediate or displacement field in addition to the 
op-code field. 

 
Type C instructions 

Type C instructions have the 5-bit op-code field, two 3-bit operand registers (rb is the 
source register, ra is the destination register), a 17-bit immediate or displacement field, as 
well as a 3-bit function field. The function field is used to differentiate between 
instructions that may have the same op-code, but different operations. 

 
Type D instructions 

Type D instructions have the 5-bit op-code field, three 3-bit operand registers, 14 bits are 
unused, and a 3-bit function field. 
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Encoding for the General Purpose Registers (GPRs) 

In the instruction formats discussed above, we used register operands ra, rb and rc. It is 
important to know that these are merely placeholders, and not the real register names. In 
an actual instruction, any one of the 8 registers of our general-purpose register file may 
be used. We need to encode our registers so we can refer to them in an instruction. Note 
that we have reserved 3 bits for each of the register field. This is because we have 8 
registers to represent, and they can be completely represented by 3 bits, since 23 = 8. The 
following table shows the binary encoding of the general-purpose registers. 

 
There are two more special registers that we need to represent; the SP and the BP. We 
will use these registers in place of the operand register rb in the load and store 

instructions only, and therefore, we may encode these as 

 

 

Instructions, Instruction Formats 

The following is a brief introduction to the various instructions of the FALCON-E, 
categorized with respect to the instruction formats. 

Type A instructions 

Four instructions of the FALCON-E belong to type A. These are  
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• nop (op-code = 0) 
This instruction instructs the processor to do nothing. It is generally useful in 
pipelining. We will study more on pipelining later in the course. 

• ret (op-code = 15) 
The return instruction is used to return control to the normal flow of a program 
after an interrupt or a procedure call concludes 

• iret (op-code = 17) 
The iret instruction instructs the processor to return control to the address 
specified by the immediate field of the instruction. Setting the program counter to 
the specified address returns control. 

• near jmp (op-code = 18) 
A near jump is a PC-relative jump. The PC value is incremented (or decremented) 
by the immediate field value to take the jump. 

Type B instructions 

Five instructions belong to the type B format of instructions. These are: 

• push (op-code = 8) 
This instruction is used to push the contents of a register onto the stack. For 
instance, the instruction,  
push R4 
will push the contents of register R4 on top of the stack 

• pop (op-code =  9)   
The pop instruction is used to pop a value from the top of the stack, and the value 
is read into a register. For example, the instruction 
pop R7 
will pop the upper-most element of the stack and store the value in register R7 

• ld (op-code = 10) 
This  instruction with op-code (10) loads a memory word from the address 
specified by the immediate filed value. This word is brought into the operand 
register ra. For example, the instruction, 
ld R7, 1254h 
will load the contents of the memory at the address 1254h into the register R7. 

            

• st (op-code =  12) 
The store instruction of (opcode 12) stores a value contained in the register 
operand into the memory location specified by the immediate operand field. For 
example, in 
st R7, 1254h 
the contents of register R7 are saved to the memory location 1254h. 

Type C instructions 

There are four data transfer instructions, as well as nine ALU instructions that belong to 
type C instruction format of the FALCON-E. 
The data transfer instructions are 

• lds (op-code = 4) 
The load instruction with op-code (4)loads a register from the memory, after 
calculating the address of the memory location that is to be accessed. The 
effective address of the memory location to be read is calculated by adding the 
immediate value to the value stored by the register rb. For instance, in the 
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example below, the immediate value 56 is added to the value stored by the 
register R4, and the resultant value is the address of the memory location which is 
read 

   lds R3, R4(56) 
 In RTL, this can be shown as 

R [3]     ←←←← M[R [4]+56] 

• sts (op-code = 5) 
This instruction is used to store the register contents to the memory location, by 
first calculating the effective memory address. The address calculation is similar 
to the lds instruction. An example: 

 sts R3, R4 (56)  
In RTL, this is shown as  
M[R [4]+56]     ←←←← R [3] 

• in (op-code = 6)  
This instruction is to load a register from an input/output device. The effective 
address of the I/O device has to be calculated before it is accessed to read the 
word into the destination register ra, as shown in the example: 

 in R5, R4(100) 
In RTL: 
 R[5]   ←←←←    IO[R[4]+100] 

• out (op-code = 7) 
This instruction is used to write / store the register contents into an input/output 
device. Again, the effective address calculation has to be carried out to evaluate 
the destination I/O address before the write can take place. For example,  
out R8, R6 (36) 
RTL representation of this is  
IO[R [6]+36]  ←←←← R [8] 

  Three of the ALU instructions that belong to type C format are 

• addi (op-code = 2) 
The addi instruction is to add a constant to the value of operand register rb, and 
assign the result to the destination register ra. For example, in the following 
instruction, 56 is added to the value of register R4, and result is assigned to the 
register R3. 
addi R3, R4, 56 
In RTL this can be shown as  
R[3]     ←←←←    R[4]+56 
Note that if the immediate constant specified was a negative number, then this 
would become a subtract operation. 

• andi (op-code = 2) 
This instruction is to calculate the logical AND of the immediate value and the rb 
register value. The result is assigned to destination register ra. For instance 
andi R3, R4, 56 

 R[3]     ←←←←    R[4]&56 
 Note that the logical AND is represented by the symbol ‘&’ 

• ori (op-code = 2) 
This instruction calculates the logical OR of the immediate field and the value in 
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operand register rb. The result is assigned to the destination register ra. Following 
is an example: 
ori R3, R4, 56  
The RTL representation of this instruction: 
R [3]  ←←←← R [4]~56 

 Note that the symbol ‘~’ is used to represent logical OR. 

 

Type D Instructions 

Four of the instructions that belong to this instruction format type are the ALU 
instructions shown below. There are other instructions of this type as well, listed in the 
tables at the end of this section. 

• add (op-code = 1) 
This instruction is used to add two numbers. The numbers are stored in the registers 
specified by rb and rc. Result is stored into register ra. For instance, the instruction, 
add R3, R5, R6  

     adds the numbers in register R5, R6, storing the result in R3. In RTL, this is given by 
R [3]  ←←←← R [5] + R [6] 

• sub (op-code = 1) 
This instruction is used to carry out 2’s complement subtraction. Again, register 
addressing mode is used, as shown in the example instruction 
sub R3, R5, R6 

 RTL representation of this is 
R[3]  ←←←← R[5] - R[6] 

• and (op-code = 1)  
For carrying out logical AND operation on the values stored in registers, this 
instruction is employed. For instance 
and R8, R3, R4 
In RTL, we can write this as 
R [8]  ←←←← R [3] & R [4] 

• or (op-code = 1) 
For evaluating logical OR of values stored in two registers, we use this 
instruction. An example is 
or R8, R3, R4  
In RTL, this is 
R [8]  ←←←← R [3] ~ R [4] 

 

Falcon-E  

Instruction Summary 

The following are the tables that list the instructions that form the instruction set of the 
FALCON-E. These instructions have been grouped with respect to the functionality they 
provide. 
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Instruction Set Architecture Comparison 
In this lecture, we compare the instruction set architectures of the various processors we 
have described/ designed up till now. These processors are: 

• EAGLE 

• FALCON-A 

• FALCON-E 

• SRC 

Classifying Instruction Set Architectures 
In the design of the ISA, the choice of some of the parameters can critically affect the 
code density (which is the number of instructions required to complete a given task), 
cycles per instruction (as some instructions may take more than one clock cycle, and the 
number of cycles per instruction varies from instruction to instruction, architecture to 
architecture), and cycle time (the total cycle time to execute a given piece of code). 
Classification of different architectures is based on the following parameters. 
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Instruction Length 

With reference to the instruction lengths in a particular ISA, there are two decisions to be 
made; whether the instruction will be fixed in length or variable, and what will be the 
instruction length or the range (in case of variable instruction lengths). 

 

Fixed versus variable 

Fixed instruction lengths are desirable when simplicity of design is a goal. It provides 
ease of implementation for assembling and pipelining. However, fixed instruction length 
can be wasteful in terms of code density. All the RISC machines use fixed instruction 
length format 

 

Instruction Length 

The required instruction length mainly depends on the number of instruction required to 
be in the instruction set of a processor (the greater the number of instructions supported, 
the more bits are required to encode the operation code), the size of the register file 
(greater the number of registers in the register file, more is the number of bits required to 
encode these in an instruction), the number of operands supported in instructions (as 
obviously, it will require more bits to encode a greater number of operands in an 
instruction), the size of immediate operand field (the greater the size, the more the range 
of values that can be specified by the immediate operand) and finally, the code density 
(which implies how many instructions can be encoded in a given number of bits). 
A summary of the instruction lengths of our processors is given in the table below. 

 
Instruction types and sub-types 

The given table summarizes the number of instruction types and sub-types of the 
processors we have studied. We have already studied these instruction types, and their 
sub-types in detail in the related sections. 

 
Number of operands in the instructions 

The number of operands that may be required in an instruction depends on the type of 
operation to be performed by that instruction; some instruction may have no operands, 
other may have up to 3. But a limit on the maximum number of operands for the 
instruction set of a processor needs to be defined explicitly, as it affects the instruction  
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length and code density. The maximum number of operands supported by the instruction 
set of each processor under study is given in the given table. So FALCON-A, FALCON-
E and the SRC processors may have 3, 2, 1 or no operands, depending on the instruction. 
EAGLE has a maximum number of 2 operands; it may have one operand or no operands 
in an instruction. 
Explicit operand specification in an instruction gives flexibility in storage. Implicit 
operands like an accumulator or a stack reduces the instruction size, as they need not be 
coded into the instruction. Instructions of the processor EAGLE have implicit operands, 
and we saw that the result is automatically stored in the accumulator, without the 
accumulator being specified as a destination operand in the instruction.   

Number and Size of General Purpose Registers 

While designing a processor, another decision that has to be made is about the number of 
registers present in the register file, and the size of the registers.  
Increasing the number of registers in the register file of the CPU will decrease the 
memory traffic, which is a desirable attribute, as memory accesses take relatively much 
longer time than register access. Memory traffic decreases as the number of registers is 
increased, as variables are copied into the registers and these do not have to be accessed 
from memory over and over again. If there is a small number of registers, the values 
stored previously will have to be saved back to memory to bring in the new values; more 
registers will solve the problem of swapping in, swapping out. However, a very large 
register file is not feasible, as it will require more bits of the instruction to encode these 
registers. The size of the registers affects the range of values that can be stored in the 
registers.  
The number of registers in the register file, along with the size of the registers, for each of 
the processors under study, is in the given table. 

 
Memory specifications 

Memory design is an integral part of the processor design. We need to decide on the 
memory space that will be available to the processor, how the memory will be organized, 
memory word size, memory access bus width, and the storage format used to store words 
in memory. The memory specifications for the processor under comparison are: 
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Data transfer instructions 

Data needs to be transferred between storage devices for processing. Data transfers may 
include loading, storing back or copying of the data. The different ways in which data 
transfers may take place have their related advantages and disadvantages. These are listed 
in the given table. 

 
Following are the data transfer instructions included in the instruction sets of our 
processors. 

Register to register transfers 
As we can see from the given table on the next page, in the processor EAGLE, register to 
register transfers are of two types only: register to accumulator, or accumulator to 
register. Accumulator is a special-purpose register.  
FALCON-A has a mov instruction, which can be used to move data of any register to any 
other register. FALCON-E has the instructions ‘lds’ and ‘sts’ which are used to load/store 
a register from/to memory after effective address calculation. 
SRC does not provide any instruction for data movement between general-purpose 
registers. However, this can be accomplished indirectly, by adopting either of the 
following two approaches: 
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• A register’s contents can be loaded into another register via memory. First storing 
the content of a register to a particular memory location, and then reading the 
contents of the memory from that location into the register we want to copy the 
value to can achieve this. However, this method is very inefficient, as it requires 
memory accesses, which are inherently slow operations. 

• A better method is to use the addi instruction with the constant set to 0. 

 
Register to memory 

EAGLE has instructions to load values from memory to the special purpose register, 
names the accumulator, as well as saving values from the accumulator to memory. Other 
register to memory transfers is not possible in the EAGLE processor. FALCON-A, 
FALOCN-E and the SRC have simple load, store instructions and all register-memory 
transfers are supported. 

Memory to memory 

In any of the processors under study, memory-to-memory transfers are not supported. 
However, in other processors, these may be a possibility. 

 

Control Flow Instructions 

All processors have instructions to control the flow of programs in execution. The general 
control flow instructions available in most processors are: 

• Branches (conditional) 

• Jumps (unconditional) 

• Calls (procedure calls) 

• Returns (procedure returns) 

Conditional Branches 

Whereas jumps, calls and call returns changes the control flow in a specific order, 
branches depend on some conditions; if the conditions are met, the branch may be taken, 
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otherwise the program flow may continue linearly. The branch conditions may be 
specified by any of the following methods: 

 

• Condition codes 

• Condition register 

• Comparison and branching 
Condition codes 

The ALU may contain some special bits (also called flags), which may have been set (or 
raised) under some special circumstances. For instance, a flag may be raised if there is an 
overflow in the addition results of two register values, or if a number is negative. An 
instruction can then be ordered in the program that may change the flow depending on 
any of these flag’s values. The EAGLE processor uses these condition codes for branch 
condition evaluation.   

Condition register 

A special register is required to act as a branch register, and any other arbitrary register 
(that is specified in the branch instruction), is compared against that register, and the 
branching decision is based on the comparison result of these two registers. None of the 
processors under our study use this mode of conditional branching. 

Compare and branch 

In this mode of conditional branching, comparison is made part of the branching 
instruction. Therefore, it is somewhat more complex than the other two modes. All the 
processors we are studying use this mode of conditional branching.  

Size of jumps  

Jumps are deviations from the linear program flow by a specified constant. All our 
processors, except the SRC, support PC-relative jumps. The displacement (or the jump) 
relative to the PC is specified by the constant field in the instruction. If the constant field 
is wider (i.e. there are more bits reserved for the constant field in the instruction), the 
jump can be of a larger magnitude. Shown table specifies the displacement size for 
various processors. 

 
Addressing Modes 

All processors support a variety of addressing modes. An addressing mode is the method 
by which architectures specify the address of an object they will access. The object may 
be a constant, a register or a location in memory.  
Common addressing modes are 
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• Immediate 
An immediate field may be provided in instructions, and a constant value may be 
given in this immediate field, e.g. 123 is an immediate value. 

• Register 

A register may contain the value we refer to in an instruction, for instance, 
register R4 may contain the value being referred to. 

• Direct 

By direct addressing mode, we mean the constant field may specify the location 
of the memory we want to refer to. For instance, [123] will directly refer to the 
memory location 123’s contents. 

• Register Indirect 

A register may contain the address of memory location to which we want to refer 
to, for example, M [R3]. 

• Displacement 

In this addressing mode, the constant value specified by the immediate field is 
added to the register value, and the resultant is the index of memory location that 
is referred to, e.g. M [R3+123] 

• Relative 

Relative addressing mode implies PC-relative addressing, for example, [PC+123] 

will refer to the memory location that is 123 words farther than the memory index 
currently stored in the program counter. 

• Indexed or scaled 

The values contained in two registers are added and the resultant value is the 
index to the memory location we refer to, in the indexed addressing mode. For 
example, M [[R1]+[R2]]. In the scaled addressing mode, a register value may be 
scaled as it is added to the value of the other register to obtain the index of 
memory location to be referred to.  

• Auto increment/ decrement 

In the auto increment mode, the value held in a register is used as the index to 
memory location that holds the value of operand. After the operand’s value is 
retrieved, the register value is automatically increased by 1 (or by any specified 
constant). e.g. M [R4]+, or M [R4]+d. In the auto decrement mode, the register 
value is first decremented and then used as a reference to the memory location 
that referred to in the instruction, e.g. -M [R4]. 

 
As may be obvious to the reader, some of these addressing modes are quite simple, others 
are relatively complex. The complex addressing modes (such as the indexed) reduce the 
instruction count (thus improving code density), at the cost of more complex 
implementation.  
The given table lists the addressing modes supported by the processors we are studying. 
 Note that the register-addressing mode is a special case of the relative addressing mode, 
with the constant equal to 0, and only the PC can be used as a source. Also note that, in 
the shown table, relative implies PC-relative. 
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Displacement addressing mode 

We have already talked about the displacement-addressing mode. We look at this 
addressing mode at length now.  
The displacement-addressing mode is the most common of the addressing mode used in 
general purpose processors. Some other modes such as the indexed based plus index, 
scaled and register indirect are all slightly modified forms of the displacement-addressing 
mode. The size of displacement plays a key role in efficient address calculation.  The 
following table specifies the size of the displacement field in different processors under 
study.  

 
The given table lists the size of the immediate field in our processors. 



Advanced Computer Architecture-CS501                                            

Last Modified: 12-Jan-11                                                                                                  Page 141 

 
Instructions common to all Instruction Set Architectures 

In this section we have listed the instructions that are common to the Instruction Set 
Architectures of all the processors under our study.  

• Arithmetic Instructions 

 add, addi & sub. 

• Logic Instructions 

 and, andi, or, ori, not. 

• Shift Instructions. 

 Right shift, left shift & arithmetic right shift. 

• Data movement Instructions. 

 Load and store instructions. 

• Control Instructions 

 Conditional and unconditional branches, nop & reset. 
The following tables list the assembly language instruction codes of these common 
instructions for all the processors under comparison. 

 



Advanced Computer Architecture-CS501                                            

Last Modified: 12-Jan-11                                                                                                  Page 142 

 

 
 



Advanced Computer Architecture-CS501                                            

Last Modified: 12-Jan-11                                                                                                  Page 143 
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Instructions unique to each processor 

Now we take a look at the instructions that are unique to each of the processors we are 
studying.  

EAGLE 

The EAGLE processor has a minimal instruction set. Following are the instructions that 
are unique only to the EAGLE processor. Note that these instructions are unique only 
with reference to the processor set under our study; some other processors may have 
these instructions.  

• movia 
This instruction is for moving the immediate value to the accumulator (the special 
purpose register) 

• a2r 
This instruction is for moving the contents of the accumulator to a register 

• r2a 
For moving register contents to the accumulator 

• cla 
For clearing (setting to zero) the value in the accumulator 

FALCON-A 

There is only one instruction unique to the FALCON-A processor; 

• ret  
This instruction is used to return control to a calling procedure. The calling 
procedure may save the PC value in a register ra, and when this instruction is 
called, the PC value is restored. In RTL, we write this as 

 PC � R [ra]; 
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FALCON-E 

The instructions unique to the FALCON-E processor are listed: 

• push 
To push the contents of a specified general purpose register to the stack 

• pop 
To pop the value that is at the top of the stack 

• ldr 
To load a register with memory contents using displacement addressing mode 

• str 
To store a register value into memory, using displacement addressing mode 

• bl 
To branch if source operand is less than target address 

• bg 
To branch if source operand is greater than target address  

• muli 
To multiply an immediate value with a value stored in a register 

• divi 
To divide a register value by the immediate value 

 

• xor, xori 
To evaluate logical ‘exclusive or’  

• ror, rori 

SRC 

Following are the instructions that are unique to the SRC processor, among of the 
processors under study 

• ldr 
To load register from memory using PC-relative address 

• lar 
To load a register with a word from memory using relative address 

• str 
To store register value to memory using relative address 

• brlnv 
This instruction is to tell the processor to ‘never branch’ at that point in program. 
The instruction saves the program counter’s contents to the register specified 

• brlpl 
This instruction instructs the processor to branch to the location specified by a 
register given in the instruction, if the condition register’s value is positive. 
Return address is saved before branching. 

• brlmi 
This instruction instructs the processor to branch to the location specified by a 
register given in the instruction, if the condition register’s value is negative. 
Return address is saved before branching. 

• brlzr 
This instruction instructs the processor to branch to the location specified by a 
register given in the instruction, if the condition register’s value equals zero. 
Return address is saved before branching. 
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• brlnz 
This instruction instructs the processor to branch to the location specified by a 
register given in the instruction, if the condition register’s value does not equal 
zero. Return address is saved before branching. 

Problem Comparison 

Given is the code for a simple C statement: 
a=(b-2)+4c  
The given table gives its implementation in all the four processors under comparison. 
Note that this table highlights the code density for each of the processors; EAGLE, which 
has relatively fewer specialized instructions, and so it takes more instructions to carry out 
this operation as compared with the rest of the processors. 
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Lecture No. 11 

CISC and RISC 
Reading Material 
Vincent P. Heuring&Harry F. Jordan                                                             Chapter 3 
Computer Systems Design and Architecture                                                   3.3, 3.4 
 
 

Summary 
5) A CISC microprocessor:The Motorola MC68000 
6) A RISC Architecture:The SPARC 

 
 
 
Material of this Lecture is included in the above-mentioned sections of Chapter 3.  
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Lecture No. 12 

CPU Design 
Reading Material 
Vincent P. Heuring&Harry F. Jordan                                                           Chapter 4 
Computer Systems Design and Architecture                                               4.1, 4.2, 4.3    
 
 

Summary 
7) The design process 
8) A Uni-Bus implementation for the SRC 
9) Structural RTL for the SRC instructions 

 

Central Processing Unit Design 
This module will explore the design of the central processing unit from the logic 
designer’s view.  A unibus implementation of the SRC is discussed in detail along with 
the Data Path Design and the Control Unit Design. 
The topics covered in this module are outlined below: 

• The Design Process 

• Unibus Implementation of the SRC 

• Structural RTL for the SRC 

• Logic Design for one bus SRC 

• The Control Unit 

• 2-bus and 3-bus designs 

• The machine reset 

• The machine exceptions 
As we progress through this list of topics, we will learn how to convert the earlier 
specified behavioral RTL into a concrete structural RTL. We will also learn how to 
interconnect various programmer visible registers to get a complete data path and how to 
incorporate various control signals into it.  Finally, we will add the machine reset and 
exception capability to our processor. 

The design process 

The design process of a processor starts with the specification of the behavioral RTL for 
its instruction set. This abstract description is then converted into structural RTL which 
shows the actual implementation details. Since the processor can be divided into two 
main sub-systems, the data path and the control unit, we can split the design procedure 
into two phases. 

1. The data path design 
2. The control unit design 

It is important that the design activity of these 
important components of the processor be carried 
out with the pros and cons of adopting different 
approaches in mind.  
As we know, the execution time is dependent on 
the following three factors. 
ET = IC x CPI x T  



Advanced Computer Architecture-CS501                                            

Last Modified: 12-Jan-11                                                                                                  Page 150 

During the design procedure we specify the implementation details at an advanced level. 
These details can affect the clock cycle per instruction and the clock cycle time. Hence 
following things should be kept in mind during the design phase. 

• Effect on overall performance 

• Amount of control hardware 

• Development time 

Processor Design 

Let us take a look at the steps involved in the processor design procedure.  

1. ISA Design 

The first step in designing a processor is the specification of the instruction set of 
the processor. ISA design includes decisions involving number and size of 
instructions, formats, addressing modes, memory organization and the 
programmer’s view of the CPU i.e. the number and size of general and special 
purpose registers. 

2. Behavioral RTL Description 

In this step, the behavior of processor in response to the specific instructions is 
described in register transfer language. This abstract description is not bound to 
any specific implementation of the processor. It presents only those static 
(registers) and dynamic aspects (operations) of the machine that are necessary to 
understand its functionality. The unit of activity here is the instruction execution 
unlike the clock cycle in actual case. The functionality of all the instructions is 
described here in special register transfer notation.  

3. Implementation of the Data Path 

The data path design involves decisions like the placement and interconnection of 
various registers, the type of flip-flops to be used and the number and kind of the 
interconnection buses. All these decisions affect the number and speed of register 
transfers during an operation. The structure of the ALU and the design of the 
memory-to-CPU interface also need to be decided at this stage. Then there are the 
control signals that form the interface between the data path and the control unit. 
These control signals move data onto buses, enable and disable flip-flops, specify 
the ALU functions and control the buses and memory operations. Hence an 
integral part of the data path design is the seamless embedding of the control 
signals into it.  

4. Structural RTL Description 

 

In accordance with the chosen data path implementation, the structural RTL for every 
instruction is described in this step. The structural RTL is formed according to the 
proposed micro-architecture which includes many hidden temporary registers 
necessary for instruction execution. Since the structural RTL shows the actual 
implementation steps, it should satisfy the time and space requirements of the CPU as 
specified by the clocking interval and the number of registers and buses in the data 
path.  

5. Control Unit Design 

The control unit design is a rather tricky process as it involves timing and 
synchronization issues besides the usual combinational logic used in the data path 
design. Additionally, there are two different approaches to the control unit design; it 
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can be either hard-wired or micro-programmed. However, the task can be made 
simpler by dividing the design procedure into smaller steps as follows. 

a. Analyze the structural RTL and prepare a list of control signals to be 
activated during the execution of each RTL statement. 

b. Develop logic circuits necessary to generate the control signals 
c. Tie everything together to complete the design of the control unit. 

Processor Design 
 A Uni-bus Data Path Implementation for the SRC 

In this section, we will discuss the uni-bus implementation of the data path for the SRC. 
But before we go onto the design phase, we will discuss what a data path is. After the 
discussion of the data path design, we will discuss the timing step generation, which 
makes possible the synchronization of the data path functions.  

The Data Path 

The data path is the arithmetic portion of the Von Neumann architecture. It consists of 
registers, internal buses, arithmetic units and shifters. We have already discussed the 
decisions involved in designing the data path. Now we shall have an overview of the 1-
Bus SRC data path design. As the name suggests, this implementation employs a single 
bus for data flow. After that we develop each of its blocks in greater detail and present 
the gate level implementation. 

Overview of the Unibus SRC Data 

Path 
The 1-bus implementation of the SRC 
data path is shown in the figure given. 
The control signals are omitted here 
for the sake of simplicity. Following 
units are present in the SRC data path. 

1. The Register File 

The general-purpose register 
file includes 32 registers R0 to 
R31 each 32 bit wide. These 
registers communicate with 
other components via the internal processor bus. 
 

2. MAR 

The Memory Address Register takes input from the ALSU as the address of the 
memory location to be accessed and transfers the memory contents on that 
location onto the memory sub-system.  

3. MBR 

The Memory Buffer Register has a bi-directional connection with both the 
memory sub-system and the registers and ALSU. It holds the data during its 
transmission to and from memory. 

4. PC 

The Program Counter holds the address of the next instruction to be executed. Its 
value is incremented after loading of each instruction. The value in PC can also be 
changed based on a branch decision in ALSU. Therefore, it has a bi-directional 
connection with the internal processor bus. 

5. IR 
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The Instruction Register holds the instruction that is being executed. The 
instruction fields are extracted from the IR and transferred to the appropriate 
registers according to the external circuitry (not shown in this diagram).  

6. Registers A and C 

The registers A and C are required to hold an operand or result value while the 
bus is busy transmitting some other value. Both these registers are programmer 
invisible. 

7. ALSU 

There is a 32-bit Arithmetic Logic Shift Unit, as shown in the diagram. It takes 
input from memory or registers via the bus, computes the result according to the 
control signals applied to it, and places it in the register C, from where it is finally 
transferred to its destination. 

Timing Step Generator 

To ensure the correct and 
controlled execution of instructions 
in a program, and all the related 
operations, a timing device is 
required. This is to ensure that the 
operations of essentially different 
instructions do not mix up in time. 
There exists a ‘timing step 
generator’ that provides mutually 
exclusive and sequential timing 
intervals. This is analogous to the 
clock cycles in the actual processor. A possible implementation of the timing step 
generator is shown in the figure. 
Each mutually exclusive step is carried out in one timing interval. The timing intervals 
can be named T0, T1…T7. The given figure is helpful in understanding the ‘mutual 
exclusiveness in time’ of these timing intervals. 

Processor design 

Structural RTL descriptions of selected 

SRC instructions 

Structural RTL for the SRC 

The structural RTL describes how a 
particular operation is performed using a 
specific hardware implementation. In 
order to present the structural RTL we 
assume that there exists a “timing step 
generator”, which provides mutually 
exclusive and sequential timing intervals, analogous to the clock cycles in actual 
processor. 

Structural RTL for Instruction Fetch 

The instruction fetch procedure takes three time steps as shown in the table. During the 
first time step, T0, address of the 
instruction is moved to the Memory 
Address Register (MAR) and value of 
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PC is incremented. In T1 the instruction is brought from the memory into the Memory 
Buffer Register(MBR), and the incremented PC is updated. In the third and final time-
step of the instruction fetch phase, the instruction from the memory buffer register is 
written into the IR for execution.What follows the instruction fetch phase, is the 
instruction execution phase. The number of timing steps taken by the execution phase 
generally depends on the type and function of instruction. The more complex the 
instruction and its implementation, the more timing steps it will require to complete 
execution. In the following discussion, we will take a look at various types of 
instructions, related timing steps requirements and data path implementations of these in 
terms of the structural RTL. 

Structural RTL for Arithmetic/Logic Instructions 

The arithmetic/logic instructions come in two formats, one with the immediate operand 
and the other with register operand. Examples of both are shown in the following tables. 

Register-to-Register sub 

Register-to-register subtract (or sub) will take three timing steps to complete execution, 
as shown in the table. Here we have assumed 
that the instruction given is: 

                        sub ra, rb, rc 
Here we assume that the instruction fetch 
process has taken up the first three timing 
steps. In step T3 the internal register A 
receives the contents of the register rb. In the 
next timing step, the value of register rc is 
subtracted (since the op-code is sub) from A. In the final step, this result is transferred 
into the destination register ra. This 
concludes the instruction fetch-execute 
cycle and at the end of it, the timing 
step generator is initialized to T0. 
The given figure refreshes our 
knowledge of the data path. Notice that 
we can visualize how the steps that we 
have just outlined can be carried out, if 
appropriate control signals are applied 
at the appropriate timing. 
As will be obvious, control signals 
need to be applied to the ALSU, based 
on the decoding of the op-code field of 
an instruction. The given table lists these control signals: 
Note that we have used uppercase 
alphabets for naming the ALSU 
functions. This is to differentiate these 
control signals from the actual 
operation-code mnemonics we have 
been using for the instructions. 
The SHL, SHR, SHC and the SHRA 
functions are listed assuming that a 
barrel shifter is available to the 
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processor with signals to differentiate between the various types of shifts that are to be 
performed.  

Structural RTL for Register-to-Register add 

To enhance our understanding of the instruction execution phase implementation, we will 
now take a look at some more instructions of 
the SRC. The structural RTL for a simple add 
instruction add ra, rb, rc is given in table. 
The first three instruction fetch steps are 
common to all instructions. Execution of 
instruction starts from step T3 where the first 
operand is moved to register A. The second 
step involves computation of the sum and 
result is transferred to the destination in step T5. Hence the complete execution of the add 
instruction takes 6 time steps. Other arithmetic/logic instructions having the similar 
structural RTL are “sub”, “and” and “or”. The only difference is in the T4 step where 
the sign changes to (-), (^), or (~) according to the opcode. 

Structural RTL for the not instruction 
The first three steps T0 to T2 are used up in fetching the instruction as usual. In step T3, 
the value of the operand specified by the register is brought into the ALSU, which will 
use the control function NOT, negate the value (i.e. invert it), and the result moves to the 
register C. In the time step R4, this result is assigned to the destination register through 
the internal bus. Note that we need control signals to coordinate all of this; a control 
signal to allow reading of the instruction-specified source register in T3, control signal 
for the selection of appropriate function to be carried out at the ALSU, and control signal 
to allow only the instruction-specified 
destination register to read the result value 
from the data bus. 
The table shown outlines these steps for the 
instruction: not  ra, rb 

Structural RTL for the addi instruction 
Again, the first three time steps are for the 
instruction fetch. Next, the first operand is brought into ALSU in step T3 through register 
A. The step T4 is of interest here as the second operand c2 is extracted from the 
instruction in IR register, sign extended to 32 bits, added to the first operand and written 
into the result register C. The execution of instruction completes in step T5 when the 
result is written into the destination register. The sign extension is assumed to be carried 
out in the ALSU as no separate extension unit is provided.  

Sign extension for 17-bit c2 is the same as:(15αIR<16> ©IR<16..0>) 

Sign extension for 22-bit c1 is the same as:(10αIR<21> ©IR<21..0>) 

The given table outlines the time steps for the instruction addi: 
Other instructions that have the same 
structural RTL are subi, andi and ori. 

RTL for the load (ld) and store (st) 

instructions 

The syntax of load instructions is: 

ld ra, c2(rb) 

And the syntax of store instructions is: 

st ra, c2(rb) 
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The given  table outlines the time steps in fetching and executing a load and a store 
instruction. Note that the first 6 time steps (T0 to T5) for both the instructions are the 
same. 
The first three steps are those of instruction fetch. Next, the register A gets the value of 
register rb, in case it is not zero. In time step T4, the constant is sign-extended, and added 
to the value of register A using the ALSU. The result is assigned to register C. Note that 
in the RTL outlined above, we are sign extending a field of the Instruction Register(32-
bit). It is so because this field is the constant field in the instruction, and the Instruction 
Register holds the instruction in execution. In step T5, the value in C is transferred to the 
Memory Address Register (MAR). This completes the effective address calculation of the 
memory location to be accessed for the load/ store operation.If it is a load instruction in 
time step T6, the corresponding memory location is accessed and result is stored in 
Memory Buffer Register (MBR). In step T7, the result is transferred to the destination 
register ra using the data bus.If the instruction is to store the value of a register, the time 
step T6 is used to store the value of the register to the MBR. In the next and final step, the 
value stored in MBR is stored in the memory location indexed by the MAR.We can look 
at the data-path figure and visualize how all these steps can take place by applying 
appropriate control signals. Note that, if more time steps are required, then a counter with 
more bits and a larger decoder can be used, e.g., a 4-bit counter along with a 4-to-16 
decoder can produce up to 16 time steps.  
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Lecture No. 13 
 

Structural RTL Description of the FALCON-A 
 

Reading Material 
               
Vincent P. Heuring & Harry F. Jordan                                                             Chapter 4 
Computer Systems Design and Architecture                                                4.2.2, slides    
                                                                                            

Summary 
 

• Structural RTL Description of the SRC (continued…)  

• Structural RTL Description of the FALCON-A 
 
This lecture is a continuation of the previous lecture. 
 

Structural RTL for branch instructions 

Let us take a look at the structural RTL for branch instructions. We know that there are 
several variations of the branch instructions including unconditional branch and different 
conditional branches. We look at the RTL for ‘branch if zero’ (brzr) and ‘branch and link 
if zero’ brlzr’ conditional branches.  
The syntax for the branch if zero (brzr) is: 

         brzr rb,  rc 

As you may recall, this instruction 
instructs the processor to branch to the 
instruction at the address held in 
register rb, if the value stored in 
register rc is zero. Time steps for this 
instruction are outlined in the table. 
The first three steps are of the 
instruction fetch phase. Next, the value 
of register rc is checked and depending 
on the result, the condition flag CON is set. In time step T4, the program counter is set to 
the register rb value, depending on the CON bit (the condition flag). 
The syntax for the branch and link if zero (brlzr) is: 

          brlzr ra, rb,  rc 

This instruction is the same as the 
instruction brzr but additionally the 
return address is saved (linking 
procedure). The time steps for this 
instruction are shown in the table. 
Notice that the steps for this 
instruction are the same as the 
instruction brzr with an additional step 
after the condition bit is set; the current 
value of the program counter is saved to register ra.  
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Structural RTL for shift instructions 
Shift instructions are rather 
complicated in the sense that they 
require extra hardware to hold and 
decrement the count. For an ALSU 
that can perform only single bit shifts, 
the data must be repeatedly cycled 
through the ALSU and the count 
decremented until it reaches zero. This 
approach presents some timing 
problems, which can be overcome by 
employing multiple-bit shifts using a 
barrel shifter.  
 The structural RTL for shr ra, rb, rc or shr ra, rb, c3 is given in the corresponding 
table shown. Here n represents a 5-bit register; IR bits 0 to 4 are copied in to it. N is the 
decimal value of the number in this register. The actual shifting is being done in step T5.   
Other instructions that will have similar tables are: shl, shc, shra 

e.g., for shra, T5 will have C← (NαR [rb] <31>) © R[rb] <31...N>; 
 

Structural RTL Description of FALCON-A Instructions 

 

Uni-bus data path implementation 

Comparing the uni-bus implementation of FALCON-A with that of SRC results in the 

following differences: 

• FALCON-A processor bus has 16 lines or is 16-bits wide while that of SRC is 

32-bits wide.  

• All registers of FALCON-A are of 16-bits while in case of SRC all registers are 
32-bits. 

• Number of registers in FALCON-A are 8 while in SRC the number of registers is 
32. 

• Special registers i.e. Program Counter (PC) and Instruction Register (IR) are 16-
bit registers while 
in SRC these are 
32-bits. 

• Memory Address 
Register (MAR) 
and Memory Buffer 
Register (MBR) are 
also of 16-bits 
while in SRC these 
are of 32-bits. 

MAR and MBR are dual 
port registers. At one side 
they are connected to 
internal bus and at other 
side to external memory in order to point to a particular address for reading or writing 
data from or to the memory and MBR would get the data from the memory.  
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ALSU functions needed 
ALSU of FALCON-A has slightly different functions. These functions are given in the 
table. 
Note that mul and div 
are two significant 
instructions in this 
instruction set. So 
whenever one of these 
instructions is activated, 
the ALSU unit would 
take the operand from 
its input and provide the 
output immediately, if 
we neglect the 
propagation delays to 
its output. In case of 
FACON-A, we have 
two registers A and AH 
each of 16-bits. AH 
would contain the 
higher 16-bits or most significant 16-bits of a 32-bit operand. This means that the ALSU 
provides the facility of using 32-bit operand in certain instructions. At the output of 
ALSU we could have a 32-bit result and that can not be saved in just one register C so we 
need to have another one that is CH. CH can store the most significant 16-bits of the 
result. 

Why do we need to add AH and CH? 

This is because we have mul and div instructions in the instruction set of the FALCON-
A. So for that case, we can implement the div instruction in which, at the input, one of the 
operand which is dividend would be 32-bits or in case of mul instruction the output 
which is the result of multiplication of two 16-bit numbers, would be 32-bit that could be 
placed in C and CH. The data in these 2 registers will be concatenated and so would be 
the input operand in two registers AH and A. Conceptually one could consider the A and 
AH together to represent 32-bit operand. 

Structural RTL for subtract 

instruction 

          sub ra, rb, rc   

In sub instruction three registers are 
involved. The first three steps will 
fetch the sub instruction and in T3, 
T4, T5 the steps for execution of 
the sub instruction will be 
performed. 
 
 

Structural RTL for addition 

instruction 

      add ra, rb, rc 

The table of add instruction is 
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almost same as of sub instruction except in timing step T4 we have + sign for addition 
instead of – sign as in sub instruction. Other instructions that belong to the same group 
are ‘and’, ‘or’ and ‘sub’. 

Structural RTL for multiplication instruction 

       mul ra, rb, rc 

This instruction is only present in this processor and not in SRC. The first three steps are 
exactly same as of other instructions and would fetch the mul instruction. In step T3 we 
will bring the contents of register R 
[rb] in the buffer register A at the 
input of ALSU. In step T4 we take 
the multiplication of A with the 
contents of R[rc] and put it at the 
output of the ALSU in two registers 
C and CH. CH would contain the 
higher 16-bits while register C 
would contain the lower 16-bits. 
Now these two registers cannot 
transfer the data in one bus cycle to 
the registers, since the width is 16-bits. So we need to have 2 timing steps, in T5 we 
transfer the higher byte to register R[0] and in T6 the lower 16-bits are transferred to the 
placeholder R[a]. As a result of multiplication instruction we need 3 timing steps for 
Instruction Fetch and 4 timing steps for Instruction Execution and 7 steps altogether. 

Structural RTL for division instruction 

       div ra, rb, rc 

In this instruction first three steps 
are the same. In step T3 the 
contents of register rb are placed in 
buffer register A and in step T4 we 
take the contents of register R[0] in 
to the register AH. We assume 
before using the divide instruction 
that we will place the higher 16-
bits of dividend to register R[0]. 
Now in T5 the actual division takes 
place in two concurrent operations. 
We have the dividend at the input 
of ALSU unit represented by concatenation of AH and A. Now as a result of division 
instruction, the first operation would take the remainder. This means divide AH 
concatenated with A with the contents given in register rc and the remainder is placed in 
register CH at the output of ALSU. The quotient is placed in C. In T6 we take C to the 
register R[ra] and in T7 remainder available in CH is taken to the default register R[0] 
through the bus. In divide instruction 5 timing steps are required to execute the 
instruction while 3 to fetch the instruction.      
Note: Corresponding to mul and div instruction one should be careful about the 
additional register R[0] that it should be properly loaded prior to use the instructions e.g. 
if in the divide instruction we don’t have the appropriate data available in R[0] the result 
of divide instruction would be wrong. 
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Structural RTL for not instruction 

          not ra, rb 

In this instruction first three steps 
will fetch the instruction. In T3 we 
perform the not operation of 
contents in R[rb] and transfer them 
in to the buffer register C. It is 
simply the one’s complement 
changing of 0’s to 1’s and 1’s to 
0’s. In timing step T4 we take the 
contents of register C and transfer to register R[ra] through the bus as shown in its 
corresponding table. 

Structural RTL for add immediate instruction 

         addi ra, rb, c1 

In this instruction c1 is a constant as a part of the instrucion. First three steps are for 
Instruction Fetch operation. In T3 
we take the contents of register R 
[rb] in to the buffer register A. In 
T4 we add up the contents of A 
with the constant c1 after sign 
extension and bring it to C. 

Sign extension of 5-bit c1 and 8-

bit constant c2 

           Sign extension for 5-bit c1 is: (11αIR<4> ©IR<4.. 0>) 

We have immediate constant c1 in the form of lower 5-bits and bit number 4 indicates the 
sign bit. We just copy it to the left most 11 positions to make it a 16-bit number. 
                 

           Sign extension for 8-bit c2 is: (8αIR<7> ©IR<7.. 0>) 

In the same way for constant c2 we need to place the sign bit to the left most 8 position to 
make it 16-bit number. 

Structural RTL for the load 
and store instruction 

Tables for load and store 
instructions are same as 
SRC except a slight 
difference in the notation. 
So when we have square 
brackets [R [rb]+c1], it 
corresponds to the base 
address in R[rb] and an offset taken 
from c1. 

Structural RTL for conditional jump 

instructions 

        jz ra, [c2] 

 In first three steps of this table, the 
instruction is fetched. In T3 we set a 1-
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bit register “CON” to true if the condition is met. 

How do we test the condition? 

This is tested by the contents given by the register ra. So condition within square brackets 
is R[ra]. This means test the data given in register ra. There are different possibilities and 
so the data could be positive, negative or zero. For this particular instruction it would be 
tested if the data were zero. If the data were zero, the “CON” would be 1. 
In T4 we just take the contents of the PC into the buffer register A. In T5 we add up the 
contents of A to the constant c2 after sign extension. This addition will give us the 
effective address to which a jump would be taken. In T6, this value is copied to the PC. 
In FALCON-A, the number of conditional jumps is more than in SRC. Some of which 
are shown below: 

• jz   (op-code= 19) jump if zero  
            jz  r3, [4]   (R[3]=0): PC← PC+ 2; 

• jnz (op-code= 18) jump if not zero 

            jnz r4, [variable]  (R[4]≠0): PC← PC+ variable; 

• jpl  (op-code= 16) jump if positive 

            jpl r3, [label]   (R[3]≥0): PC ← PC+ (label-PC); 

• jmi (op-code= 17) jump if negative 

            jmi r7, [address]  (R[7]<0): PC← PC+ address;  
The unconditional jump instruction will be explained in the next lecture. 
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Lecture No. 14 
 

External FALCON-A CPU 
 

Reading Material 
              
          Handouts                                                                                                         Slides                                                                                         

 
Summary 
 

• Structural RTL Description of the FALCON-A (continued…) 

• External FALCON-A CPU Interface 
 
This lecture is a continuation of the previous lecture. 
 

Un-conditional jump instruction 

         jump  (op-code= 20)   

In the un-conditional jump with op-code 20, the op-code is followed by a 3-bit identifier 
for register ra and then followed by an 8-bit constant c2.  
Forms allowed by the assembler to define the jump are as follows: 
 jump [ra + constant]    
            jump [ra + variable]  
 jump [ra + address]  
 jump [ra + label]    
 
For all the above instructions: 
 (ra=0):PC← PC+(8αC2<7>)©C2<7..0>,  
 (ra≠0):PC← R[ra]+(8αC2<7>)©C2<7..0>;4 
 

In the case of a constant, variable, an address or (label-PC) the jump ranges from –128 to 
127 because of the restriction on 8-bit constant c2. Now, for example if we have jump 
[r0+a], it means jump to a. On the other hand if we have jump [– r2] that is not allowed 
by the assembler. The target address should be even because we have each instruction 
with 2 bytes. So the types available for the un-conditional jumps are either direct, 
indirect, PC-relative or register relative. In the case of direct jump the constant c2 would 
define the target address and in the case of indirect jump constant c2 would define the 
indirect location of memory from where we could find out the address to jump. While in 
the case of PC-relative if the contents of register ra are zero then we have near jump and 
the type of jump for this would be PC-relative. If ra is not be zero then we have a far 
jump and the contents of register ra will be added with the constant c2 after sign-
extension to determine the jump address.  

                                                 
4 c2 is computed by sign extending the constant,variable,address or (label-PC) 
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Structural RTL description for un-conditional jump instruction 

         jump [ra+c2] 

In first three steps, T0-T2, we would fetch the jump instruction, while in T3 we would 
either take the contents of PC and place them in a temporary register A if the condition 
given in jump instruction is true, that is if the ra field is zero, otherwise we would place 
the contents of register ra in 
the temporary register A. 
Comma ‘,’ indicates that 
these two instructions are 
concurrent and only one of 
them would execute at a 
time. If the ra field is zero 
then it would be PC-
relative jump otherwise it 
would be register-relative jump. In step T4 we would add the constant c2 after sign-
extension to the contents of temporary register A. As a result we would have the effective 
address in the buffer register C, to which we need to jump. In step T5 we will take the 
contents of C and load it in the PC, which would be the required address for the jump. 

Structural RTL for the shift instruction 

         shiftr ra, rb, c1 

First three steps would fetch the shift instruction. c1 is the count field. It is a 5-bit 
constant and is obtained from the lower 5-bits of the instruction register IR. In step T3 we 
would load the 5-bit register ‘n’ from the count field or the lower 5-bits of the IR and 
then in T4 depending upon the value of ‘N’ which indicates the decimal value of ‘n’, we 
would take the contents of 
register rb and shift right by 
N-bits which would 
indicate how many shifts 
are to be performed. ‘n’ 
indicates the register while 
‘N’ indicates the decimal 
value of the bits present in 
the register ‘n’. So as a 
result we need to copy the zeros to the left most bits, this shows that zeros are replicated 
‘N’ times and are concatenated with the shifted bits that are actually 15…N. In T5, we 
take the contents from C through the bus and feed it to the register ra which is the 
destination register. Other instructions that would have similar tables are ‘shiftl’ and 
‘asr’.  

In case of asr, when the data is shifted right, instead of copying zeros on the left side, we 
would copy the sign bit from the original data to the left-most position. 

Other instructions 

Other instructions are mov, call and ret. Note that these instructions were not available 
with the SRC processor. 
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Structural RTL for the mov instruction 

          mov ra, rb 

In mov instruction the data in 
register rb, which is the source 
register, is to be moved in the 
register ra, which is the destination 
register. In first three steps, mov 
instruction is fetched. In step T3 
the contents of register rb are 
placed in buffer register C through the ALSU unit while in step T4 the buffer register C 
transfers the data to register ra through internal uni-bus. 

Structural RTL for the mov immediate instruction 

          movi ra, c2 

In this instruction ra is the 
destination register and constant c2 
is to be moved in the ra. First three 
steps would fetch the move 
immediate instruction. In step T3 we 
would take the constant c2 and place 
it into the buffer register C. Buffer 
register C is 16-bit register and c2 is 8-bit constant so we need to concatenate the 
remaining leftmost bits with the sign bit which is bit ‘7’ shown within angle brackets. 
This sign bit which is the most significant bit would be ‘1’ if the number is negative and 
‘0’ if the number is positive. So depending upon this sign bit the remaining 8-bits are 
replicated with this sign bit to make a 16-bit constant to be placed in the buffer register C. 
In step T4 the contents of C are taken to the destination register ra. 

In case of FALCON-A, ‘in’ and ‘out’ instructions are present which are not present in the 
SRC processor. So, for this we assume that there would be interconnection with the input 
and output addresses up to 0..255. 

Structural RTL for the in instruction 

         in ra, c2  

First three steps would fetch the 
instruction In step T3 we take the 
IO [c2] which indicates that go to 
IO address indicated by c2 which is 
a positive constant in this case and 
then data would be taken to the 
buffer register C. In step T4 we 
would transfer the data from C to 
the destination register ra. 

Structural RTL for the out 
instruction 

        out ra, c2 
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This instruction is opposite to the ‘in’ instruction. First three instructions would fetch the 
instruction. In step T3 the contents of register ra are placed in to the buffer register C and 
then in Step T4 from C the data is placed at the output port indicated by the c2 constant. 
So this instruction is just opposite to the ‘in’ instruction. 

Structural RTL for the call instruction 

        call ra, rb 

In this instruction we need to give the control to the procedure, sub-routine or to another 
address specified in the program. First 
three steps would fetch the call 
instruction. In step T3 we store the 
present contents of PC in to the buffer 
register C and then from C we transfer 
the data to the register ra in step T4. 
As a result register ra would contain 
the original contents of PC and this 
would be a pointer to come back after 
executing the sub-routine and it would 
be later used by a return instruction. In 
step T5 we take the contents of register 
rb, which would actually indicate to 
the point where we want to go. So in 
step T6 the contents of C are placed in 
PC and as a result PC would indicate the position in the memory from where new 
execution has to begin. 

Structural RTL for return 

instruction 
         ret ra 

After instruction fetch in first 3 steps 
T0-T2, the register data in ra is placed 
in the buffer register C through ALSU 
unit. PC is loaded with contents of this 
buffer register in step T4. Assuming 
that bus activity is synchronized, 
appropriate control signals are 
available to us now. 

Control signals required at different 

timing steps of FALCON-A 

instructions 
The following table shows the details of the control signals needed. The first column is 
the time step, as before. In the second column the structural RTLs for the particular step 
is given, and the 
corresponding 
control signals are 
shown in the third 
column. Internal bus 
is active in step T0, 
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causing the contents of the PC to be placed in the Memory Address register MAR and 
simultaneously the PC is incremented by 2 and placed it in the buffer register C. 
Recalling previous lectures, to write data in to a particular register we need to enable the 
load signal. In case of fetch instruction in step T0, control signal LMAR is enabled to 
cause the data from internal bus to be written in to the address register. To provide data to 
the bus through tri-state buffers we need to activate the ‘out’ control signal named as 
‘PCout’, making contents of the PC available to the ALSU and so control unit provides 
the increment signal ‘INC2’ to increment the PC. As the ALSU is the combinational 
circuit, the PCout signal causes the contents over the 2nd input of ALSU incremented by 
2 and so the data is available in buffer register C. Control signal “LC” is required to write 
data into the buffer register C form the ALSU output. Now note that ‘INC2’ is one of the 
ALSU functions and also it is a control signal. So knowing the control signals, which 
need to be activated at a particular step, is very important. 
So, at step T0 the control signal ‘PCout’ is activated to provide data to the internal bus. 
Now control signal ‘LMAR’ causes the data from the bus to be read into the register 
MAR. The ALSU function ‘INC2’ increments the PC to 2 and the output are stored in the 
buffer register C by the control signal ‘LC’. The data from memory location addressed by 
MAR is read into Memory Buffer Register MBR in the next timing step T1. In the mean 
time there is no activity on the internal bus, the output from the buffer register C (the 
incremented value of the PC) is placed in the PC through bus. For this the control signal 
‘LPC’ is activated. 
To enable tri-state buffer of Memory Address Register MAR, we need control signal 
‘MARout’. Another control signal is required in step T1 to enable memory read i.e. 
‘MRead’. In order to enable buffer register C to provide its data to the bus we need 
‘Cout’ control signal and in order to enable the PC to read from C we need to enable its 
load signal, which is ‘LPC’. To read data coming from memory into the Memory Buffer 
Register MBR, ‘LMBR’control signal is enabled. So in T2 we need 5 control signals, as 
shown. 
In T2, the instruction register IR is loaded with data from the MBR, so we need two-
control signals,’MBRout’ to enable its tri-state buffers and the other signal required is the 
load signal for IR register ‘LIR’. Fetch operation is completed in steps T0-T2 and 
appropriate control signals are generated. Those control signals, which are not shown, 
would remain de-activated. All control signals are activated simultaneously so the order 
of these controls signals is immaterial. Recall that in SRC the fetch operation is 
implemented in the same way, but ‘INC4’ is used instead of ‘INC2’ because the 
instruction length is 4 bytes. 
Now we take a look at other examples for control signals required during execution 
phase. 
For various instructions, we will define other control signals needed in the execution 
phase of each instruction but fetch cycle will be the same for all instructions. 
Another important fact is the interface of the CPU with an external memory and the I/O 
depending upon whether the I/O is memory mapped or non-memory mapped. The 
processor will generate some control signals, used by the memory or I/O to read/write 
data to/from the I/O devices or from the memory. Another assumption is that the memory 
read is fast enough. Therefore data from memory must be available to the processor in a 
fixed time interval, which in this particular example is T2. 
For a slow data transfer, the concept of handshaking is used. Some idle states are 
introduced and buffer is prepared until the data is available. But for simplicity, we will 
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assume that memory is fast enough and data is available in buffer register MBR to the 
CPU. 

External FALCON-A CPU Interface 

This figure is a symbolic 
representation of the 
FALCON-A in the form of 
a chip. The external 
interface consists of a 16-
bit address bus, a 16-bit 
data bus and a control bus 
on which different control 
signals like MRead, 
MWrite, IORead, IOWrite 
are present.  

 

 

 

Example Problem 

 
 
 
 
 
 
 
 
 
 
 

 
(a) What will be the 
logic levels on the 
external FALCON-A 
buses when each of the 
given FALCON-A 
instruction is executing 
on the processor? 
Complete the table 
given. All numbers are 
in the decimal number 
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system, unless noted otherwise. 
(b) Specify memory-addressing modes for each of the FALCON-A instructions given. 

Assumptions 

For this particular example we will assume that all memory contents are properly aligned, 
i.e. memory addresses start at address divisible by 2. 
PC= C348h 
 
This table contains a partial memory map showing the addresses and the corresponding 
data values.  
 
The next table shows the register map showing the contents of all the CPU registers. 

Another important thing to note is that memory storage is big-endian. 

 

 
Solution: 
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In this table the second column contains the RTL descriptions of the instructions. We 
have to specify the address bus and data bus contents for each instruction execution. For 
load instruction the contents of register r5+12 are placed on the address bus. From 
register map shown in the previous table we can see that the contents of r5 are 1234h. 
Now contents of r5 are added with displacement value 12 in decimal .In other words the 
address bus will carry the hexadecimal value 1234h+ Ch = 1240h.Now for load 
instruction, the contents of memory location at address 1240h will be placed on the data 
bus. From the memory map shown in the previous table we can see that memory location 
1240h contains 785h. Now to read this data from this location, MRead control signal will 
be activated shown by 1 in the next column and MWrite would be 0.Similarly RTL 
description is given for the 2nd instruction. In this instruction, only registers are involved 
so there is no need to activate external bus. So data bus, address bus and control bus 
columns will contain ‘?’ or ‘unknown’. The next instruction is jump. Here PC is 
incremented by the jump offset, which is 52 in this case. As before, the external bus will 
remain inactive and control signals will be zero. The next instruction is store. Its RTL 
description is given. For store instruction, the register contents have to be placed at 
memory location addressed by R [3] +17. As this is a memory write operation, the 
MWrite will be 1 and MRead will be zero. Now the effective address will be determined 
by adding the contents of R [3] with the displacement value 17 after its conversion to the 
hexadecimal. The resulting effective address would be C300h. In this way we can 
complete the table for other instructions. 

Addressing Modes 

This table lists the addressing mode for each instruction given in the previous example. 
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Lecture No. 15 
 

Logic Design and Control Signals Generation in SRC 
 

Reading Material 
Vincent P. Heuring & Harry F. Jordan                                                            Chapter 4 
Computer Systems Design and Architecture                                                      4.4 
 

Summary 
1) Logic Design for the Uni-bus SRC 
2) Control Signals Generation in SRC 

 
 Logic Design for the Uni-bus SRC 
 In the previous sections, we have looked at both the behavioral and structural RTL for 
the SRC. We saw that there is a need for some control circuitry for ensuring the proper 
and synchronized functioning of the components of the data path, to enable it to carry out 
the instructions that are part of the Instruction Set Architecture of the SRC. The control 
unit components and related signals make up the control path. In this section, we will talk 
about 

• Identifying the control signals required 

• The external CPU interface 

• Memory Address Register (MAR), and Memory Buffer Register (MBR) circuitry 

• Register Connections 
We will also take a look at how sign extension is performed. This study will help us 
understand how the entire framework works together to ensure that the operations of a 
simple computer like the SRC are carried out in a smooth and consistent fashion. 
 

Identifying control signals 
For any of the instructions that are a part of the instruction set of the SRC, there are 
certain control signals required; these control signals may be to select the appropriate 
function for the ALU to be performed, to select the appropriate registers, or the 
appropriate memory location.  
Any instruction that is to be executed is first fetched into the CPU. We look at the control 
signals that are required for the fetch operation. 
 

Control signals for the fetch operation 

Table 1 lists the control signals that are needed to ensure the synchronized register 
transfers in the instruction fetch phase. Note that we use uppercase for control signals as 
we have been using lowercase for the instruction mnemonics, and we want to distinguish 
between the two. Also note that control signals during each time slot are activated 
simultaneously, and that the control signals for successive time slots are activated in 
sequence. If a particular control signal is not shown, its value is zero. 
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As shown in the Table: 1, some control signals are to let register values to be written onto 
buses, or read from the buses. Similarly, some signals are required to read/ write memory 
contents onto the bus. The memory is assumed to be fast enough to respond during a 
given time slot; if that is not true, wait states have to be inserted. We require four control 
signals to be issued in the time step T0:  

PCout: This control signal allows the contents of the Program Counter register to be 
written onto the internal processor bus.  
LMAR: This signal enables write onto the memory address register (MAR), thus the 
value of PC that is on the bus, is copied into this register 
INC4: It lets the PC value to be incremented by 4 in the ALSU, and result to be 
stored in C. Notice that the value of PC has been received by the ALSU as an 
operand. This control signal allows the constant 4 to be added to it.  
The ALSU is assumed to include an INC4 function 
LC: This enables the input to the register C for writing the incremented value of PC 
onto it. 
During the time step T1, the following control signals are applied: 
LMBR: This enables the “write” for the register MBR. When this signal is activated, 
whatever value is on the bus, can be written into the MBR. 
MRead: Allow memory word to be gated from the external CPU data bus into the 
MBR. 
MARout: This signal enables the tri-state buffers at the output of MAR.  
Cout: This will enable writing of the contents of register C onto the processor’s 
internal data bus.  
LPC: This will enable the input to the PC for receiving a value that is currently on the 
internal processor bus. Thus the PC will receive an incremented value. 
At the final time step, T2, of the instruction fetch phase, the following control signals 
are issued: 
MBRout: To enable the tri-state buffers with the MBR. 
LIR: To allow the IR read the value from the internal bus. Thus the instruction stored 
in the MBR is read into the Instruction Register (IR). 

 

Uni-bus SRC implementation 

The uni-bus implementation of the SRC data path is given in the Fig.1. We can now 
visualize how the control signals in mutually exclusive time steps will allow the 
coordinated working of instruction fetch cycle.  
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Similar control signals will allow the instruction execution as well. We have already 
mentioned the external CPU buses that read from the memory and write back to it. In the 
given figure, we had not shown these external (address and data buses) in detail. Fig.2 
will help us understand this external interface.  

 
 

External CPU bus activity 
Let us take up a sample problem to further enhance our understanding of the external 
CPU interface. As mentioned earlier, this interface consists of the data bus/ address bus, 
and control signals for enabling memory read and write. 
 

Example problem: 

(a) What will be the logic levels on the external SRC buses when each of the given SRC 
instruction is executing on the processor? Complete Table: 2. all numbers are in the 
decimal number system, unless noted otherwise.            
(b) Specify memory addressing modes for each of the SRC instructions given in Table: 2. 
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Assumptions: 

• All memory content is aligned properly.  
� In other words, all the memory accesses start at addresses divisible by 4.   
� Value in the PC = 000DC348h 
 

Memory map with assumed values 

 
 

 

 

 

 

 

Register map with assumed values 
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Solution Part (a):  

 
 

 
(Note that the SRC uses the big-endian storage format). 

 

 

 

 

 

 

Solution part (b): 
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Notes: 
* Relative addressing is always PC relative in the SRC 
***  Displacement addressing mode is the same as Based or Indexed in the SRC.  It is   
also the same as Register Relative addressing mode 
 

Memory address register circuitry 
We have already talked about the functionality of the MAR. It provides a temporary 
storage for the address of memory location to be accessed. We now take a detailed look 
at how it is interconnected with other components. The MAR is connected directly to the 
CPU internal bus, from which it is loaded (receives a value). The LMAR signal causes 
the contents of the internal CPU bus to be loaded into the MAR. It writes onto the CPU 
external address bus. The MARout signal causes the contents of the MAR to be placed on 
the address bus. Thus, it provides the addresses for the memory and I/O devices over the 
CPU’s address bus. A set of tri-state buffers is provided with these connections; the tri-
state buffers are controlled by the control signals, which in turn are issued when the 
corresponding instruction is decoded. The whole circuitry is shown in Fig.6. 

 
  

 

Memory buffer register circuitry 

The Memory Buffer Register (MBR) holds the value read from the memory or I/O 
device. It is possible to load the MBR from the internal CPU bus or from the external 
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CPU data bus. The MBR also drives the internal CPU bus as well as the external CPU 
data bus. Similar to the MAR register, tri-state buffers are provided at the connection 
points of the MBR, as illustrated in the Fig.7. 

 
 

Register connections 

The register file containing the General Purpose Registers is programmer visible. 
Instructions may refer to any of these registers, as source operands in an operation or as 
the destination registers. Appropriate circuitry is needed to enable the specified register 
for read/ write. Intuitively, we can tell that we require connections of the register to the 
CPU internal bus, and we need control signals that will enable specified registers to be 
read/ write enabled as a corresponding instruction is decoded. Fig.8 illustrates the register 
connections and the control signals generation in the uni-bus data path of the SRC. We 
can see from this figure that the ra, rb and rc fields of the Instruction Register specify the 
destination and source registers. The control signals RAE, RBE and RCE can be applied 
to select any of the ra, rb or rc field respectively to apply its contents to the input of 5-to-
32 decoder. Through the decoder, we get the signal for the specific register to be 
accessed. The BUS2R control signal is activated if it is desired to write into the register. 
On the other hand, if the register contents are to be written to the bus, the control signal 
R2BUS is activated.  



Advanced Computer Architecture-CS501                                            

Last Modified: 12-Jan-11                                                                                                  Page 178 

 
  

Alternate control circuitry for register selection 

Fig.9 illustrates an alternate circuitry that implements the register connections with the 
internal processor bus, the instruction register fields, and the control signals required to 
coordinate the appropriate read/write for these registers. Note that this implementation is 
somewhat similar to our earlier implementation with a few differences. It illustrates the 
fact that the implementations we have presented are not necessarily the only solutions, 
and that there may be other possibilities.  

 
 

In this alternate circuitry, there is a separate 5-to-32 decoder for each of the register fields 
of the instruction register. The output of these decoders is allowed to be read out and 
enables the decoded register, if the control signal (RAE, RBE or RCE) is active.  
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Control signals Generation in SRC 
We take a few example instructions to study the control signals that are required in the 
instruction execution phase.  
 

Control signals for the add instruction 
The add instruction has the following syntax: 

add ra, rb, rc 

Table: 4 lists the control signals that are applied at each of the time steps. The first three 
steps are of the instruction fetch phase, and we have already discussed the control signals 
applied at this phase. 

 
 

 At time step T3, the control RBE is applied, which will enable the register rb to write its 
contents onto the internal CPU bus, as it is decoded. The writing from the register onto 
the bus is enabled by the control signal R2BUS. Control signal LA allows the bus 
contents to be transferred to the register A (which will supply it to the ALSU). At time 
step T4, the control signals applied are RCE, R2BUS, ADD, LC, to respectively enable 
the register rc, enable the register to write onto the internal CPU bus (which will supply 
the second operand to the ALSU from the bus), select the add function of the ALSU 
(which will add the values) and enable register C (so the result of the addition operation 
is stored in the register C). Similarly in T5, signals Cout, RAE and BUS2R are activated.    
 
 

Sign extension 

 

When we copy constant values to registers that are 32 bits wide, we need to sign extend 
the values first. These values are in the 2’s complement form, and to sign-extend these 
values, we need to copy the most significant bit to all the additional bits in the register. 

Table: 4 



Advanced Computer Architecture-CS501                                            

Last Modified: 12-Jan-11                                                                                                  Page 180 

We consider the field c2, which is a 17 bit constant. Sign extension of c2 requires that we 
copy c2<16> to all the left-most bits of the destination register, in addition to copying the 
original constant values to the register. This means that bus<31...17> should be the same 
as c2<16>. A 15 line tri-state buffer can perform this sign extension. So we apply c2<16> 
to all the inputs of this tri-state buffer as illustrated in the Fig.10. 

 
 

Structural RTL for the addi instruction 
We now return to our study of the control signals required in the instruction execute 
phase. We have already looked at the add instruction and the corresponding signals. Now 
we take a look at the addi (add immediate) instruction, which has the following syntax: 

addi ra, rb, c2 
Table: 5 lists the RTL and the control signals for the addi instruction: 

 
The table shows that the control signals for the addi instruction are the same as the add 
instruction, except in the time step T4. At this time step, the control signals that are 
applied are c2out, ADD and LC, to respectively do the following: 
Enable the read of the constant c2 (which is sign extended) onto the internal processor 
bus. Add the values using the ALSU and finally assign the result to register C by 
enabling write for this register. 
 

To place a 0 on the bus 
When the field rb is zero, for instance, in the load and store instructions, we need to 
place a zero on the bus. The given circuit in Fig.11 can be used to do this. 
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Note that, by default, the value of register R0 is 0 in some cases. So, when the selected 
register turns out to be 0 (as rb field is 0), the line connecting the output of the register R0 
is not enabled, and instead a hardwired 0 is output from the tri-state buffer onto the CPU 
internal bus. An alternate circuitry for achieving the same is shown in the Fig.12. 

 

 

 
 

 

Control signals for the ld instruction 

Now we take a look at the control signals for the load instruction. The syntax of the 
instruction is: 

ld ra, c2 (rb) 

Table: 6 outlines the control signals as well as the RTL for the load instruction in the 
SRC. 
The first three steps are of the instruction fetch phase. Next, the control signals issued 
are: 
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RBE is issued to allow the register rb value to be read 
R2BUS to allow the bus to read from the selected register 
LA to allow write onto the register A. This will allow the CPU bus contents to be written 
to the register A.  
At step T4 the control signals are: 
c2out to allow the sign extended value of field c2 to be written to the internal CPU bus 
ADD to instruct the ALSU to perform the add function. 
LC to let the result of the ALSU function be stored in register C by enabling write of 
register C. 
Control signals issued at step T5: 
Cout is to read the register C, this copies the value in C to the internal CPU bus. 
LMAR to enable write of the Memory Address Register (which will copy the value 
present on the bus to MAR). This is the effective address of memory location that is to be 
accessed to read (load) the memory word. 
During the time step T6: 
MARout to read onto the external CPU bus (the address bus, to be more specific), the 
value stored in the MAR. This value is an index to memory location that is to be 
accessed. 
MRead to enable memory read at the specified location, this loads the memory word at 
the specified location onto the CPU external data bus.  
LMBR is the control signal to enable write of the MBR (Memory Buffer Register). It 
will obtain its value from the CPU external data bus. 
Finally, the control signals issued at the time step T7 are: 
MBRout is the control signal to allow the contents of the MBR to be read out onto the 
CPU internal bus. 
RAE is the control signal for the destination register field ra. It will let the actual index of 
the ra register be encoded, and 
BUS2R will let the appropriate destination register be written to with the value on the 
CPU internal bus. 
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Lecture No. 16 

Control Unit Design 
Reading Material 
 
Vincent P. Heuring & Harry F. Jordan                                                            Chapter 4 
Computer Systems Design and Architecture                                                 4.2.2, 4.6.1                                                                                                                                    

 
Summary 

 

• Control Signals Generation in SRC (continued…) 

• The Control Unit  

• 2-Bus Implementation of the SRC Data Path 
 
This section of lecture 16 is a continuation of the previous lecture. 
 

Control signals for the store instruction 

st ra, c2(rb) 
The store time step operations are similar to the load instruction, with the exception of 
steps T6 and T7. However, one can easily interpret these now. These are outlined in the 
given table. 

 
Control signals for the branch and branch link instructions 

Branch instructions can be either be simple branches or link-and-then-branch type. The 
syntax for the branch instructions is 

brzr rb, rc 

 

This is the branch and zero instruction we looked at earlier. The control signals for this 
instruction are: 
As usual, the first three steps are for the instruction fetch phase. Next, the following 
control signals are issued: 
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LCON to enable the CON circuitry to operate, and instruct it to check for the appropriate 
condition (whether it is branch if zero, or branch if not equal to zero, etc.) 
RCE to allow the register rc value to be read. 
R2BUS allows the bus to read from the selected register. 
At step T4: 
RBE to allow the register rb value to be read. rb value is the branch target address. 
R2BUS allows the bus to read from the selected register. 
LPC (if CON=1): this control signal is issued conditionally, i.e. only if CON is 1, to 
enable the write for the program counter. CON is set to 1 only if the specified condition is 
met. In this way, if the condition is met, the program counter is set to the branch address. 

Branch and link instructions 

The branch and link instruction is similar to the branch instruction, with an additional 
step, T4. Step T4 of the simple conditional branch instruction becomes the step T5 in this 
case. 

 
The syntax of the instruction ‘branch and link if zero’ is 

 brlzr ra, rb, rc 
Table that lists the RTL and control signals for the store instruction of the SRC is given: 
The circuitry that enables the condition checking for the conditional branches in the SRC 
is illustrated in the following figure: 
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Control signals for the shift right instruction 

The given table illustrates the RTL and the control signals for the shift right ‘shr’ 
instruction. This is implemented by applying the five bits of n (nb4, nb3, nb2, nb1, nb0) 
to the select inputs of the barrel shifter and activating the control signal SHR as explained 
in an earlier lecture. 
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Generating the Test Condition N=0 
 

 
 
 
 
 
 
 
 

 

The Control Unit 

 
The control unit is responsible for generating control signals as well as the timing signals. 
Hence the control unit is responsible for the synchronization of internal as well as 
external events. By means of the control signals, the control unit instructs the data path 
what to do in every clock cycle during the execution of instructions.  
 

Control Unit Design 
Since the control unit performs quite complex tasks, its design must be done very 
carefully. Most errors in processor design are in the Control Unit design phase. There are 
primarily two approaches to design a control unit. 

1. Hardwired approach 
2. Micro programming  

 
Hardwired approach is relatively faster, however, the final circuit is quite complex. The 
micro-programmed implementation is usually slow, but it is much more flexible.  
  
 “Finite-state machine” concepts are usually used to represent the CU. Every state 
corresponds to one “clock cycle” i.e., 1 state per clock. In other words each timing step 
could be considered as just 1 state and therefore from one timing step to other timing 
step, the state would change. Now, if we consider the control unit as a black box, then 
there would be four sets of inputs to the control unit. These are as follows: 

1. The output of timing step generator (There are 8 disjoint timing steps in our 
example T0-T7). 

2. Op-code (op-code is first given to the decoder and the output of the decoder is 
given to the control unit). 

3. Data path generated signals, like the “CON” control signal,  
4. Signals from external events, like “Interrupt” generated by the Interrupt generator.    

 
The complexity of the control is a function of the  

• Number of states 

• Number of inputs to the CU 

• Number of the outputs generated by the CU 
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Hardwired Implementation of the Control Unit 

 
The accompanying block diagram shows the inputs to the control unit. The output control 
signals generated from control unit to the various parts of the processor are also shown in 
the figure. 

 
 

Example Control Unit for the FALCON-A 

 

The following figure shows how the operation code (op-code) field of the Instruction 
Register is decoded to generate a set of signals for the Control unit. 

 
This is an example for the FALCON-A processor where the instruction is 16-bit long. 
Similar concepts will apply to the SRC, in which case the instruction word is 32 bits and 
IR <31...27> contains the op-code.  Similar concepts will apply to the SRC, in which case 
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the instruction word is 32 bits and IR<31..27> contains the opcode. The most significant 
5 bits represent the op-code. These 5-bits from the IR are fed to a 5-to-32 decoder. These 
32 outputs are numbered from 0-to-31 and named as op0, op1 up to op31. Only one of 
these 32 outputs will be active at a given time .The active output will correspond to 
instruction executing on the processor. 
To design a control unit, the next step is to write the Boolean Equations. For this we need 
to browse through the structural descriptions to see which particular control signals occur 
in different timing steps. So, for each instruction we have one such table defining 
structural RTL and the control signals generated at each timing step. After browsing we 
need to check that which control signal is activated under which condition. Finally we 
need to write the expression in the form of a logical expression as the logical combination 
of “AND” and “OR” of different control signals. The given table shows Boolean 
Equations for some example control signals.  

For example, PCout would be active in every T0 timing step. Then in timing interval T3 
the output of the PC would be activated if the op-code is 20 or 22 which represent jump 
and sub-routine call. In step T4 if the op-code is 16, 17, 18 or 19, again we need PCout 
activated and these 4 instructions correspond to the conditional jumps. We can say that in 
other words in step T1, PCout is always activated “OR” in T3 it is activated if the 
instruction is either jump or sub-routine call “OR” in T4 if there is one of the conditional 
jumps. We can write an equation for it as  

 

PCout=T0+T3.(OP20+OP22)+T4.(OP16+OP17+OP18+OP19) 
 
In the form of logic circuit the implementation is shown in the figure. We can see that we 
“OR” the op-ode 20 and 22 and “AND” it with T3, then “OR” all the op16 up to op19 
and “AND” it with T4, then T0 and the “AND” outputs of T3 and T4 are “OR” together 
to obtain the PCout.  
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In the same way the logic circuit for LPC control signal is as shown and the equation 
would be : 
 

LPC=T1+T5.OP20+T6.CON.(OP16+OP17+OP18+OP19) 

 
 
We can formulate Boolean equations and draw logic circuits for other control signals in 
the same way. 
 
Effect of using “real” Gates 

We have assumed so far that the gates are ideal and that there is no propagation delay. In 
designing the control unit, the propagation delays for the gates can not be neglected. In 
particular, if different gates are cascaded, the output of one gate forms the input of other. 
The propagation delays would add up. This, in turn would place an upper limit on the 
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frequency of the clock which controls the generation of the timing intervals T0, T1… T7.  
So, we can not arbitrarily increase the frequency of this clock.  As an example consider 
the transfer of the contents of a register R1 to a register R2. The minimum time required 

to perform this transfer is given by  
tmin = tg + tbp + tcomb + t1 

 
The details are explained in the text with reference to Fig 4.10. Thus, the maximum clock 
frequency based on this transfer will be 1/tmin. Students are encouraged to study example 
4.1 of the text. 
 

2-Bus Implementation of the SRC Data Path 
 
In the previous sections, we studied the uni-bus implementation of the data path in the 
SRC. Now we present a 2-bus implementation of the data path in the SRC. We observe 
from this figure that there is a bus provided for data that is to be written to a component. 
This bus is named the ‘in’ bus.  Another bus is provided for reading out the values from 
these components. It is called the ‘out’ bus. 
 

 
 

Structural RTL for the ‘sub’ instruction using the 2-bus data path implementation 

Next, we look at the structural RTL as well as the control signals that are issued in 
sequence for instruction execution in a 2-bus implementation of the data path. The given 
table illustrates the Register Transfer Language representation of the operations for 
carrying out instruction fetch, and execution for the sub instruction.  
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The first three steps belong to the instruction fetch phase; the instruction to be executed is 
fetched into the Instruction Register and the PC value is incremented to point to the next-
in-line instruction. At step T3, the register R[rb] value is written to register A. At the time 
step T4, the subtracted result from the ALSU is assigned to the destination register R[ra]. 
Notice that we did not need to store the result in a temporary register due to the 
availability of two buses in place of one.  At the end of this sequence, the timing step 
generator is initialized to T0. 

Control signals for the fetch operation 

The control signals for the instruction fetch phase are shown in the table. A brief 
explanation is given below: 

 
At time step T0, the following control signals are issued: 

• PCout: This will enable read of the Program Counter, and so its value will be 
transferred onto the  ‘out’ bus 

• LMAR: To enable the load for MAR 

• C=B: This instruction is used to copy the value on the ‘out’ bus to the ‘in’ bus, so 
it can be loaded into the Memory Address Register. We can observe in the data-
path implementation figure given earlier that, at any time, the value on the ‘out’ 
bus makes up the operand B for the ALSU. The result C of ALSU is connected to 
the “in” bus, and therefore, the contents transfer from one bus to the other can 
take place. 
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At time step T1: 

• PCout: Again, this will enable read of the Program Counter, and so its value will 
be transferred onto the CPU internal ‘out’ bus 

• INC4: To instruct the ALSU to perform the increment-by-four operation.  

• LPC: This control signal will enable write of the Program Counter, thus the new, 
incremented value can be written into the PC if it is made available on the “in” 
bus. Note that the ALSU is assumed to include an INC4 function. 

• MRead: To enable memory word read. 

• MARout: To supply the address of memory word to be accessed by allowing the 
contents of the MAR (memory address register) to be written onto the CPU 
external (address) bus.  

• LMBR: The memory word is stored in the register MBR (memory buffer 
register) by applying this control signal to enable the write of the MBR. 

At time step T2:  

• MBRout: The contents of the Memory Buffer Register are read out onto the   
‘out’ bus, by means of applying this signal, as it enables the read for the MBR. 

• C=B: Once again, this signal is used to copy the value from the ‘out’ bus to the 
‘in’ bus, so it can be loaded into the Memory Address Register. 

• LIR: This instruction will enable the write of the Instruction Register. Hence the 
instruction that is on the ‘in’ bus is loaded into this register.  

 
At time step T3, the execution may begin, and the control signals issued at this stage 
depend on the actual instruction encountered. The control signals issued for the 
instruction fetch phase are the same for all the instructions. 
Note that, we assume the memory to be fast enough to respond during a given time slot. 
If that is not true, wait states have to be inserted. Also keep in mind that the control 
signals during each time slot are activated simultaneously, while those for successive 
time slots are activated in sequence. If a particular control signal is not shown, its value is 
zero.  
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Lecture No. 17 

 

Machine Reset and Machine Exceptions  
 

Reading Material 
Vincent P. Heuring&Harry F. Jordan                                                            Chapter 4 
Computer Systems Design and Architecture                                               4.6.2, 4.7, 4.8                                                                                                                                                                                                                                                                         

 
Summary 

 

• 3-bus implementation for the SRC  

• The Machine Reset 

• Machine Exceptions 

 
A 3-bus Implementation for the SRC 
 
Let us now look at a 3-
bus implementation of the 
data-path for the SRC as 
shown in the figure. Two 
buses, ‘A’ and ‘B’ bus for 
reading, and a bus ‘C’ for 
writing, are part of this 
implementation. Hence 
all the special purpose as 
well as the general 
purpose registers have 
two read ports and one 
write port.  

 

 

 

 

Structural RTL for the Subtract Instruction using the 3-bus Data Path 

Implementation 

 
We now consider how instructions are fetched and executed in 3-bus architecture. For 
this purpose, the same ‘sub’ instruction example is followed.  

 
The syntax of the subtract instructions is 

sub ra, rb, rc 

The structural RTL for implementing this instruction is given in the table. We observe 
that in this table, only two time steps are required for the instruction fetch phase. At 
time step T0, the Memory Address Register receives the value of the Program Counter. 
This is done in the initial phase of the time step T0. Then, the Memory Buffer Register 
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receives the memory word indexed by the MAR, and the PC value is incremented. At 
time step T1, the instruction register is assigned the instruction word that was loaded 
into the MBR in the previous time step. This concludes the instruction fetch and now 
the instruction execution can commence.  

 
In the next time step, T2, the instruction is executed by subtracting the values of 
register rc from rb, and assigning the result to the register ra.  
At the end of each sequence, the timing step generator is initialized to T0 
 

Control Signals for the Fetch Operation 

The given table lists the control signals in the instruction fetch phase. The control 
signals for the execute phase can be written in a similar fashion. 

 
The Machine Reset 
 
In this section, we will discuss the following  

• Reset operation  

• Behavioral RTL for SRC reset 

• Structural RTL for SRC reset 
 

The reset operation 

Reset operation is required to change the processor’s state to a known, defined value. 
The two essential features of a reset instruction are clearing the control step counter and 
reloading the PC to a predefined value. The control step counter is set to zero so that 
operation is restarted from the instruction fetch phase of the next instruction. The PC is 
reloaded with a predefined value usually to execute a specific recovery or initializing 
program. 
In most implementations the reset instruction also clears the interrupt enable flags so as 
to disable interrupts during the initialization operation. If a condition code register is 
present, the reset instruction usually clears it, so as to clear any effects of previously 
executed instructions. The external flags and processor state registers are usually 
cleared too.  
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The reset instruction is mainly used for debugging purposes, as most processors halt 
operations immediately or within a few cycles of receiving the reset instruction. The 
processors state may then be examined in its halted state. 
Some processors have two types of reset operations.  Soft reset implies initializing PC 
and interrupt flags. Hard reset initializes other processor state registers in addition to 
PC and interrupts enable flags. The software reset instruction asserts the external reset 
pin of the processor. 
 

Reset operation in SRC 

 

Hard Reset 

The SRC should perform a hard reset upon receiving a start (Strt) signal. This initializes 
the PC and the general registers.  

Soft Reset 

The SRC should perform a soft reset upon receiving a reset (rst) signal. The soft reset 
results in initialization of PC only. 
The reset signal in SRC is assumed to be external and asynchronous. 

PC Initialization 

There are basically two approaches to initialize a PC. 

1. Direct Approach 

The PC is loaded with the address of the startup routine upon resetting.  

2. Indirect Approach 

The PC is initialized with the address where the address of the startup routine is 
located. The reset instruction  loads the PC with the address of a jump instruction. The 
jump instruction in turn contains the address of the required routine. 
An example of a reset operation is found in the 8086 processor. Upon receiving the 
reset instruction the 8086 initializes its PC with the address FFFF0H. This memory 
location contains a jump instruction to the bootstrap loader program. This program 
provides the system initialization 

 

Behavioral RTL for SRC Reset 
The original behavioral RTL for SRC without any reset operation is: 

Instruction_Fetch :=(! Run&Strt: (Run ← 1; instruction_Fetch, 

                                              Run : (IR ← M [PC]; PC ← PC+4;instruction_execution)), 
instruction_execution:= (ld (:=op=1…) ; 
This recursive definition implies that each instruction at the address supplied by PC is 
executed. The modified RTL after adding the reset capability is 

Instruction_Fetch:=(! Run&Strt :( Run ← 1, 

                                             PC, R [0...31] ← 0), 

                                             Run&!Rst :( IR ← M [PC], 

                                             PC ← PC+4, instruction_execution); 

                                             Run&Rst:( Rst ← 0, PC ← 0); 
                                             instruction_Fetch), 
The modified definition includes testing the value of the “rst” signal after execution of 
each instruction. The processor may not be halted in the midst of an instruction in the 

RTL definition 
To actually implement these changes in the SRC, the following modification are 
required to add the reset operation to the structural RTL for SRC: 
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• A check for the reset signal on each clock cycle 

• A control signal for clearing the PC 

• A control signal to load zero to control step counter 
 
Example: The sub instruction with RESET processing 
To actually reset the processor in the midst of an instruction, the “Rst” condition must 
be tested after each clock cycle. 

 
 
 Let us examine the contents of each phase in the given table. In step T0, if the Rst 
signal is not asserted, the address of the new instruction is delivered to memory and the 
value of PC is incremented by 4 and stored in another register. If the “Rst” signal is 
asserted, the “Rst” signal is immediately cleared, the PC is cleared to zero and T, the 
step counter is also set to zero. This behavior (in case of ‘Rst’ assertion) is the same for 
all steps. In step T1, if the rst signal is not asserted, the value stored at the delivered 
memory word is stored in the memory data register and the PC is set to its incremented 
value.  
In step T2, the stored memory data is transferred to the instruction register. 
In step T3, the register operand values are read. 
In step T4, the mathematical operation is executed. 
In step T5, the calculated value is written back to register file. 
During all these steps if the Rst signal is asserted, the value of PC is set to 0 and the 
value of the step counter is also set to zero. 
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Machine Exceptions 

 
• Anything that interrupts the normal flow of execution of instructions in the 

processor is called an exception. 
• Exceptions may be generated by an external or internal event such as a mouse 

click or an attempt to divide by zero etc. 
• External exceptions or interrupts are generally asynchronous (do not depend on 

the system clock) while internal exceptions are synchronous (paced by internal 
clock) 

The exception process allows instruction flow to be modified, in response to internal or 
external events or anomalies. The normal sequence of execution is interrupted when an 
exception is thrown.  

Exception Processing 
A generalized exception handler should include the following mechanisms: 

1. Logic to resolve priority conflicts. In case of nested exceptions or an exception 
occurring while another is being handled the processor must be able to decide 
which exception bears the higher priority so as to handle it first. For example, an 
exception raised by a timer interrupt might have a higher priority than keyboard 
input. 

2. Identification of interrupting device. The processor must be able to identify the 
interrupting device that it can to load the appropriate exception handler routine. 
There are two basic approaches for managing this identification: exception 
vectors and “information” register. The exception vector contains the address of 
the exception handling routine. The interrupting process fills the exception vector 
as soon as the interruption is acknowledged. The disadvantage of this approach is 
that a lot of space may be taken up by vectors and exception handler codes. 
In the information register, only one general purpose exception handler is used. 
The PC is saved and the address of the general purpose register is loaded into the 
PC. The interrupting process must fill the information register with information to 
allow identification of the cause and type of exception. 

3. Saving the processor state. As stated earlier the processor state must be saved 
before jumping to the exception handler routine. The state includes the current 
value of the PC, general purpose registers, condition vector and external flags. 

4. Exception disabling during critical operation. The processor must disable 
interrupts while it is switching context from the interrupted process to the 
interrupting process, so that another exception might not disrupt the transition. 

Examples of Exceptions 
• Reset Exception 
 Reset operation is treated as an exception by some machines e.g. SPARC and 

MC68000. 
• Machine Check 
      This is an external exception caused by memory failure 
• Data Access Exception 
 This exception is generated by memory management unit to protect against illegal 

accesses. 
• Instruction Access Exception 
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 Similar to data access exception 
• Alignment Exception 

 Generated to block misaligned data access 
 

Types of Exception 
 

• Program Exceptions 

These are exceptions raised during the process of decoding and executing the 
instruction. Examples are illegal instruction, raised in response to executing an 
instruction which does not belong to the instruction set. Another example would 
be the privileged instruction exception. 

• Hardware Exceptions 

There are various kinds of hardware exceptions. An example would be of a timer 
which raises an exception when it has counted down to zero. 

• Trace and debugging Exceptions 

Variable trace and debugging is a tricky task. An easy approach to make it 
possible is through the use of traps. The exception handler which would be called 
after each instruction execution allows examination of the program variables. 

• Nonmaskable Exceptions 

These are high priority exceptions reserved for events with catastrophic 
consequences such as power loss.  These exceptions cannot be suppressed by the 
processor under any condition. In case of a power loss the processor might try to 
save the system state to the hard drive, or alert an alternate power supply. 

• Interrupts (External Exceptions) 

Exception handlers may be written for external interrupts, thus allowing programs 
to respond to external events such as keyboard or mouse events. 
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Lecture No. 18 

Pipelining 
 

Reading Material 

 
Vincent P. Heuring & Harry F. Jordan                                                          Chapter 4 
Computer Systems Design and Architecture                                                      4.8    

Summary 
 

• SRC Exception Processing Mechanism 

• Introduction to Pipelining 

• Complications Related to Pipelining 

• Pipeline Design Requirements 
 

Correction: Please note that the phrase “instruction fetch” should be used where the 
speaker has used “instruction interpretation”. 

 

SRC Exception Processing Mechanism 

 
 
 

 

The following tables on the next few pages summarize the changes needed in the SRC 
description for including exceptions: 
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Behavioral RTL for Exception Processing 

 

Instruction_Fetch:= 

(!Run&Strt: Run ← 1, 

Run & !(ireq&IE):(IR ←M[PC], 

PC ← PC + 4; 

Instruction_Execution), 

Run&(ireq&IE): (IPC ← PC<31..0>, 

II<15..0> ← Isrc_info<15..0>, 

IE ← 0: PC ← Ivect<31..0>, 

iack ← 1; iack ← 0), 

Instruction_Fetch); 

 

Start 

Normal Fetch 

 

 

Interrupt, PC copied 

II is loaded with the info. 

PC loaded with new address 

 

 

 

Additional Instructions to Support Interrupts 

 

      Mnemonic 

 

   Behavioral RTL 

 

    Meaning 

 

svi (op=16) 

 

R[ra]<15..0> ← II<15..0>, 

R[rb] ← IPC<31..0>; 

 

Save II and IPC 

 

ri (op=17) 

 

II<15..0> ← R[ra]<15..0>, 

IPC<31..0> ← R[rb]; 

 

Restore II and IPC 

 

een (op=10) 

 

IE ← 1; 

 

Exception enable 

 

edi (op=11) 

 

IE ← 0; 

 

Exception disable 

 

rfi (op=30) 

 

PC ← IPC, IE ← 1; 

 

Return from interrupt 
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Structural RTL for the Fetch Phase including Exception Processing  

 

Step Structural RTL for the 1-bus SRC 
T0 

 

!(ireq&IE): (MA ← PC, C ← PC + 4); 

(ireq&IE): (IPC ← PC,II← Isrc_info, 

IE ← 0,PC ← (22α 0)©(Isrc_vect<7..0>)© 00, iack ← 1; 

iack ← 0, End) ; 

 
T1 

 

MD ← M[MA], PC ← C; 

 
T2 

 

IR ← MD; 

 
T3 

 

Instruction_Execution;      

 

 

Combining the RTL for Reset and Exception  

 

     Events 

 

Normal 

Fetch 

 
Soft Reset 

 
Hard Reset 

 

Instruction_Fetch:=  

 

(Run&!Rst&!(ireq&IE):(IR ← M[PC], PC ← PC+4; 
Instruction_Execution), 

 

Run&Rst: (Rst ←0 , IE ← 0, PC ← 0; Instruction_Fetch), 

 

!Run&Strt: (Run ←1, PC ← 0, R[0..31] ← 0; Instruction_Fetch), 

 

Run&!Rst&(ireq&IE): (IPC ← PC<31..0>,  

II<15..0> ←Isrc_info<15..0>, IE ← 0, PC ← Ivect<31..0>,  

iack ← 1; iack ← 0; Instruction_Fetch) ); 

Interrupt 

 

 

Introduction to Pipelining 
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Pipelining is a technique of overlapping multiple instructions in time. A pipelined 
processor issues a new instruction before the previous instruction completes. This results 
in a larger number of operations performed per unit of time. This approach also results in 
a more efficient usage of all the functional units present in the processor, hence leading to 
a higher overall throughput. As an example, many shorter integer instructions may be 
executed along with a longer floating point multiply instruction, thus employing the 
floating point unit simultaneously with the integer unit. 
 

Executing machine instructions with and without pipelining 

We start by assuming that a given processor can be split in to five different stages as 
shown in the diagram below, 
and as explained later in this 
section. Each stage receives 
its input from the previous 
stage and provides its result 
to the next stage. It can be 
easily seen from the diagram 
that in case of a non-
pipelined machine there is a 
single instruction add r4, r2, 

r3 being processed at a given 
time, while in a pipelined 
machine, five different 
instructions are being processed simultaneously. An implied assumption in this case is 
that at the end of each stage, we have some sort of a storage place (like temporary 
registers) to hold the results of the present stage till they are used by the next stage. 
 

 

Description of the Pipeline Stages  

In the following paragraphs, we discuss the pipeline stages mentioned in the previous 
example. 
 

1. Instruction fetch 

As the name implies, the instruction is fetched from the 
instruction memory in this stage. The fetched instruction bits 
are loaded into a temporary pipeline register. 
 

2. Instruction decode/operand fetch 

In this stage the operands for the instruction are fetched from 
the register file. If the instruction is add r1, r2, r3 the 
registers r2 and r3 will be read into the temporary pipeline 
registers. 
 

3. ALU
5
 operation 

                                                 
5 The ALU is also called the ALSU in some cases, in particular, where its “shifting” capabilities need to be 
highlighted. ALSU stands for Arithmetic Logic Shift Unit. 
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In this stage, the fetched operand values are fed into the ALU along with the function 
which is required such as addition, subtraction, etc. The result is stored into temporary 
pipeline registers. In case of a memory access such as a load or a store instruction, the 
ALU calculates the effective memory address in this stage. 
 

4. Memory access 

For a load instruction, a memory read operation takes place. For a store instruction, a 
memory write operation is performed. If there is no memory access involved in the 
instruction, this stage is simply bypassed. 
 

5. Register write 

The result is stored in the destination register in this stage. 
 

Latency & throughput 

Latency is defined as the time required to process a single instruction, while throughput is 
defined as the number of instructions processed per second. Pipelining cannot lower the 
latency of a single instruction; however, it does increase the throughput. With respect to 
the example discussed earlier, in a non-pipelined machine there would be one instruction 
processed after an average of 5 cycles, while in a pipelined machine, instructions are 
completed after each and every cycle (in the steady-state, of course!!!). Hence, the overall 
time required to execute the program is reduced. 
 
Remember that the performance gain in a pipeline is limited by the slowest stage in the 
pipeline.  
 

Complications Related to Pipelining 
Certain complications may arise from pipelining a processor. They are explained below: 

Data dependence 

This refers to the situation when an instruction in one stage of the pipeline uses the results 
of an instruction in the previous stage. As an example let us consider the following two 
instructions 

… 

S1: add r3, r2, r1 

S2: sub r4, r5, r3 

… 

 

There is a data-dependence among the above two instructions. The register R3 is being 
written to in the instruction S1, while it is being read from in the instruction S2. If the 
instruction S2 is executed before instruction S1 is completed, it would result in an 
incorrect value of R3 being used. 
 

Resolving the dependency 

There are two methods to remedy this situation: 
 

1. Pipeline stalls 

These are inserted into the pipeline to block instructions from entering the pipeline until 
some instructions in the later part of the pipeline have completed execution. Hence our 
modified code would become 
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… 

S1: add r3, r2, r1 

stall
6
 

stall 

stall 

S2: sub r4, r5, r3 

… 
2. Data forwarding 

When using data forwarding, special hardware is added to the processor, which allows 
the results of a particular pipeline stage to be transferred directly to another stage in the 
pipeline where they are required. Data may be forwarded directly from the execute stage 
of one instruction to the decode stage of the next instruction. Considering the above 
example, S1 will be in the execute stage when S2 will be decoded. Using a comparator 
we can determine that the destination operand of S1 and source operand of S2 are the 
same. So, the result of S1 may be directly forwarded to the decode stage. 
 
Other complications include the “branch delay” and the “load delay”. These are 
explained below: 

 

Branch delay  

Branches can cause problems for pipelined processors. It is difficult to predict whether a 
branch will be taken or not before the branch condition is tested. Hence if we treat a 
branch instruction like any normal instruction, the instructions following the branch will 
be loaded in the stages following the stage which carries the branch instruction. If the 
branch is taken, then those instructions would need to be removed from the pipeline and 
their effects if any, will have to be undone. An alternate method is to introduce stalls, or 
nop instructions, after the branch instruction.  
 

Load delay 

Another problem surfaces when a value is loaded into a register and then immediately 
used in the next operation. Consider the following example: 
 

… 

S1: load r2, 34(r1) 

S2: add r5, r2, r3 

… 

  
In the above code, the “correct” value of R2 will be available after the memory access 
stage in the instruction S1. Hence even with data forwarding a stall will need to be placed 
between S1 and S2, so that S2 fetches its operands only after the memory access for S1 
has been made. 
 

Pipeline Design Requirements 
For a pipelined design, it is important that the overall meaning of the program remains 
unchanged, i.e., the program should produce the same results as it would produce on a 
non-pipelined machine. It is also preferred that the data and instruction memories are 

                                                 
6 A pipeline stall can be achieved by using the nop instruction. 
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separate so that instructions may be fetched while the register values are being stored 
and/or loaded from data memory. There should be a single data path so as not to 
complicate the flow of instructions and maintain the order of program execution. There 
should be a three port register file so that if the register write and register read stages 
overlap, they can be performed in parallel, i.e., the two register operands may be read 
while the destination register may be written. The data should be latched in between each 
pipeline stage using temporary pipeline registers. Since the clock cycle depends on the 
slowest pipeline stage, the ALU operations must be able to complete quickly so that the 
cycle time is not increased for the rest of the pipeline. 
 

Designing a pipelined implementation 

In this section we will discuss the various steps involved in designing a pipeline. Broadly 
speaking they may be categorized into three parts: 
 

1. Adapting the instructions to pipelined execution 

The instruction set of a non-pipelined processor is generally different from that of a 
pipelined processor. The instructions in a pipelined processor should have clear and 
definite phases, e.g., add r1, r2, r3. To execute this instruction, the processor must first 
fetch it from memory, after which it would need to read the registers, after which the 
actual addition takes place followed by writing the results back to the destination register. 
Usually register-register architecture is adopted in the case of pipelined processors so that 
there are no complex instructions involving operands from both memory and registers. 
An instruction like add r1, r2, a would need to execute the memory access stage before 
the operands may be fed to the ALU. Such flexibility is not available in a pipelined 
architecture. 
 
 
 

2. Designing the pipelined data path 

Once a particular instruction set has been chosen, an appropriate data path needs to be 
designed for the processor. The data path is a specification of the steps that need to be 
followed to execute an instruction. Consider our two examples above 
 
For the instruction add r1, r2, r3: Instruction Fetch – Register Read – Execute – Register Write, 

 
whereas for the instruction add r1, r2, a  (remember a represents a memory address), we 
have  Instruction Fetch – Register Read – Memory Access – Execute – Register Write 

 
The data path is defined in terms of registers placed in between these stages. It specifies 
how the data will flow through these registers during the execution of an instruction. The 
data path becomes more complex if forwarding or bypassing mechanism is added to the 
processor.  

 

3. Generating control signals 

Control signals are required to regulate and direct the flow of data and instruction bits 
through the data path. Digital logic is required to generate these control signals.  
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Lecture 19  
 

Pipelined SRC 
 

Reading Material 
Vincent P. Heuring & Harry F. Jordan                                                            Chapter 5 
Computer Systems Design and Architecture                                                     5.1.3                                              
 

Summary 

 
• Pipelined Version of the SRC 

• Adapting SRC instructions for Pipelined Execution 

• Control Signals for Pipelined SRC 
 

Pipelined Version of the SRC 
 
In this lecture, a pipelined version of the SRC is presented. The SRC uses a five-stage 
pipeline. Those five stages are given below: 
 

1. Instruction Fetch 
2. Instruction decode/operand fetch 
3. ALU operation 
4. Memory access 
5. Register write 

 
As shown in the next diagram, there are several registers between each stage. 
 
After the instruction has been fetched, it is stored in IR2 and the incremented value of the 
program counter is held in PC2. When the register values have been read, the first 
register value is stored in X3, and the second register value is stored in Y3. IR3 holds the 
opcode and ra. If it is a store to memory instruction, MD3 holds the register value to be 
stored. 
 
After the instruction has been executed in the ALU, the register Z4 holds the result. The 
op-code and ra are passed on to IR4. During the write back stage, the register Z5 holds the 
value to be stored back into the register, while the op-code and ra are passed into IR5. 
There are also two separate memories and several multiplexers involved in the pipeline 
operation. These will be shown at appropriate places in later figures.  
 
The number after a particular register name indicates the stage where the value of this 
register is used.                            
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Adapting SRC Instructions for Pipelined Execution 
 
As mentioned earlier, the SRC instructions fall into the following three categories: 
 

1. ALU Instructions 
2. Load/Store instructions 
3. Branch Instructions 

 
We will now discuss how to design a common pipeline for all three categories of 
instructions. 
 

1. ALU instructions 

  

ALU instructions are usually of the form: 
 

op-code ra, rb, rc  
or  
op-code ra, rb, constant.  
 
In the diagram shown, X3 and Y3 are temporary registers to hold the values between 
pipeline stages. X3 is loaded with operand value from the register file. Y3 is loaded with 
either a register value from the register file or a constant from the instruction. The 
operands are then available to the ALU. The ALU function is determined by decoding the 
op-code bits. The result of the ALU operation is stored in register Z4, and then stored in 
the destination register in the register write back stage. There is no activity in the memory 
access stage for ALU instructions. Note that Z5, IR3, IR4, and IR5 are not shown 
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explicitly in the figure. The purpose of not including these registers is to keep the 
drawing simple. However, these registers will transfer values as instructions progress 
through the pipeline. This comment also applies to some other figures in this discussion. 

 

 
 
 

2. Load/Store instructions 

 

Load/Store instructions are usually of the form: 
 

op-code  ra,  constant(rb)  

 
The instruction is loaded into IR2 and the incremented value of the PC is loaded in PC2. 
In the next stage, X3 is loaded with the value in PC2 if the relative addressing mode is 
used, or the value in rb if the displacement addressing mode is used. Similarly, C1 is 
transferred to Y3 for the relative addressing mode, and c2 is transferred to Y3 for the 
displacement addressing mode. The store instruction is completed once memory access 
has been made and the memory location has been written to. The load instruction is 
completed once the loaded value is transferred back to the register file. The following 
figure shows the schematic for a load instruction.  A similar schematic can be drawn for 
the store instruction. 
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3. Branch Instructions 
Branch Instructions usually involve calculating the target address and evaluating a 
condition. The condition is evaluated based on the c2 field of the IR and by using the 
value in R[rc]. If the condition is true, the PC is loaded with the value in R[rb], otherwise 
it is incremented by 4 as usual. The following figure shows these details. 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The complete pipelined data path 

 
The pipelined data path implementation diagrams shown earlier for the three SRC 
instruction categories must be combined and refined to get a working system. These 
details get complicated very quickly. A detailed combined diagram is shown in Figure 
5.7 of the text book. 
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Control Signals for the Pipelined SRC 
 

We define the following signals for the SRC by grouping similar op-codes: 

 
 
In most cases, the signals defined above are used in the same stage where they are 
generated. If that is not the case, a number used after the signal name indicates the stage 
where the signal is generated. 
 
Using these definitions, we can develop RTL statements for describing the pipeline 
activity as well as the equations for the multiplexer select signals for different stages of 
the pipeline. This is shown in the next diagram. 
 

Control Signals for different pipeline Stages 

 
Consider the RTL description of the Mp1 signal, which controls the input to the PC. It 
simply means that if the branch and cond signals are not activated, then the PC is 
incremented by 4, otherwise if both are activated then the value of R1 is copied in to the 
PC.  
 
The multiplexer Mp2 is used to decide which registers are read from the register file. If 
the store signal is activated then R[rb] from the instruction bits is read from the register 
file so that its value may be stored into memory, otherwise R[rc] is read from the register 
file. 

 
The multiplexer Mp3 is used to decide which registers are read from the register file for 
operand 2. If either rl or branch is activated then the updated value of PC2 is transferred 
to X3, otherwise if dsp or alu is activated, the value of R[ra] from the register file is 
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transferred to the x3. In the same way, multiplexer Mp4 is used to select an input from 
Y3. 
 
In the same way, multiplexer Mp4 is used to select an input for Y3. 

 
 
The multiplexer MP5 is used to decide which value is transferred to be written back to 
the register file. If the load signal is activated data from memory is transferred to Z5, 
however if the load signal is not activated then data from Z4 (which is the result of ALU) 
is transferred to Z5 which is then written back to the register file. 
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Lecture No. 20 

Hazards in Pipelining  
 

Reading Material 
 
Vincent P. Heuring & Harry F. Jordan                                                            Chapter 5 
Computer Systems Design and Architecture                                                  5.1.5, 5.1.6 

 
Summary 

 

• Structural RTL for Pipeline Stages 

• Instruction Propagation Through the Pipeline 

• Pipeline Hazards 

• Data Dependence Distance  

• Data Forwarding 

• Compiler Solution to Hazards 

• SRC Hazard Detection and Correction 

• RTL for Hazard Detection and Pipeline Stall 

 
Structural RTL for Pipeline Stages 
The Register Transfer Language for each phase is given as follows: 
 

Instruction Fetch 

 

    IR2 ←  M [PC]; 

    PC2 ←  PC+4; 
 

Instruction Decode & Operand fetch            

  X3←l-s2:(rel2:PC2,disp2:(rb=0):?,(rb!=0):R[rb]),brl2:PC2,alu2:R[rb], 

  Y3 ← l-s2:(rel2:c1,disp2:c2),alu2:(imm2:c2,!imm2:R[rc]), 

  MD3 ←store2:R[ra],IR3 ← IR2,stop2:Run ← 0, 

  PC ← !branch2:PC+4,branch2:(cond(IR2,R[rc]):R[rb],!cond(IR2,R[rc]):PC+4; 

 

ALU operation 

 

Z4 ← (I-s3: X3+Y3, brl3: X3, Alu3: X3 op Y3, 

MD4 ← MD3, 

IR4 ← IR3; 
 

Memory access 

 

Z5 ← (load4: M [Z4], ladr4~branch4~alu4:Z4), 

store4: (M [Z4] ← MD4), 

IR5 ←IR4; 
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Write back 

 

regwrite5: (R[ra] ← Z5); 
 

Instruction Propagation through the Pipeline 
 
Consider the following SRC code segment flowing through the pipeline. The instructions 
along with their addresses are 
 

   200: add r1, r2, r3  

   204: ld r5, [4(r7) 

   208: br r6 

   212: str r4, 56 

   … 

   400 

 
We shall review how this chunk of code is executed. 
 

First Clock Cycle 

Add instruction enters the pipeline in the first cycle. The value in PC is 
incremented from 200 to 204.  
 

Second Clock Cycle 

Add moves to decode stage. Its operands are fetched from the register file and 
moved to X3 and Y3 at the end of clock cycle, meanwhile the Instruction ld r5, 
[4+r7] is fetched in the first stage and the PC value is incremented from 204 to 
208. 

 

Third Clock Cycle 

 

Add instruction moves to the execute stage, the results are written to Z4 on the 
trailing edge of the clock. Ld instruction moves to decode stage. The operands 
are fetched to calculate the displacement address. Br instruction enters the 
pipeline. The value in PC is incremented from 208 to 212.  

Fourth Clock Cycle 

 

Add does not access memory. The result is written to Z5 at the trailing edge of 
clock. The address is being calculated here for ld. The results are written to Z4. 
Br is in the decode stage. Since this branch is always true, the contents of PC are 
modified to new address. Str instruction enters the pipeline. The value in PC is 
incremented from 212 to 216.  
 

 

Fifth Clock Cycle 

 

The result of addition is written into register r1. Add instruction completes. Ld 
accesses data memory at the address specified in Z4 and result stored in Z5 at 
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falling edge of clock. Br instruction just propagates through this stage without 
any calculation. Str is in the decode stage. The operands are being fetched for 
address calculation to X3 and Y3. The instruction at address 400 enters the 
pipeline. The value in PC is incremented from 400 to 404.  
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Pipeline Hazards 
The instructions in the pipeline at any given time are being executed in parallel. This 
parallel execution leads to the problem of instruction dependence. A hazard occurs when 
an instruction depends on the result of previous instruction that is not yet complete.  
 

Classification of Hazards 

There are three categories of hazards 
1. Branch Hazard 
2. Structural Hazard 
3. Data Hazard 
 

Branch hazards 

The instruction following a branch is always executed whether or not the branch is taken. 
This is called the branch delay slot. The compiler might issue a nop instruction in the 
branch delay slot. Branch delays cannot be avoided by forwarding schemes. 
 

 

 

 

Structural hazards 

A structural hazard occurs when attempting to access the same resource in different ways 
at the same time. It occurs when the hardware is not enough to implement pipelining 
properly e.g. when the machine does not support separate data and instruction memories. 
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Data hazards 

Data hazard occur when an instruction attempts to access some data value that has not yet 
been updated by the previous instruction. An example of this RAW (read after write) data 
hazard is; 
 
200:  add r2, r3, r4 
204:  sub r7, r2, r6 
 
The register r2 is written in clock cycle 5 hence the sub instruction cannot proceed 
beyond stage 2 until the add instruction leaves the pipeline. 
 

Data Hazard Detection & Correction 

Data hazards can be detected easily as they occur when the destination register of an 
instruction is the same as the source register of another instruction in close proximity. To 
remedy this situation, dependent instructions may be delayed or stalled until the ones 
ahead complete. Data can also be forwarded to the next instruction before the current 
instruction completes, however this requires forwarding hardware and logic. Data can be 
forwarded to the next instruction from the stage where it is available without waiting for 
the completion of the instruction. Data is normally required at stage 2 (operand fetch) 
however data is earliest available at stage 3 output (ALU result) or stage 4 output 
(memory access result). Hence the forwarding logic should be able to transfer data from 
stage 3 to stage 2 or from stage 4 to stage 2. 

 

Data Dependence Distance 
 

Designing a data forwarding unit requires the study of dependence distances. Without 
forwarding, the minimum spacing required between two data dependent instructions to 
avoid hazard is four. The load instruction has a minimum distance of two from all other 
instructions except branch. Branch delays cannot be removed even with forwarding.   
Table 5.1 of the text shows numbers related to dependence distances with respect to some 
important instruction categories. 

 

Compiler Solution to Hazards 
Hazards can be detected by the compiler, by analyzing the instruction sequences and 
dependencies. The compiler can inserts bubbles (nop instruction) between two 
instructions that form a hazard, or it could reorder instructions so as to put sufficient 
distance between dependent instructions. The compiler solution to hazards is complex, 
expensive and not very efficient as compared to the hardware solution 
 
 

 

 

 

 

 

 



Advanced Computer Architecture-CS501                                            

Last Modified: 12-Jan-11                                                                                                  Page 216 

SRC Hazard Detection and Correction 
The SRC uses a hazard detection unit. The hazard can be resolved using either pipeline 
stalls or by data forwarding. 
 

Pipeline stalls 
 
Consider the following sequence of instructions going  
through the SRC pipeline 
200:  shl  r6, r3, 2 
204:  str r3, 32 
208:  sub r2, r4,r5 
212:  add r1,r2,r3 
216:  ld r7, 48 
There is a data hazard between instruction three and four  
that can be resolved by using pipeline stalls or bubbles 
 
When using pipeline stalls, nop instructions are placed in between dependent instructions. 
The logic behind this scheme is that if opcode in stage 2 and 3 are both alu, and if ra in 
stage 3 is the same as rb or rc in stage 2, then a pause signal is issued to insert a bubble 
between stage 3 and 2. Similar logic is used for detecting hazards between stage 2 and 4 
and stage 4 and 5. 
 
 

Data Forwarding 
By adding data forwarding mechanism to the SRC data path, the stalls can be completely 
eliminated at least for the ALU instructions. The hazard detection is required between 
stages 3 and 4, and between stages 3 and 5. The testing and forwarding circuits employ 
wider IRs to store the data required in later stages. The logic behind this method is that if 
the ALU is activated for both 3 and 5 and ra in 5 is the same as rb in 3 then Z5 which 
hold the currently loaded or calculated result is directly forwarded to X3. Similarly, if 
both are ALU operations and instruction in stage 3 does not employ immediate operands 
then value of Z5 is transferred to Y3. Similar logic is used to forward data between stage 
3 and 4. 
 

RTL for Hazard Detection and Pipeline Stall 
 
The following RTL expression detects data hazard between stage 2 and 3, then stalls 
stage 1 and 2 by inserting a bubble in stage 3 
 

    alu3&alu2&((ra3=rb2)~((ra3=rc2)&!imm2)): 

   (pause2, pause1, op3←0) 
 

Meaning: 
If opcode in stage 2 and 3 are both ALU, and if ra in stage 3 is same as rb or rc in stage 2, 
issue a pause signal to insert a bubble between stage 3 and 2 
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Following is the complete RTL for detecting hazards among ALU instructions in 
different stages of the pipeline 
 
 

Data Hazard 

between 

RTL for detection and stalling 

Stage 2 and 3 alu3&alu2&((ra3=rb2)~((ra3=rc2)&!imm2)): 

    (pause2, pause1, op3←0) 
Stage 2 and 4 alu4&alu2&((ra4=rb2)~((ra4=rc2)&!imm2)): 

    (pause2, pause1, op3←0) 
Stage 2 and 5 alu5&alu2&((ra5=rb2)~((ra5=rc2)&!imm2)): 

    (pause2, pause1, op3←0) 
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Lecture 21 

Instruction Level Parallelism 
 

Reading Material 
Vincent P. Heuring & Harry F. Jordan                                                            Chapter 5 
Computer Systems Design and Architecture                                                     5.2 
 

Summary 

 
• Data Forwarding Hardware 

• Instruction Level Parallelism 

• Difference between Pipelining and Instruction-Level Parallelism 

• Superscalar Architecture 

• Superscalar Design 

• VLIW Architecture 

 

Maximum Distance between two instructions 

Example 

Read page no. 219 of Computer System Design and Architecture (Vincent 

P.Heuring, Harry F. Jordan) 

Data forwarding Hardware 
The concept of data forwarding was introduced in the previous lecture. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

RTL for data 

forwarding in case of ALU instructions 
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Dependence RTL 

 

Stage 3-5 alu5&alu3:((ra5=rb3):X←Z5, 

(ra5=rc3)&!imm3: Y ← Z5); 
Stage 3-4 alu4&alu3:((ra4=rb3):X←Z4, 

(ra4=rc3)&!imm3: Y ← Z4); 
 

 

Instruction-Level Parallelism 
 
 

Increasing a processor’s throughput 

 
There are two ways to increase the number of instructions executed in a given time by a 
processor 

• By increasing the clock speed 

• By increasing the number of instructions that can execute in parallel 
 

Increasing the clock speed 

 

• Increasing the clock speed is an IC design issue and depends on the advancements in 
chip technology.  

• The computer architect or logic designer can not thus manipulate clock speeds to 
increase the throughput of the processor.  

 

Increasing parallel execution of instructions 

 

The computer architect cannot increase the clock speed of a microprocessor however 
he/she can increase the number of instructions processed per unit time. In pipelining we 
discussed that a number of instructions are executed in a staggered fashion, i.e. various 
instructions are simultaneously executing in different segments of the pipeline. Taking 
this concept a step further we have multiple data paths hence multiple pipelines can 
execute simultaneously. There are two main categories of these kinds of parallel 
instruction processors VLIW (very long instruction word) and superscalar. 

 

 

The two approaches to achieve instruction-level parallelism are 

– Superscalar Architecture 

 A scalar processor that can issue multiple instructions simultaneously is said to be 
superscalar 

– VLIW Architecture 



Advanced Computer Architecture-CS501                                            

Last Modified: 12-Jan-11                                                                                                  Page 220 

 A VLIW processor is based on a very long instruction word. VLIW relies on 
instruction scheduling by the compiler. The compiler forms instruction packets which can 
run in parallel without dependencies. 

 

 

Difference between Pipelining and Instruction-Level Parallelism 
 

           Pipelining     Instruction-Level Parallelism 

 

Single functional unit 

 

Multiple functional units 

Instructions are issued sequentially 

 

Instructions are issued in parallel 

Throughput increased by overlapping the 
instruction execution 

Instructions are not overlapped but 
executed in parallel in multiple functional 
units 

Very little extra hardware required to 
implement pipelining 

Multiple functional units within the CPU 
are required 

 

 

Superscalar Architecture 

 
 
A superscalar machine has following typical features 
• It has one or more IUs (integer units) , FPUs (floating point units), and BPUs (branch 

prediction units) 
• It divides instructions into three classes 

o Integer 
o Floating point 
o Branch prediction 

The general operation of a superscalar processor is as follows 
• Fetch multiple instructions 
• Decode some of their portion to determine the class 
• Dispatch them to the corresponding functional unit 
 
As stated earlier the superscalar design uses multiple pipelines to implement instruction 
level parallelism.  
 

Operation of Branch Prediction Unit 

 
• BPU calculates the branch target address ahead of time to save CPU cycles 
• Branch instructions are routed from the queue to the BPU where target address is 

calculated and supplied when required without any stalls 
• BPU also starts executing branch instructions by speculating and discards the results 

if the prediction turns out to be wrong 
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Superscalar Design 

 
The philosophy behind a superscalar design is  
• to prefetch and decode as many instructions as possible before execution  
• and to start several branch instruction streams speculatively on the basis of this 

decoding 
• and finally, discarding all but the correct stream of execution 
 
The superscalar architecture uses multiple instruction issues and uses techniques such as 
branch prediction and speculative instruction execution, i.e. it speculates on whether a 
particular branch will be taken or not and then continues to execute it and the following 
instructions. The results are not written back to the registers until the branch decision is 
confirmed. Most superscalar architectures contain a reorder buffer. The reorder buffer 
acts like an intermediary between the processor and the register file. All results are 
written onto the reorder buffer and when the speculated course of action is confirmed, the 
reorder buffer is committed to the register file. 
 

Superscalar Processors 

 
Examples of superscalar processors 
 

o PowerPC 601 
o Intel P6 
o DEC Alpha 21164 

 

VLIW Architecture 
 
VLIW stands for “Very Long Instruction Word” typically 64 or 128 bits wide. The longer 
instruction word carries information to route data to register files and execution units. 
The execution-order decisions are made at the compile time unlike the superscalar design 
where decisions are made at run time. Branch instructions are not handled very efficiently 
in this architecture. VLIW compiler makes use of techniques such as loop unrolling and 
code reordering to minimize dependencies and the occurrence of branch instructions.    
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Lecture No. 22 

Microprogramming 
 

Reading Material 

 
Vincent P. Heuring & Harry F. Jordan                                                            Chapter 5 
Computer Systems Design and Architecture                                                      5.3 

 

Summary 

• Microprogramming  

• Working of a General Microcoded Controller 

• Microprogram Memory 

• Generating Microcode for Some Sample Instructions 

• Horizontal and Vertical Microcode Schemes 

• Microcoded 1-bus SRC Design 

• The SRC Microcontroller 

 

Microprogramming 
 

In the previous lectures, we have discussed how to implement logic circuitry for a control 
unit based on logic gates. Such an implementation is called a hardwired control unit. In a 
micro programmed control unit, control signals which need to be generated at a certain 
time are stored together in a control word. This control word is called a microinstruction. 
A collection of microinstructions is called a microprogram. These microprograms 
generate the sequence of necessary control signals required to process an instruction. 
These microprograms are stored in a memory called the control store. 
As described above microprogramming or microcoding is an alternative way to design 
the control unit. The microcoded control unit is itself a small stored program computer 
consisting of 
� Micro-PC 
� Microprogram memory 
� Microinstruction word 

 

Comparison of hardwired and microcoded control unit 
 

Hardwired Control Unit Microcoded Control Unit 

The relationship between control 
inputs and control outputs is a series 
of Boolean functions. 

The control signals here are stored as words 
in a microcode memory. 

Hardwired control units are generally 
faster. 

Microcode units simplify the computer logic 
but it is comparatively slower. 

 



Advanced Computer Architecture-CS501                                            

Last Modified: 12-Jan-11                                                                                                  Page 223 

Working of a general microcoded controller 
 
A microcoded controller works in the same way as a small general purpose computer. 
1. Fetch a micro-instruction and increment micro-PC. 
2. Execute the instruction present in micro-IR. 
3. Fetch the next instruction and so on… 

 

The microcoded control unit is like 
a small computer in itself. It 
consists of a microprogram 
memory, which is read using a 
micro program counter. The micro 
PC is controlled by the 
microprogram controller. Values of 
the micro PC depends on a 4 to 1 
MUX. The source may be the 
incremented micro PC value, or a 
calculated branch value, or a value 
derived by decoding an opcode for 
an instruction. The microprogram 
memory writes the control word at 
the chosen address into the micro 
instruction register. This control word is basically the set of all the control signals needed 
to execute the instruction at that particular instant. 

 

Fields in the micro instruction 

 

 

 

C Bits 

These form the control signal 
field 
 

M Bits 
These form the branch address 
field 
 

B Bits 

These form the branch control 
field. 
 

Loading the micro-PC 
The micro-PC can be loaded from one of the four possible sources  

• Simple increment Steps sequentially from microinstruction to microinstruction 
• Lookup table A lookup table maps the opcode field to the starting address of the 

microcode routine that generates control signals. 
• External source Initializes micro-PC to begin an operation e.g. interrupts service, reset 

etc. 
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• Branch addresses Jumps anywhere in the microprogram memory on the basis of 
conditional or unconditional branch. 

 

Microprogram Memory 
 

• This small memory contains microroutines for all the instructions in the ISA 
• The micro-PC supplies the address and it returns the control word stored at that 

address 
• It is much faster and smaller than a typical main memory 

 

Layout of a typical microprogram memory 

 
 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Generating Microcode for Some Sample Instructions 
 
• The control word for an instruction is used to generate the equivalent microcode 
sequence 
• Each step in RTL corresponds to a microinstruction executed to generate the control 
signals.  
 
Each bit in the control words in the microprogram memory represents a control signal. 
The value of that bit decides whether the signal is to be activated or not. 

 

Example: Control Signals for the sub Instruction 

 

The first three addresses from 100 to 102 represent microcode for instruction fetch and 
the last three addresses from 203 to 205 represent microcode for sub instruction. In the 
first cycle at address 100, the control signal PCout, LMAR, LC, and INC4 are activated 
and all other signals are deactivated. All these control signals are for the SRC processor. 
So, if the micro-PC contains 100, the contents of microprogram memory are copied into 
the micro IR.  This corresponds to the structural RTL description of the T0 clock during 



Advanced Computer Architecture-CS501                                            

Last Modified: 12-Jan-11                                                                                                  Page 225 

instruction fetch phase. In the same way, the content of address 101 corresponds to T1, 
and the content of address 102 corresponds to T2.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Microprogram Controller functions: Branching and looping 

 
• Microprogram controller 
controls the sequence of 
the flow of 
microinstructions. 
• The inputs to the 
microcontroller are from 
the branch control fields 
specified in the microcode 
word. 
• Its output controls the 4 
to 1 multiplexer inside the 
microcoded control unit. 
• It implements 
conditional execution and 
both conditional and 
unconditional branch 
 
 
If a branch instruction is encountered within the microprogram hardwired logic selects 
the branch address as the source of micro-PC using 4 to 1 mux. This hardwired logic 
caters for all branch instructions including branch if zero. 

 

 

4-1 Multiplexer 
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The multiplexer supplies one of the four possible values to the micro-PC 
The incremented value of the micro-PC is used when dealing with the normal flow of 
microinstructions. 
The opcode from the instruction is used to set the micro-PC when a microroutine is 
initially being loaded.  
 
External address is used when it is required to reset the microprogram controller. 
Branch address is set into the micro-PC when a branch microinstruction is encountered. 
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How to form a branch 

 

• A branch can be implemented by choosing one alternative from each of the following 
two lists. 

• This scheme provides flexibility in choosing branches as we can form any combination 
of conditions and addresses.  
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Microcode Branching Examples 

 
Following is an example of branch instructions in microcode 
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Branching  
Action 

 
Equivalent  
C  
construct 

400 00 0 0 0 0 0 … xxx No branch,goto next 
address in sequence-401 

{…}; 

401 01 1 0 0 0 0 … xxx To the address supplied 
by opcode 

{…}; goto 
initial address; 

402 10 0 0 1 0 0 … xxx To external address if Z 
flag is set 

{…}; if Z then 
goto Ext. Add. 

403 11 0 0 0 0 1 … 200 To 200 if N flag is set, 
else to 404 

{…}; if N then 
goto Label1; 

404 11 0 0 0 1 0 000 406 To 406 if N is false, else 
to 405 

While (N) 
{...};              

405 11 1 0 0 0 0 … 404 Branch to 404 While contd… 

 

Similarity between microcode and high level programs 
 
• Any high level construct such as if-else, while, repeat etc. can be implemented using 

microcode  
• A variety of microcode compilers similar to the high level compilers are available that 

allow easier programming in microcode 
• This similarity between high level language and microcode simplifies the task of 

controller design.    

 

Horizontal and vertical microcode schemes 
 
In horizontal microcode schemes, there are no intermediate decoders and the control 
word bits are directly connected to their destination i.e. each bit in the control word is 
directly connected to some control signal and the total number of bits in the control word 
is equal to the total number of control signals in the CPU. 
Vertical microcode schemes employ an extra level of decoding to reduce the control 
word width. From an n bit control word we may have 2n bit signal values. 
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However, a completely vertical scheme is not feasible because of the high degree of fan 
out.  

 

 

 

Horizontal Microcode Scheme   

 
 

Vertical Microcode Scheme 

 
 

Microcoded 1-bus SRC design 

 

In the SRC the bits from the opcode in the instruction register are decoded to fetch the 
address of the suitable microroutine from the microprogram memory. The microprogram 
controller for the SRC microcoded control unit employs the logic for handling exceptions 
and reset process. Since the SRC does not have any condition codes, we use the CON and 
n signals instead of N and Z flags to control branches in case of branch if equal to zero or 
branch if less than instructions. 

 

The SRC Microprogram Controller 
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• The microprogram controller for the SRC microcoded control unit employs the logic 
for handling exceptions and reset process 
• Since the SRC does not have any condition codes, we use the CON and n signals 
instead of N and Z flags to control branches 
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Microcode for some SRC instructions 
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           RTL 

300 00 0 0 0 0 0 1 1 … xxx MAR� PC:    C � PC + 4; 
 

301 00 0 0 0 0 0 0 0 … xxx MBR� M[MAR]: PC � C; 

302 01 1 0 0 0 0 0 0 … xxx IR,Micro-PC�MBR<31…27>; 

400 00 0 0 0 0 0 0 0 … xxx A  �  R[rb]; 

401 00 0 0 0 0 0 0 0 … xxx C �  A + R[rc]; 

402 11 1 0 0 0 1 0 0 … 300 R[ra] � C; Micro-PC  �  300; 

 
 
Assume the first control word at address 300. The RTL of this instruction is MAR � PC 
combined with C �PC+4. To facilitate these actions the PCout signal bit and the LMAR 
signal bit are set to one, so that the value of the PC may be written to the internal 
processor  bus and written onto the MAR. The instructions at 300, 301 and 302 form the 
microcode for instructions fetch. If we examine the RTL we can see all the functionality 
of the fetch instruction. The value of PC is incremented, the old value of PC is sent to 
memory, the instruction from the sent address is loaded into memory buffer register. 
Then the opcode of the fetched instruction is used to invoke the appropriate microroutine. 
 

Alternative approaches to microcoding 
 

• Bit ORing 
• Nanocoding 
• Writable Microprogram Memory 
• Subroutines in Microprogramming 
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Lecture No. 23 

I/O Subsystems 
 
Reading Material 

 
Vincent P. Heuring & Harry F. Jordan                                                             Chapter 8                     
Computer Systems Design and Architecture                                                      8.1, 8.2                                             
 

Summary                                                                                                                                                                                                                                                         

 
• Introduction to I/O Subsystems 

• Major Components of an I/O Subsystems 

• Computer Interface 

• Memory Mapped I/O versus Isolated I/O 

• Considerations during I/O Subsystem Design 

• Serial and Parallel Transfers 

• I/O Buses 
 

Introduction to I/O Subsystems 

 
This module is about the computer’s input and output. As we have seen in the case of 
memory subsystems, that when we use the terms “ read”  and “write”, then these terms 
are from the CPU’s point of view. Similarly, when we use the terms “input” and “output” 
then these are also from the CPU’s point of view. It means that when we are talking about 
an input cycle, then the CPU is receiving data from a peripheral device and the peripheral 
device is providing data. Similarly, when we talk about an output cycle then the CPU is 
sending data to a peripheral device and the peripheral device is receiving data. I/O 
Subsystems are similar to memory subsystems in many aspects. For example, both 
exchange bits or bytes. This transfer is usually controlled by the CPU. The CPU sends 
address information to the memory and the I/O subsystems. Then these subsystems 
decode the address and decide which device should be involved in the transfer. Finally 
the appropriate data is exchanged between the CPU and the memory or the I/O device. 
Memory and I/O subsystems differ in the following ways: 

1. Wider range of data transfer speed:  
I/O devices can be very slow such as a keyboard in which case the interval between 
two successive bytes (or keystrokes) can be in seconds. On the other extreme, I/O 
devices can be very fast such as a disk drive sending data to the CPU or a stream of 
packets arriving over a network, in which case the interval between two successive 
bytes can be in microseconds or even nanoseconds. While I/O devices can have such 
a wide range of data transfer speed compared to the CPU’s speed, the case of memory 
devices is not so. Even if a memory device is slow compared to the CPU, the CPU’s 
speed can be made compatible by inserting wait states in the bus cycle. 
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2. Asynchronous activity:  
Memory subsystems are almost always synchronous. This means that most memory 
transfers are governed by the CPU’s clock. Generally this is not the case with I/O 
subsystems. Additional signals, called handshaking signals, are needed to take care of 
asynchronous I/O transfers. 
3. Larger degradation in data quality:  
Data transferred by I/O subsystems can carry more noise. As an example, telephone 
line noise can become part of the data transferred by a modem. Errors caused by 
media defects on hard drives can corrupt the data. This implies that effective error 
detection and correction techniques must be used with I/O subsystems. 
4. Mechanical nature of many I/O devices:  
Many I/O devices or a large portion of I/O devices use mechanical parts which 
inherently have a high failure rate. In case an I/O device fails, interruptions in data 
transfer will occur, reducing the throughput. As an example, if a printer runs out of 
paper, then additional bytes cannot be sent to it. The CPU’s data should be buffered 
(or kept in a temporary place) till the paper is supplied to the printer, otherwise the 
CPU will not be able to do anything else during this time. 

To deal with these differences, special software programs called device drivers are made 
a part of the operating system. In most cases, device drivers are written in assembly 
language. 
You would recall that in case of memory subsystems, each location uses a unique address 
from the CPU’s address space. This is generally not the case with I/O devices. In most 
cases, a group or block of contiguous addresses is assigned to an I/O device, and data is 
exchanged byte-by-byte. Internal buffers (memory) within the device store this data if 
needed. 
In the past, people have paid a lot of attention to improve the CPU’s performance, as a 
result of which the performance improvement of I/O subsystems was ignored. (I/O 
subsystems were even called the “orphans” of computer architecture by some people). 
Perhaps, many benchmark programs and metrics that were developed to evaluate 
computer systems focused on the CPU or the memory performance only. Performance of 
I/O subsystems is as important as that of the CPU or the memory, especially in today’s 
world. For example, the transaction processing systems used in airline reservation 
systems or the automated teller machines in banks have a very heavy I/O traffic, 
requiring improved I/O performance. To illustrate this point, look at the following 
example.  
Suppose that a certain program takes 200 seconds of elapsed time to execute.  Out of 
these 200 seconds, 180 seconds is the CPU time and the rest is I/O time. If the CPU 
performance improves by 40% every year for the next seven years because of 
developments in technology,  but the I/O performance stays the same, let us look at the 
following table, which shows the situation at the end of each year. Remember that  
Elapsed time = CPU time + I/O time. 
This gives us the I/O time = 200 – 180 = 20 seconds at the beginning, which is 10 % of 
the elapsed time. 
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Year # CPU  

Time 

I/O 

Time 

Elapsed 

Time 

   I/O Time x100  % 

Elapsed Time 

0 180 20 200 10 % 
1 129 20 149 13.42 % 
2 92 20 112 17.85 % 
3 66 20 86 23.25 % 
4 47 20 67 29.85 % 
5 34 20 54 37.03 % 
6 24 20 44 45.45 % 
7 17 20 37 54.05 % 

 
It can be easily seen that over seven years, the I/O time will become more than 50 % of 
the total time under these conditions.  Therefore, the improvement of I/O performance is 
as important as the improvement of CPU performance. I/O performance will also be 
discussed in detail in a later section. 
 

Major components of an I/O 

subsystem 
 
I/O subsystems have two major parts: 

• The I/O interface, which is the 
electronic circuitry that connects 
 the CPU to the I/O device. 

• Peripherals, which are the 
devices used to communicate with the 
 CPU, for example, the 
keyboard, the monitor, etc. 
 

Computer Interface 
 

A Computer Interface is a piece of hardware whose primary purpose is to connect 
together any of the following types of computer elements in such a way that the signal 
levels and the timing requirements of the elements are matched by the interface. Those 
elements are:  

• The processor unit  

• The memory subsystem(s)  

• Peripheral (or I/O) devices  

• The buses (also called "links")  
In other words, an interface is an electronic circuit that matches the requirements of the 
two subsystems between which it is connected. An interface that can be used to connect 
the microcomputer bus to peripheral devices is called an I/O Port. I/O ports serve the 
following three purposes:  
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• Buffering (i.e., holding temporarily) the data to and from the computer bus.  

• Holding control information that dictates how a transfer is to be conducted.  
 
 

• Holding status information so that the processor can monitor the activity of the 
interface and its associated I/O element.  

This control information is usually provided by the CPU and is used to tell the device 
how to perform the transfer, e.g., if the CPU wants to tell a printer to start a new page, 
one of the control signals from the CPU can be used for a paper advance command, 
thereby telling the printer to start printing from the top of the next page. In the same way 
the CPU may send a control signal to a tape drive connected in the system asking it to 
activate the rewind mechanism so that the start of the tape is positioned for access by the 
CPU. Status information from various devices helps the CPU to know what is going on in 
the system.  Once again, using the printer as an example, if the printer runs out of paper, 
this information should be sent to the CPU immediately.  In the same way, if a hard drive 
in the system crashes, or if a sector is damaged and cannot be read, this information 
should also be conveyed to the CPU as soon as possible 
The term “buffer” used in the above discussion also needs to be understood. In most 
cases, the word buffer refers to I/O registers in an interface where data, status or control 
information is temporarily stored. A block of memory locations within the main memory 
or within the peripheral devices is also called a buffer if it is used for temporary storage. 
Special circuits used in the interfaces 
for voltage/current matching, at the 
input and the output, are also called 
buffers.  
The given figure shows a block 
diagram of a typical I/O subsystem 
connected with the other components 
in a computer.   The thick horizontal 
line is the system bus that serves as a 
back-bone in the entire computer 
system. It is used to connect the 
memory subsystems as well as the I/O 
subsystems together. The CPU also 
connects to this bus through a “bus 
interface unit”, which is not shown in 
this figure.  Four I/O modules are 
shown in the figure.  One module is 
used to connect a keyboard and a 
mouse to the system bus. A second 
module connects a monitor to the 
system bus. Another module is used 
with a hard disk and a fourth I/O 
module is used by a modem.  All these 
modules are examples of I/O ports. A 
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somewhat detailed view of these modules is shown in the next figure. 
As we already know that the system bus actually consists of three buses, namely the 
address bus, the data bus and the control bus. These three buses are being applied to the 
I/O module in this figure. At the bottom, we see a set of data, status and control lines 
from each “device interface logic” block.  Each of these sets connects to a peripheral 
device.  I/O decoding logic is also shown in this figure. 
 

Memory Mapped I/O versus Isolated I/O 
 

Although this concept was explained earlier as 
well, it will be useful to review it again in this 
context.  In isolated I/O, a separate address 
space of the CPU is reserved for I/O 
operations.  This address space is totally 
different from the address space used for 
memory devices. In other words, a CPU has 
two distinct address spaces, one for memory 
and one for input/output. Unique CPU 
instructions are associated with the I/O space, 
which means that if those instructions are 
executing on the CPU, then the accessed 
address space will be the I/O space and hence 
the devices mapped on the I/O space. 
The x86 family with the in and the out 
instructions is a well known example 
of this situation. Using the in 

instruction, the Pentium processor can 
receive information from a peripheral 
device, and using the out instruction, 
the Pentium processor can send 
information to a peripheral device. 
Thus, the I/O devices are mapped on 
the I/O space in case of the Pentium 
processor. In some processors, like the 
SRC, there is no separate I/O space.  In 
this case, some address space out of 
the memory address space must be used to map I/O devices. The benefit will be that all 
the instructions which access memory can be used for I/O devices.  There is no need for 
including separate I/O instructions in the ISA of the processor.  However, the 
disadvantage will be that the I/O interface will 
become complex. If partial decoding is used to 
reduce the complexity of the I/O interface, 
then a lot of memory addresses will be 
consumed. The given figure shows the 
memory address space as well as the I/O 
address space for the Pentium processor.  The 
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I/O space is of size 64 Kbytes, organized as eight banks of 8 Kbytes each. 
A similar diagram for the FALCON-A was shown earlier and is repeated here for easy 
reference. 
The next question to be answered is how the CPU will differentiate between these two 
address spaces. How will the system components know whether a particular transfer is 
meant for memory or an I/O device? The answer is simple: by using signals  
 
from the control bus, the CPU will indicate which address space is meant during a 
particular transfer.  Once again, using the Pentium as an example, if the in instruction is 
executing on the processor, the IOR# signal will become active and the MEMR# signal 
will be deactivated.  For a mov instruction, the control logic will activate the MEMR# 
signal instead of the IOR# signal.  

 

Considerations during I/O Subsystem Design 
 

Certain things must be taken care of during the design of an I/O subsystem. 
Data location:  
The designer must identify the device where the data to be accessed is available, the 
address of this device and how to collect the data from this device. For example, if a 
database needs to be searched for a record that is stored in the fourth sector of the second 
track of the third platter on a certain hard drive in the system, then this information is 
related to data location.  The particular hard drive must be selected out of the possibly 
many hard drives in the system, and the address of this record in terms of platter number, 
track number and sector number must be given to this hard drive.  
Data transfer:  
This includes the direction of transfer of data; whether it is out of the CPU or into the 
CPU, whether the data is being sent to the monitor or the hard drive, or whether it is 
being received from the keyboard or the mouse. It also includes the amount of data to be 
transferred and the rate at which it should be transferred. If a single mouse click is to be 
transferred to the CPU, then the amount of data is just one bit; on the other hand, a block 
of data for the hard drive may be several kilo bytes.  Similarly, the rate of the transfer of 
data to a printer is very different from the transfer rate needed for a hard drive. 
Data synchronization: 
This means that the CPU should input data from an input device only when the device is 
ready to provide data and send data to an 
output device only when it is ready to receive 
data.  
There are three basic schemes which can be 
used for synchronization of an I/O data 
transmission: 

• Synchronous transmission 

• Semi-synchronous transmission 

• Asynchronous transmission 
Synchronous transmission:  

This can be understood by looking at the 
waveforms shown in Figure A. 
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M stands for the bus master and S stands for the slave device on the bus. The master and 
the slave are assumed to be permanently connected together, so that there is no need for 
the selection of the particular slave device out of the many devices that may be present in 
the system. It is also assumed that the slave device can perform the transfer at the speed 
of the master, so no handshaking signals are needed.  
 
At the start of the transfer operation, the master activates the Read signal, which indicates 
to the slave that it should respond with data. The data is provided by the slave, and the 
master uses the Enable signal to latch it. All 
activity takes place synchronously with the 
system clock (not shown in the figure). A 
familiar example of synchronous transfer is a register-to-register transfer within a CPU. 

Semi-synchronous transmission:  

Figure B explains this type of transfer. All activity is still synchronous with the system 
clock, but in some situations, the slave device 
may not be able to provide the data to the 
master within the allotted time. The additional 
time needed by the slave, can be provided by 
adding an integral number of clock periods to 
the master’s cycle time. 
The slave indicates its readiness by activating 
the complete signal. Upon receiving this 
signal, the master activates the Enable signal 
to latch the data provided by the slave. 
Transfers between the CPU and the main 
memory are examples of semi-synchronous 
transfer. 

Asynchronous transmission: 

This type of transfer does not require a 
common clock. The master and the slave 
operate at different speeds. Handshaking  
signals are necessary in this case, and are used 
to coordinate the data transfer between the 
master and the slave as shown in the Figure C. 
When the master wants to initiate a data 
transfer, it activates its Ready signal. The 
slave detects this signal, and if it can provide 
data to the master, it does so and also activates 
its Acknowledge signal. Upon receiving the 
Acknowledge signal, the master uses the 
Enable signal to latch the incoming data .The 
master then deactivates its Ready line, and in 
response to it, the slave removes its data and 
deactivates its Acknowledge line. 
In all the three cases discussed above, the 
waveforms correspond to an “input” or a “read”  

Figure A 

Figure A 

Figure B 

Figure C 
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operation. A similar explanation will apply to an “output” or a “write” operation. It 
should also be noted that the latching of the incoming data can be done by the master 
either by using the rising edge of the Enable signal or by using its falling-edge. This will 
depend on the way the intermediate circuitry between the master and the slave is 
designed. 
 

 

 

Serial and Parallel Transfers 
 

There are two ways in which data can be transferred between the CPU and an I/O device: 
serial and parallel. 
Serial Transfer, or serial communication of data between the CPU and the I/O devices, 
refers to the situation when all the data bits in a "piece of information", (which is a byte 
or word mostly), are transferred one bit at a time, over a single pair of wires.  
Advantages:  

• Easy to implement, especially by using UARTs7 or USARTs8.  

• Low cost because of less wires.  

• Longer distance between transmitter and receiver. 
Disadvantages:  

• Slow by its very nature.  

• Inefficient because of the associated overhead, as we will see when we discuss the 
serial wave forms. 

Parallel Transfer, or parallel communication of data between the CPU and the I/O 
devices, refers to the situation when all the bits of data (8 or 16 usually), are transferred 
over separate lines simultaneously, or in parallel.  
Advantages:  

• Fast (compared to serial communication) 
Disadvantages:  

• High cost (because of more lines).  

• Cost increases with distance.  

• Possibility of interference (noise) increases with distance.  
Remember that the terms "serial" and "parallel" are with respect to the computer I/O 
ports and not with respect to the CPU.  The CPU always transfers data in parallel.  

Types of serial communication 

There are two types of serial communication: 
            Asynchronous:  

• Special bit patterns separate the characters.  

• "Dead time" between characters can be of any length.  

• Clocks at both ends need not have the same frequency (within permissible 
limits).  

Synchronous:  

                                                 
7 Universal Asynchronous Receiver Transmitter. 
8 Universal Synchronous Asynchronous Receiver Transmitter. 
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• Characters are sent back to back.  

• Must include special "sync" characters at the beginning of each message.  

• Must have special "idle" characters in the data stream to fill up the time 
when no information is being sent.  

• Characters must be precisely spaced.  

• Activity at both ends must be coordinated by a single clock. (This implies 
that the clock must be transmitted with data).  

 
 
The "maximum information rate" of a synchronous line is higher than that of an 
asynchronous line with the same "bit rate", because the asynchronous transmission must 
use extra bits with each character. Different protocols are used for serial and parallel 
transfer. A protocol is a set of rules understood by both the sender and the receiver. In 
some cases, these protocols can be predefined for a certain system.   As an alternate, 
some available standard protocols can be used. 

Error conditions related to serial communication 

(Some related to synchronous transmission, some to asynchronous, and some to both).  

• Framing Error: is said to occur when a 0 is received instead of a stop bit (which is 
always a 1). It means that after the detection of the beginning of a character with a 
start bit, the appropriate number of stop bits was not detected. [A]  

• Parity Error: is said to occur when the parity* of the received data is not the same 
as it should be. [B] (PARITY is equivalent to the number of 1's; it is either EVEN 
or ODD. A PARITY BIT is an extra bit added to the data, for the purpose of error 
detection and correction. If even parity is used, the parity bit is set so that the total 
number of 1’s, including the parity bit, is even. The same applies to odd parity.) 

• Overrun Error: means that the prior character that was received, was not yet read 
from the USART's "receive data register" by the CPU, and is overwritten by the 
new received character. Thus the first character was lost, and should be 
retransmitted. [A] 

• Under-run Error: If a character is not available at the beginning of an interval, an 
under-run is said to occur. The transmitter will insert an idle character till the end 
of the interval. [S] 

 

I/O Buses 
 
The block diagram of a general purpose 
computer system that has been referred to 
repeatedly in this course has three buses 
in addition to the three most important 
blocks. These three buses are collectively 
referred to as the system bus or the 
computer bus9. The block diagram is 

                                                 
9 In some cases, the external CPU bus is the same as the system bus, especially in the case of small, 
dedicated systems. However, for most systems, there is a “bus interface unit” between the CPU and the 
system bus. The bus interface unit is not shown in the figure. 

The bus interface 
unit is usually 
between the CPU 

and System bus. 

Computer Bus or     
System Bus 
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repeated here for an easy reference in Figure 1. 
Another organization that is used in modern computers is shown in Figure 2. It has a 
memory bus for connecting the CPU to the memory subsystem. This bus      
is separate from the I/O bus that is used to connect peripherals and I/O devices to the 
system.   
Examples of I/O buses include the PCI bus and the ISA bus. These I/O buses provide an 
“abstract interface” that can be used for interfacing a large variety of peripherals to the 
system with minimum hardware. It is also possible to standardize I/O buses, as done by 
several agencies, so that third party manufacturers can build add-on sub systems for 
existing architectures.  
 
The location of these I/O buses may be different in different  
computers. 
Earlier generation computers used a 
single bus over which the CPU could 
communicate with the memory as well 
as the I/O devices. This meant that the 
bandwidth of the bus was shared 
between the memory and I/O devices. 
However, with the passage of time, 
computer architects drifted towards 
separate memory and I/O buses, 
thereby giving more flexibility to users 
wanting to upgrade their existing 
systems. 
A main disadvantage of I/O buses (and 
the buses in general) is that every bus has a fixed bandwidth which is shared by all 
devices on the bus. Additionally, electrical constraints like transmission line effects and 
bus length further reduce the bandwidth. As a result of this, the designer has to make a 
decision whether to sacrifice interface simplicity (by connecting more devices to the bus) 
at the cost of bandwidth, or connect fewer devices to the bus and keep things simple to 
get a better bandwidth. This can be explained with the help of an example. 

Example # 1 
Problem statement: 
Consider an I/O bus that can transfer 4 bytes of data in one bus cycle. Suppose that a 
designer is considering to attach the following two components to this bus: 
Hard drive, with a transfer rate of 40 Mbytes/sec 
Video card, with a transfer rate of 128 Mbytes/sec.  
What will be the implications? 
Solution: 
The maximum frequency of the bus is 30 MHz10. This means that the maximum 
bandwidth of this bus is 30 x 4 = 120 Mbytes/sec.  Now, the demand for bandwidth from 
these two components will be 128 + 40 =168 Mbytes/sec which is more than the 120 

                                                 
10 These numbers correspond to an I/O bus that is relatively old. Modern systems use much faster buses 
than this. 

Figure 1 

Figure 2 

Figure 1 
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Mbytes/sec that the bus can provide.  Thus, if the designer uses these two components 
with this bus, one or both of these components will be operating at reduced bandwidth. 

Bus arbitration: 

Arbitration is another issue in the use of I/O buses.  Most commercially available I/O 
buses have protocols defining a number of things, for example how many devices can 
access the bus, what will happen if multiple devices want to access the bus at the same 
time, etc. In such situations, an “arbitration scheme” must be established. As an example, 
in the SCSI11 specifications, every device in the system is assigned an ID which identifies 
the device to the “bus arbiter”. If multiple devices send a request for the bus, the device 
with the highest priority will be given access to the bus first. Such a scheme is easy to 
implement because the arbiter can easily decide which device should be given access to 
the bus, but its disadvantage is that the device with a low priority will  
 
 
not be able to get access to the bus12.  An alternate scheme would be to give the highest 
priority to the device that has been waiting for the longest time for the bus. As a result of 
this arbitration, the access time, or the latency, of such buses will be further reduced.  
Details about the PCI and some other buses will be presented in a separate section. 

Example # 2 
Problem statement: 
If a bus requires 10 nsec for bus requests, 10 nsec for arbitration and the average time to 
complete an operation is 15 nsec after the access to the bus has been granted, is it 
possible for such a bus to perform 50 million IOPS? 
Solution: 
For 50 million IOPS, the average time for each IOP is 1 / (50 x 106) =20 nsec.  Given the 
information about the bus, the sum of the three times is 10 + 10 + 15 = 35 nsec for a 
complete I/O operation.  This means that the bus can perform a maximum of 1 / (35 x 10-

9) = 28.6 million IOPS.   
Thus, it will not be able to perform 50 million IOPS. 
  
 
 
 
 
 

                                                 
11 Small Computer System Interface. 
12 Such a situation is called “starvation”. 
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Lecture No. 24 

Designing Parallel Input and Output Ports 
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• Designing Parallel I/O Ports 

• Practical Implementation of the SAD 

• NUXI Problem 

• Variation in the Implementation of the Address Decoder 

• Estimating the Delay Interval 
 

Designing Parallel I/O Ports 
 

This section is about designing parallel input and output ports.  As you already know 
from the previous discussion, an interface that is used to connect the computer bus with 
I/O devices is called an I/O port. This I/O port can be connected directly to the computer 
bus (also called the system bus) or through an intermediate bus called the I/O bus. This 
intermediate bus is also called the expansion bus or the peripheral bus. In any case, the 
following general information about I/O bus cycles on a typical CPU should be kept in 
mind: At the start of a particular bus cycle (which will be an I/O bus cycle in this case), 
the CPU places an address on its address bus. This address will identify the I/O device to 
be involved in the transfer. After some time the CPU will activate certain control signals, 
which will indicate whether the particular I/O bus cycle, is an I/O read or an I/O write 
cycle. Based on these control signals, in case of I/O read cycle, the CPU will be 
expecting data from the selected input device over the data bus, and for an I/O write cycle 
the CPU will provide data to the selected device over the data bus. At the end of this I/O 
bus cycle, the address (and data) information will be removed from the buses and the 
control signals will be reset.   It can be easily understood from this discussion that we 
must match the timing requirements of the I/O ports to be designed with the timing 
parameters of the given CPU. Additionally, the voltage and current requirements of the 
I/O ports must be matched with the voltage and current specifications of the CPU.  For 
simplicity, we ignore the voltage and current matching details in this discussion and only 
focus on the logic levels and timing aspects of the design. Voltage and current related 
discussions are the topic of an electronics course. 
Thus, there are two important functions which should be built into I/O ports. 
      1. Address decoding 

2. Data isolation for input ports or data capturing for output ports. 
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1. Address decoding:  Since every I/O port has a unique identifier associated with it, 
(which is called its address, and no other port in the system should have the same 
address), by monitoring the system address bus, the I/O port knows when it is its turn to 
participate in a transfer.  At this time, the address decoder within the I/O port generates 
an asserted output which can be applied to the enable input of tri-state buffers in input 
ports or the latch enable input of latches in output ports.  
Our definition of an address decoder: 
An "Address Decoder" is a combinational (logic) 
circuit with n + r inputs and a single output, 
where 

n = the number of address lines into the 
decoder, and 

r = the number of control lines into the 
decoder.  
The output fD is active only when the 
corresponding address is present on the n address 
lines and the corresponding r control lines hold 
the "proper" (active or inactive) value. fD is 
inactive for all other situations. 
Suggestions for address decoder design: 
1.1 Start by thinking of the address decoder as a 
“big AND gate”.  We will call this a “skeleton 
address decoder” or SAD.  The output of the SAD will be active only when the correct 
address is present on the system address bus and the relevant control bus signals hold the 
proper values.  At all other times, the output of the SAD should be deactivated. 
1.2 Always write the port address of the port to be designed in binary. Associate the 
CPU’s address lines with each bit. Those lines which are zero will be inverted before 
being fed into the “big AND gate”; other address lines will not be inverted. 
1.3 List the relevant control signals for the system to which the port is to be attached. If 
the “proper” value of the signal is 0, it should be inverted before applying to the SAD, 
otherwise it is fed directly into the SAD. 
1.4 Determine whether the decoder output should be active high or low.  This will depend 
on the type of latch or buffer used in the design. If an active low decoder output is 
needed, invert the output from the “big AND gate”. 
1.5 Once the logic for the address decoder is established, the SAD can be implemented 
using any of the available methods of logic design.  For example, HDL code in Verilog or 
VHDL can be generated and the address decoder can be implemented using PLDs.  
Alternately, the SAD can be implemented using SSI building blocks. 
2. Data isolation or capturing: For input ports, the in coming data should be placed on 
the data bus only during the I/O read bus cycle. At all other times, this data should be 
isolated from the data bus otherwise it will cause “bus contention”. Tri-state buffers are 
used for this purpose. Their input lines are connected to the peripheral device supplying 
data and their output lines are connected to the data bus. The common enable line of such 
buffers is driven with the output of the SAD. If this enable is active low, the output of the 
big AND gate in the SAD should be inverted, as described earlier. 
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For output ports, data is made available for the peripheral device at the data bus during 
the I/O write bus cycle. During other bus cycles, this data will be removed from the data 
bus by the processor. Latches (or registers) are used for this purpose. Their input lines are 
connected to the system data bus and their output lines are connected to the peripheral 
device receiving data. The common clock (or latch enable) line of such latches is driven 
with the output of the SAD. If this clock is active low, the output of the big AND gate in 
the SAD should be inverted. 

Example # 1 
Problem Statement:  
Design a 16-bit parallel output port mapped on address DEh of the I/O space of the 
FALCON-A CPU. 
Solution:  
Using the guidelines mentioned above, we start with a 
“big AND gate” (SAD) and write the address to be 
decoded (DEh) in binary. 
Thus, DEh → 1101 1110 b. Associating one CPU address 
line with each bit, we get A0 = 0, A1=1, etc as shown in 
the table below. 
Because the I/O space on the FALCON-A is only 256 
bytes, address lines A15 .. A8 are don’t cares, and will not be 
used in this design. 
  

1 1 0 1 1 1 1 0 

A7 A6 A5 A4 A3 A2 A1 A0 

 
Thus, A0 and A5 will be applied to the “big AND gate” after inversion.  The remaining 
address lines will be connected directly to the inputs of the SAD. 
Next, we look at the relevant control signals. The only signal which should be used in this 
case is IOW#.  A logic 0 (zero) on this line indicates that 
it is active.  Thus, it should be inverted before being 
applied to the input of the SAD. 
We can easily see that our SAD intuitively conforms to 
the way we defined an address decoder.  Its output is a 1 
only when the address (xxxx xxxx 1101 1110 b) is 
present on the FALCON-A’s address bus during an I/O 
write cycle (By the way, this will take place when the 
instruction out reg, addr with addr=DEh or 222d is 
executing on the FALCON-A). At all other times, its output will 
be inactive.  
To make things simple, we use a circle (or a bubble) to indicate 
an inverter, as shown .Since this is a 16-bit output port, we will 
use two 8-bit registers to capture data from the FALCON-A’s 
data bus. The output of the SAD will be connected to the enable 
inputs of the two registers. The D-inputs of the registers will be 
connected to the data bus and the Q outputs of the registers will 
be connected to the peripheral device. 
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Practical implementation of the SAD 
 
Our SAD in this design is an AND gate with 9 inputs.  Using SSI chips, we can 
implement this SAD using an 8-input AND gate and a 2-input AND gate as shown in the 
figure shown below. 

Displaying output data using LED branches: 

An “LED branch” is a combination of a resistor and a light emitting diode (LED) in 
series. Sixteen LED branches can be used to display the output data captured by the 
registers as shown in the figure below. 
 

 
Example # 2 

Problem statement: 
Given a 16-bit parallel output port attached with the FALCON-A CPU as shown in the 
figure.  The port is mapped onto address DEh of the FALCON-A’s I/O space.  Sixteen 
LED branches are used to display the data being received from the FALCON-A’s data 
bus. Every LED branch is wired in such a way that when a 1 appears on the particular 
data bus bit, it turns the LED on; a 0 turns it off. 
Which LEDs will be ON when the instruction  

 out r2, 222 
13

 

executes on the CPU? Assume r2 contains 1234h. 
Solution: 
Since r2 contains 1234h, the bit pattern corresponding to this value will be sent out to the 
output port at address 222 (or DEh).  This is the address of the output port in this 

                                                 
13 Depending on the way the assembler is written, the syntax of the out instruction may allow only the 
decimal form of the port address, or only the hexadecimal form, or both. Our version of the assembler for 
the FALCON-A allows the decimal form only.  It also requires that the port address be aligned on 16-bit 
“word boundaries”, which means that every port address should be divisible by 2.  
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example. Writing the bit pattern in binary will help us determine the LEDs which will be 
ON. 
 
Now 1234h gives us the following bit associations with the data bus  
 

0 0 0 1 0 0 1 0 0 0 1 1 0 1 0 0 
D15 D14 D13 D12 D11 D10 D9 D8 D7 D6 D5 D4 D3 D2 D1 D0 

MSB at address DEh LSB at address DFh 

 
Note that the 8-bit register which uses lines D15 .. D8 of the FALCON-A’s data bus is 
actually mapped onto address DEh of the I/O space.  This is because the architect of the 
FALCON-A had chosen a “byte-wide” (i.e., x8) organization of the address space, a 16-
bit data bus width, and the “big-endian” data format at the ISA design stage. 
Additionally, data bus lines D15...D8 will transfer the data byte of higher significance 
(MSB) using address DEh,  and D7...D0 will transfer the data byte of lower significance 
(LSB) using address DFh. Thus the LEDs at L12, L9, L5, L4 and L2 will turn on. 

 

The NUXI Problem 
 

It can be easily understood from the previous example that the big-endian format results 
in the least significant byte being transferred over the most significant side of the data 
bus, and vice versa.  The situation will be exactly opposite when the little-endian format 
is used.  In this case, the least significant byte will be transferred over the least side of the 
data bus. Now imagine a computer using the little-endian format exchanging data with a 
computer using the big-endian format over a 16-bit parallel port. (this may be the case 
when we have a network of different types of computer, for example).  The data 
transmitted by one will be received in a “swapped” form by the other, eg., the string 
“UN” will be received as “NU” and the string “IX” will be received as “XI”.  So UNIX 
changes to NUXI --- hence the name NUXI problem.  Special software is used to resolve 
this problem. 

 

Variation in the Implementation of the Address Decoder 
 
The implementation of the address decoder shown in Example #1(lec24) assumes that the 
FALCON-A does not allow the use of some part of its data bus during an I/O (or 
memory) transfer. Another restriction that was imposed by the assembler was that all port 
addresses should be divisible by 2. This implies that address line A0 will always be zero. 
If the FALCON-A architect had allowed the use some of part of its data bus (eg, 8-bits) 
during a transfer, the situation would be different. 
The logic diagram shown in the next figure is a 16-bit parallel output port at the same 
address (DEh) for the FALCON-A assuming that part of its data bus (D15..D8) or 
(D7..D0) can be used independently during an I/O transfer. Note that the enable inputs of 
the two 8-bit registers are not connected together in this case.  Moreover, since the 16-bit 
port uses two addresses, address line A0 will be at a logic 0 for address DEh, and at a 
logic 1 for address DFh. This means that it cannot be used at the input of the big AND 
gate.  So, A0 has been used in a different position with the two 2-input AND gates. The 
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2-input AND gate where A0 is applied after inversion will generate a 1 at its output when 
A0 = 0.  Thus, this output will enable the 8-bit register mapped on the even address DEh.  
In case of the other AND gate, A0 is not inverted. So the corresponding 8-bit register will 
be mapped on the odd address DFh.  The input that became available after removing A0 
from its old position can be used for the IOW# control signal. The rest of the circuit is the 
same as it was in the previous figure. 

 
 
We can understand from the above discussion that the decisions made at the time of ISA 
design have a strong bearing on the implementation details and the working of the 
computer. Suppose we assume that the assembler developer had decided not to restrict 
the port addresses to even values, then what will be the implications? 
As an example, consider the execution of the instruction out r2, 223 assuming r2 
contains 1234h.  This is a 16-bit transfer at address 223 (DFh) and 224 (E0h).  
For the output port (shown in the first figure) where the CPU does not allow the use of 
some part of its data bus in a transfer, none of the registers will be enabled as a result of 
this instruction because the output of the 8-input AND gate will be a zero for both 
addresses DFh and E0h. Thus, that output port cannot be used. 
In the second figure, where the CPU has allowed to use a portion of its data bus in an I/O 
transfer, the register at the address DEh will not be enabled. The CPU will send the high 
data byte(12h) to the register at the address DFh (because it will be enabled at that time 
due to the address DFh) over data lines D7…D0. The fact that data lines D7…D0 should 
be used for the transfer of high byte, will be taken care of by the hardware, internal to the 
CPU. 
Now the question is where the low data byte (i.e. 34h) present at D15…D8 data lines 
would be placed? If there exists an output port at address E0h in the system, then 34h will 
be placed there (in the next bus cycle), otherwise it will be lost. Again, it is the CPU’s 
responsibility to check whether the next address in the system exists or not and if exists 
then enable that port so that the low byte of data can be placed there. 
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A possible option for the architect in this case would be to revisit the design steps and 
allow the use of part of the CPU registers (or at least for some of them) for I/O transfers. 
The logic diagram shown below shows an 8-bit parallel output port at address FEF2h of 
the Pentium’s I/O address space.  Since the Pentium allows the use of some part of its 
data bus during a transfer, we can use the BE2# signal in the address decoder to enable 
the 8-bit register. The following instructions will access this output port. 
 mov dx, 0FEF2h 
 mov al, 12h 
 out dx, al 
 

 
 
The Pentium does allow the use of some part of its 32-bit accumulator register EAX. In 
case only 8-bits are to be transferred, register AL can be used, as shown in the program 
fragment above. The data byte 12h will be sent to the 8-bit register over lines D23..D16. 
Since 12h corresponds to 0001 0010 in binary, this will cause the LEDs L4 and L1 to turn 
on.  

Example # 3 

Problem statement: 
Write an assembly language program to turn on the 16 LEDs one by one on the output 
port of Example #1(lec24). Each LED should stay on for a noticeable duration of time. 
Repeat from the first LED after the last LED is turned on. 
Solution: 
The solution is shown in the text box with a filename:  Example_3.asmfa. The working of 
this program is explained below: 
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The first two instructions turn all the LEDs off by sending a 0 to each bit of the output 
port at address 222. 

mov r1,0 
out r1,222 

 
Then a 1 is sent to L0 causing it to turn on, and the program enters a loop which executes 
15 times to cause the other LEDs 
(L1 through L15) to turn on, one by 
one in sequence. Register r5 is 
being used as loop counter. The 
following three instructions 
introduce a delay between 
successive bit patterns sent to the 
output port, so that each LED stays 
on for a noticeable duration of time. 
delay1: movi r2,0 
again1: subi r2,r2,1 
       jnz r2,[again1] 
Starting with a value of 0 in r2 14, 
this value is decremented to FFFFh 
when the again1 loop is entered. 
The jnz instruction will cause r2 to 
decrement again and again; thereby 
executing the loop 65,535 times. An 
estimate of the delay interval is 
presented at the end of this section. 
After this delay, all the LEDs are 
turned off, and a second delay loop 
executes. Finally, the next LED on 
the left, in sequence, is turned on by 
the following two instructions: 

shiftl r1,r1,1 
out r1, 222 

After the left most LED is turned 
on, the process starts all over again 
because of the last jump 
instruction. The outermost loop 
executes indefinitely. 

 

Estimating the Delay 

Interval 
 

                                                 
14 this is necessary because the immediate operand with the movi instruction of the FALCON-A has a 
range of 0h to FFh. This will not give us the large loop counter that we need here. So we use the above 
software trick. An alternate way would be to use nested loops, but that will tie up additional CPU registers. 

; filename: Example_3.asmfa 
; 
;ALL LEDS ARE turned Off initially 
; 
     movi r1,0 
     out r1,222 
; 
;First LED will be turned on each time 
; 
start:  movi r1,1 
 out r1,222 
; 
 movi r5,15      
;           
;DELAY LOOP 
; 
delay1: movi r2,0 
again1: subi r2,r2,1 
        jnz r2, [again1] 
; 
     movi r3,0 ; TURN OFF ALL LEDS 
     out r3,222 
; 
delay2: movi r2,0 
again2: subi r2,r2,1 
   jnz r2, [again2] 
; 
  shiftl r1,r1,1 ; next LED ON 
 out r1,222 
 subi r5,r5,1 
 jnz r5, [delay1] 
 jump [start] 

 halt 
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To make things simple, assume that the FALCON-A is operating at a clock frequency of 
1 MHz. Also, assume that the subi and the jnz instructions take 3 and 4 clock periods, 
respectively, to execute. Since these two instructions execute 65,535 times each, we can 
use the following formula to compute the execution time of this loop: 
 
   
 
 
        ET = CPI x IC x T = CPI x IC / f 
where 
  CPI = clocks per instruction 
  IC    = instruction count 
  T      = time period of the clock, 

and 
  f = frequency of the clock. 
Using the assumed values, we get 
 
 ET =   (3+4) x 65535 / (1x106 )  =  0. 

459 sec 
Since the movi r2, 0 instruction executes 
only once, the time it takes to execute is 
negligible and has been ignored in this 
calculation. 
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Lecture No. 25 

Input Output Interface 
Reading Material 

 
          Handouts                                                                                                        Slides 
 

Summary                                                                                                                                                                  

 
• Designing a Parallel Input Port 

• Memory Mapped I/O Ports 

• Partial Decoding and the “wrap around” Effect 

• Data Bus Multiplexing 

• A generic I/O Interface 

• The Centronics Parallel Printer Interface 
 

Designing a parallel input port 
 
The following example illustrates a number of important concepts. 

Example # 1 

Problem statement:  
Design an 16-bit parallel input port mapped on address 7Eh of the I/O space of the 
FALCON-A CPU.  
Solution: 
The process of designing a parallel input port is very similar to the design of a parallel 
output port except for the following differences: 

1. The address in this case is 7Eh, which is different from the previous value.  
Hence, the address decoder will have the inputs A7 and A0 inverted, while the 
other address lines at its input will not be inverted. 

2. Control bus signal IOR# will be used instead of the signal IOW#. 
3. A set of sixteen tri-state buffers will be used for data isolation.  Their common 

enable line will be connected to the output of the big AND gate (in the figure, fD 
is being inverted because Enable is active low). The input of these buffers can be 
connected to the input device and the output is connected to the FALCON-A’s 
data bus.   

In this example, switches S15...S0 are used to simulate the input data. The complete logic 
circuit is shown in the next two figures. 
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In the second figure, the CPU is assumed to allow the use of some part of its data bus 
during a transfer, while in the first figure it is not allowed. 

 

 
 

Example # 2 
Problem statement: 
Given a FALCON-A processor with a 16-bit parallel input port at address 7Eh and a 16-
bit parallel output port at address DEh.  Sixteen LED branches are used to display the 
data at the output port and sixteen switches are used to send data through the input port. 
Write an assembly language program to continuously monitor the input port and blink the 
LED or LED(s) corresponding to the switch (es) set to logic 1. For example, if S0 and S2 
are set to 1, then only the LEDs L0 and L2 should blink.  If S7 is also set to logic 1 later, 
then L7 should also start blinking. 
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Solution: 
The program is shown in the text box with 
filename: Example_2. It works as explained 
below: 
The first two instructions read the input port at 
address 7Eh and send this bit pattern to the 
output port at address DEh. This will cause the 
LEDs corresponding to the switches that are set 
to a 1 to turn on. Next, the program waits for a 
suitable amount of time, and then turns all 
LEDs off and waits again. 
After the second wait, the program reads the 
input port again. The LEDs that will be turn on 
at the output port will now be according to the 
new switch settings at the input port. The 
process repeats indefinitely. Please see the 

flowchart also. 
 
It is also possible to use a single 
address for both the input and the 
output port. The following diagram 
shows an address decoder for a 16-
bit parallel input/output port at 
address 2Ch of the FALCON-A’s 

I/O space.  Note that the control bus lines IOW# and IOR# will differentiate between the 
register and the tri-state buffer. 
 

;filename: Example_2.asmfa 
;Notes: 
; r1 is used as an I/O register 
; r2 is used as a delay counter 
; 
start: in r1, 126 ; 126d = 7Eh 
     out r1, 222 ; 222d = DEh 
;  
 movi r2, 0  
delay1: subi r2, r2, 1 
 jnz r2, [delay1] 
; 
 movi r1, 0 ; all LEDs off 
 out r1, 222 
; 
 movi r2, 0 
delay2: subi r2, r2, 1 
 jnz r2, [delay2] 
; 
 jump [start]                
;  

 halt 



Advanced Computer Architecture-CS501                                            
________________________________________________________ 

     Last Modified: 17-Feb-07   Page 255 

                                                                                                    

 

Memory mapped I/O ports 
 
If it is desired to map the 16-bit 
output port of Example #1(lec24) 
on the memory space of the 
FALCON-A, the following 
changes would be needed. 

1. Replace the IOW# signal 
with the MEMW# signal. 

2. Use the entire CPU address 
bus at the input of the 
address decoder, as shown 
in the next figure. This 
address decoder uses the 
addresses 00DEh and 00DFh of the 
FALCON-A’s memory space. 

3. Use the store instruction instead of the 
out instruction for sending data to the 
output port (for memory mapped input 
ports, use the load instruction instead of 
the in instruction). 

The program for Example #2(lec25) is rewritten 
for the case of a memory mapped output port, 
and is shown in the attached text box. The 
advantage will be that more than 256 ports are 
available, but the disadvantage is that the 
address decoder will become more complex, 
resulting in increased hardware costs. 
To avoid the increase in hardware complexity, 
many architects use what is called “partial 
decoding”. This is explained in the next section. 
 

Partial decoding and the “wrap 

around” effect 
 
Partial decoding is a technique in which some 
of the CPU’s address lines forming an input to 
the address decoder are ignored. This reduces 
the complexity of the address decoder, and also 
lowers the cost. As an example, if the address 
lines A8...A15 from the FALCON-A are not 
used in the address decoder of the previous 
figure, this will save eight inverters and two 
AND gates.  Partial decoding is an attractive 
choice in small systems, where the size of the 

;filename: Example_2MM.asmfa 
;Notes: 
; For MEMORY MAPPED 
; output port at 00DEh 
; 
; r6 holds the output address 
; r7 holds the input address 
; 
 movi r6, 111 
 add r6, r6, r6 
; 
 movi r7, 126 
; 
; r1 is used as an I/O register 
; r2 is used as a delay counter 
; 
start: load r1,[r7] ; 126d = 7Eh 
     store r1, [r6] ; 222d = DEh 
;  
 movi r2, 0  
delay1: subi r2, r2, 1 
 jnz r2, [delay1] 
; 
 movi r1, 0 ; all LEDs off 

 store r1, [r6] 

; 
 movi r2, 0 
delay2: subi r2, r2, 1 
 jnz r2, [delay2] 
; 
 jump [start]                
;  

 halt 



Advanced Computer Architecture-CS501                                            
________________________________________________________ 

     Last Modified: 17-Feb-07   Page 256 

                                                                                                    

address space is large but most of the memory is unimplemented.  However, partial 
decoding has its price as well. Consider the memory map for the  
 
FALCON-A, shown again in the next figure. With 16 address lines, the total address 
space is 216 = 64 Kbytes. When the 
upper eight address lines are unused, 
they become don’t cares. The port 
shown in the previous figure will be 
accessed for address 00DEh.  But, it 
will also be accessed for address 
01DEh, 02DEh,......, FFDEh.  In fact, 
the 64 Kbyte address space has been 
reduced to a 256 byte space.  It 
“wrapped around” itself 256 times. If 
we only left 6 address lines, i.e., A15 
... A10, unconnected, then we will still 
have a “wrap around”, but of a 
different type. Now a 1 Kbyte (= 210 ) 
address area will wrap around itself 64 times (= 26 ). 
 

Data bus multiplexing 
 

Data bus multiplexing refers to the situation when one part of the data bus is connected to 
the peripheral’s data bus at one time and the second part of the data bus is connected to 
the peripheral’s data bus at a different time in such a way that at one time, only one 8-bit 
portion of the data bus is connected to the peripheral. 
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Consider the situation where an 8-bit peripheral is to be interfaced with a CPU that has a 
16-bit (or larger) data bus, but a byte-wide address space. Each byte transferred over the 
data bus will have a separate address associated with it. For such CPUs, data bus 
multiplexing can be used to attach 8-bit peripherals requiring a block of addresses. Tri-
state buffers can be used for this  
 
purpose as shown in the attached figure. The logic circuit shown is for an 8-bit parallel 
output port using addresses DCh and DDh of the FALCON’s I/O address space. It is 
assumed that the CPU allows the use of a part of its data bus during a transfer, and that 
each 16-bit general purpose register can be used as two separate 8-bit registers, e.g., r1 
can be split as r1L and r1H such that                       
  r1L<7..0> := r1<7..0>, and 

  r1H<7..0> := r1<15..8> 

The LED branches and the 8-bit register shown in the diagram serve as a place holder, 
and can be replaced by a peripheral device in actual practice. For an even address, A0=0, 
and the upper group of the tri-state buffers is enabled, thereby connecting D<15..8> of 
the CPU to the peripheral, while for an odd address from the CPU, A0=1, and the lower 
group of the tri-state buffers is enabled. This causes D<7..0> of the CPU to be connected  
with the peripheral device. In such systems the instruction out r1H,220 will access the 
peripheral device using D<15..8>, while the instruction  out r1L,221 will access it using 
D<7..0>. The instruction out r1,220 will send r1H to the peripheral  and the contents of 
r1L will be lost. Why? This is left as an exercise for the student. The advantage of data 
bus multiplexing is that all addresses are utilized and none of them is wasted, while the 
disadvantage is the increased complexity and cost of the interface.  
 

A generic I/O interface 
 
Most parallel I/O ports used with 
peripheral devices are mapped on a 
range of contiguous addresses. The 
following figure shows the block 
diagram of part of an interface that can 
be used with a typical parallel printer. 
It used eight consecutives addresses: 
address 56 to 63. A similar interface 
can be used with the FALCON-A. The 
registers shown within the interface are 
associated with some parallel device, and have some pre-defined functions. For example, 
the 16 bit register at addresses 56 and 57 can be used as a “data out” register for sending 
data bytes to the parallel device. In the same way, the register at addresses 60 and 61 can 
be used by the CPU to send control bits to the device. The double arrow shown at the top 
corresponds to the data bus connection of the interface with the CPU. The address 
decoder shown at the bottom receives address and control information from the CPU and 
generates enable signals for these registers. These abstract concepts are further explained 
in Example #3(lec25). 
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The Centronics Parallel Printer Interface 
 
The Centronics Parallel Printer Interface is an example of a real, industry standard, set of 
signal specifications used by most printer manufacturers. It was originally developed for 
Centronics printers and can be used by devices having a uni-directional, byte-wide 
parallel interface. Table 1 shows the important signals and their functions as defined by 
the Centronics standard. Note that the direction of the signals is with respect to the printer 
and not with respect to the CPU. 
 
Typically, the printer (or any other similar device) is connected to the CPU via a cable 
which has a 25-pin connector at the CPU side and a 36-pin connector at the printer side. 
Every data bit in the 8-bit data bus D<7…0> uses a twisted pair for suppressing 
transmission-line effects, like radiation and noise. The return path of these pins should 
always be connected to signal ground. Additionally, the entire printer cable should be 
shielded, and connected to chassis ground on each side. The three signals STROBE#, 
BUSY and ACKNLG# form a set of handshaking signals. By using these signals, the 
CPU can communicate asynchronously with the printer, as shown in the accompanying 
timing waveforms. When the printer is ready for printing, the CPU starts data transfer to 
the printer by placing the 8-bit data (corresponding to the ASCII value of the character to 
be printed) on the printer’s data bus (pin 2 through 9 on the 36-pin connector, as shown in 
Table 1). After this, a negative pulse of duration at least 0.5µs is applied to the STROBE# 
input (pin1) of the printer. The minimum set-up and hold times of the latches within the 
printer are specified as 0.5µs each, and these timing requirements must be observed by 
the CPU (the interface designer should make sure that these specifications are met). As 
soon as STROBE# goes low, the printer activates its BUSY line (pin 11) which is an 
indication to the CPU that additional bytes cannot be accepted. The CPU can monitor this 
status signal over an input port (a detailed assignment of these signals to I/O port bits is 
given in Table 2). 

 

Table 1: The Centronics Parallel Printer Interface 

(power and ground signals are not shown) 

 

 

Signal 

Name 

 

Direction 

w.r.t. 

Printer 

 

Function 

Summary 

Pin# 

(25-DB) 

CPU 

side 

Pin# 

 (36-DB) 

Printer 

side 
D<7..0> Input 8-bit data bus 9,8,…,2 9,8,…,2 

 

STROBE# 

 

Input 

1-bit control signal 

High: default value. 

Low: read-in of data is 
performed.              

 

1 

 

1 
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ACKNLG# 

 

 

Output 

1-bit status signal 

Low: data has been received 
and the printer is ready to 
accept new data.   

High: default value.      

 

 

10 

 

 

10 

 

BUSY 

 

Output 

1-bit status signal 

Low: default value 

High: see note#1 

 

11 

 

11 

 

PE# 

 

Output 

1-bit status signal 

High: the printer is out of 
paper. 

Low: default value. 

 

12 

 

12 

 

INIT# 

 

Input 

1-bit control signal 

Low: the printer controller is 
reset to its initial state and 
the print buffer is cleared. 

High: default value. 

 

16 

 

31 

 

SLCT 

 

Output 

1-bit status signal 

High: the printer is in 
selected state.  

 

13 

 

13 

 

AUTO 
FEED XT# 

 

Input 

1-bit control signal 

Low: paper is automatically 
fed after one line. 

 

14 

 

14 

 

 

SLCT IN# 

 

 

Input 

1-bit control signal 

Low: data entry to the 
printer is possible. 

High: data entry to printer is 
not Possible. 

 

 

17 

 

 

36 

 

ERROR# 

 

Output 

1-bit status signal 

Low: see note#2. 

High: default value. 

 

15 

 

32 
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Note#1 
The printer can not read data due to one of the following reasons: 

1) During data entry 
2) During data printing 
3) In offline state 
4) During printer error status 

Note#2 
When the printer is in one of the following 
states: 

1) Paper end state 
2) Offline state 
3) Error state  

 
When this character is completely 
received, the ACKNLG# signal (pin 10) 
goes low, indicating that the transfer is 
complete. Soon after this, the BUSY signal 
returns to logic zero, indicating that a new 
transfer can be initiated. The BUSY signal 
is more suitable for level-triggered systems, while the ACKNLG# signal is better for 
edge-triggered systems. 
The interface will typically use two eight bit parallel output ports of the CPU, one for the 
ASCII value of the character byte and the other for the control byte. It also specifies an 8-
bit parallel input port for the printer’s status information that can be checked by the CPU.  
 

 

Table 2: Centronics Bit Assignment For I/O Ports 

  
 

Logical 

Address 

 

Description 

 

7 

 

6 

 

5 

 

4 

 

3 

 

2 

 

1 

 

0 

 

0 

 

8-bit output 
port for 
DATA 

 

D<7> 

 

D<6> 

 

D<5> 

 

D<4> 

 

D<3> 

 

D<2> 

 

D<1> 

 

D<0> 

 

1 

 

8-bit input 
port for 

STATUS 

 

BUSY 

 

ACKNLG# 

 

PE# 

 

SLCT 

 

 

ERROR# 

 

Unused 

 

Unused 

 

Unused 

          

                                                 
15 This bit, when set, enables the bidirectional mode. 
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2 8-bit output 
port for 

CONTROL 

Unused Unused DIR15 

 

IRQEN 

 

SLCT 
IN# 

INIT# Auto 
Feed 
XT# 

STROBE# 

 

Example # 3: 
Problem statement: 
Design a Centronics parallel printer interface for the FALCON-A CPU.  Map this 
interface starting at address 38h (56 decimal) of the FALCON-A’s I/O address space. 
Solution:  
The Centronics interface requires at least three I/O addresses. However, since the 
FALCON-A has a 16-bit data bus, and since we do not want to implement data bus 
multiplexing (to keep things simple), we will use three contiguous even addresses, i.e., 
38h, 3Ah and 3Ch for the address decoder design. This arrangement also conforms to the 
requirements of our assembler. 
Moreover, we will connect data bus 
lines D7...D0 of the FALCON-A to the 
8-bit data bus of the printer (i.e. pins 9, 
8, ... , 2 of the printer cable) and leave 
lines D15...D8 unconnected. Since the 
FALCON-A uses the big-endian 
format, this will make sure that the low 
byte of CPU registers will be 
transferred to the printer. (Recall that 
these bytes will actually be mapped on 
addresses 39h, 3Bh and 3Dh). The 
logic diagram of the address decoder 
for this interface is shown in the given 
figure. 
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    Lecture No. 26 

Programmed I/O 
Reading Material 
 
Vincent P. Heuring & Harry F. Jordan                                                       Chapter 8                                                         
Computer Systems Design and Architecture                                                 8.2.2                                                                    

Summary 
• The Centronic Parallel Printer Interface(Cont.) 

• Programmed Input/Output  

• Examples of Programmed I/O for FALCON-A and SRC 

• Comparisons of FALCON-A, SRC examples 
 

The Centronic Parallel Printer Interface (Cont.) 

 
Table 1: The Centronics Parallel Printer Interface 

                                      (power and ground signals are not shown) 

(The explanation of this table is provided in lecture 25 also) 
 

 

Signal 

Name 

 

Direction 

w.r.t. 

Printer 

 

Function 

Summary 

Pin# 

(25-DB) 

CPU 

side 

Pin# 

 (36-DB) 

Printer 

side 
D<7..0> Input 8-bit data bus 9,8,…,2 9,8,…,2 

 

STROBE# 

 

Input 

1-bit control signal 

High: default value. 

Low: read-in of data is 
performed.              

 

1 

 

1 

 

 

ACKNLG# 

 

 

Output 

1-bit status signal 

Low: data has been received 
and the printer is ready to 
accept new data.   

High: default value.      

 

 

10 

 

 

10 

 

BUSY 

 

Output 

1-bit status signal 

Low: default value 

High: see note#1 

 

11 

 

11 
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PE# 

 

Output 

1-bit status signal 

High: the printer is out of 
paper. 

Low: default value. 

 

12 

 

12 

 

 

INIT# 

 

 

Input 

1-bit control signal 

Low: the printer controller is 
reset to its initial state and 
the print buffer is cleared. 

High: default value. 

 

 

16 

 

 

31 

 

SLCT 

 

Output 

1-bit status signal 

High: the printer is in 
selected state.  

 

13 

 

13 

 

AUTO 
FEED XT# 

 

Input 

1-bit control signal 

Low: paper is automatically 
fed after one line. 

 

14 

 

14 

 

 

SLCT IN# 

 

 

Input 

1-bit control signal 

Low: data entry to the 
printer is possible. 

High: data entry to printer is 
not Possible. 

 

 

17 

 

 

36 

 

ERROR# 

 

Output 

1-bit status signal 

Low: see note#2. 

High: default value. 

 

15 

 

32 

 

 

Table 2:  Centronics Bit Assignment For I/O Ports 

 
 

 

Logical 

Address 

 

Description 

 

7 

 

6 

 

5 

 

4 

 

3 

 

2 

 

1 

 

0 
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0 

 

8-bit output 
port for 
DATA 

 

D<7> 

 

D<6> 

 

D<5> 

 

D<4> 

 

D<3> 

 

D<2> 

 

D<1> 

 

D<0> 

 

1 

 

8-bit input 
port for 

STATUS 

 

BUSY 

 

ACKNLG# 

 

PE# 

 

SLCT 

 

 

ERROR# 

 

Unused 

 

Unused 

 

Unused 

 

2 

 

8-bit output 
port for 

CONTROL 

 

Unused 

 

Unused 

 

DIR16 

 

 

IRQEN 

 

 

SLCT 
IN# 

 

INIT# 

 

Auto 
Feed 
XT# 

 

STROBE# 

 

                                                 
16 This bit, when set, enables the bidirectional mode. 



Advanced Computer Architecture-CS501                                            
________________________________________________________ 

     Last Modified: 17-Feb-07   Page 265 

                                                                                                    

Example # 1 
Problem statement: 
Assuming that a Centronics parallel printer 
is interfaced to the FALCON-A processor, 
as shown in example 3 of lecture 25, write 
an assembly language program to send an 
80 character line to the printer. Assume 
that the line of characters is stored in the 
memory starting at address 1024. 
Solution: 
The flowchart for the solution is shown in 
given figure and the program listing is 
shown in the textbox with filename: 
Example_1.   
The first thing that needs to be done is the 
initialization of the printer. This means 
that a “reset” command should be sent to 
the printer. Using the information from 
Table 1, this can be done by writing a 0 to 
bit 2 (i.e., INIT#) of the control register 
having logical address 2. In our example, 
this maps onto address 60 of the 
FALCON-A. (Remember to set this bit to 
logic 1 for normal operation of the 
printer). Then we make STROBE# high by 
placing logic 1 in bit 0 of the control register. Bit 1 and bit 3 should be 0 because we 
want to activate auto line feed and keep the printer in selected mode. Additionally, bit 4 
and bit 5 should be 0 so that interrupts are disabled and the bi-directional mode is not 
selected.  The complete control word is 0000 0001 and this value has been assigned to the 
variable reset in the program.  The following instruction pair performs the reset 
operation: 
 movi r1, reset 
 out r1, controlp 
As it is given that the starting address of the printer buffer is 102417, so we place this 
address in r5. The mask to test the BUSY flag is placed in r3. The value for the mask is 
80h. This corresponds to a logic 1 in bit 7 and logic zeros elsewhere for the status register 
having address 58 (logical address 1 in Table 1). Then the program enters a loop, called 
the polling loop, to test the status of the printer.  If the printer is busy, the loop repeats. 
The following three instructions form the polling loop: 
 
 in r1, statusp 
 and r1, r1, r3 
 jnz r1, [again] 

                                                 
17 The mul instruction is used for this purpose because the 8-bit immediate operand in the movi instruction 
can only be within the range –128 and +127. Using the mul instruction in this way overcomes the 
limitation of the FALCON-A. Similarly, the shiftl instruction is used to bring 80h in register r3. 
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The status of the printer is placed in register r1, and bit 7 is tested for logic 0.  If not so, 
the program repeats the status check operation. 
 
When the printer is ready to accept a new character, it clears bit 7 (i.e., the BUSY bit) of 
the status register. At this time, the program picks the next character from the memory 
and sends it to the printer. The STROBE# line is activated and then it is deactivated to 
generate the necessary pulse on this input of the printer. Finally, the buffer pointer is 
advanced, the loop counter is decremented and the process repeats. When all the 
characters have been printed, the program halts.  
A number of equates have been used in the program to make it flexible as well as easily 
readable. The program is shown on the next page. 
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; filename: Example_1.asmfa 

; 

; This program sends an 80 character line 

; to a FALCON-A parallel printer 

; 

; Notes: 

; 1. 8-bit printer data bus connected to 

; D<7...0> of the FALCON-A (remember big-endian) 

; Thus, the printer actually uses addresses 57, 59 & 61 

; 

; 2. one character per 16-bits of data xfered 

; 

; 

 .org 400 

; 

NOB:   .equ  80 

; 

 movi r5, 32 

 mul r5, r5, r5 ; r5 holds 1024 temporarily 
; 

 movi r3, 1 
 shiftl r3, r3, 7 ; to set mask to 0080h 
; 

datap:   .equ 56 
statusp:  .equ 58 

controlp: .equ 60 
; 
reset:  .equ 1 

; used to set unidirectional, no interrupts, 
; auto line feed, and strobe high 

; 
strb_H:  .equ 5 
strb_L:  .equ 4 

; 
 movi r1 reset ; use r1 for data xfer 

 out r1, controlp 
; 

 movi r7, NOB ; use r7 as character counter 
; 

 

again: in r1, statusp 

; 

 and r1, r1, r3 ; test if BUSY = 1? 

 jnz r1, [again] ; wait if BUSY = 1 
; 

 load r1, [r5] 

 out r1, datap 

 movi r1, strb_L 
 out r1, controlp 

 movi r1, strb_H 

 out r1, controlp 
 addi r5, r5, 2 

 subi r7, r7, 1 

 jnz r7, [again] 
 halt 
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I/O techniques: 

 
There are three main techniques using which a CPU can exchange data with a peripheral 
device, namely 

• Programmed I/O 

• Interrupt driven I/O 

• Direct Memory Access (DMA). 
 
In this section, we present the first one. 

 

Programmed Input/Output 

 
Programmed I/O refers to the situation when all I/O operations are performed under the 
direct control of a program running on the CPU. This program, which usually consists of 
a “tight loop”, controls all I/O activity, including device status sensing, issuing read or 
write commands, and transferring the data18. A subsequent I/O operation cannot begin 
until the current I/O operation to a certain device is complete. This causes the CPU to 
wait, and thus makes the scheme extremely inefficient. The solution to Example # 
3(lec24), Example #2(lec25), and Example #1(lec26) are examples of programmed 
input/output. We will analyze the program for Example  #1(lec26) to explain a few things 
related to the programmed I/O technique. 

 

Timing analysis of the program in Example # 1(lec26) 

 
The main loop of the program given in the solution to Example #1(lec26) executes 80 
times. This is equal to the number of characters to be printed on one line. This portion of 
the program is shown again with the execution time of each instruction listed in brackets 
with it. The numbers shown are for a uni-bus 
CPU implementation. A complete list of 
execution times for all the FALCON-A’s 
instructions is given in Appendix A. A 
number of things can be noted now. 

1. Assuming that the output at the 
hardware pins changes at the end of 
the (I/O write) bus cycle, the 
STROBE# signal will go from logic1 
to logic 0 at the end of the instruction 
pair. 
 
           movi r1, strb_L  [2] 
           out r1, controlp  [3] 
 

                                                 
18 The I/O device has no direct access to the memory or the CPU, and transfer is generally done by using 
the    CPU registers. 

            movi r7, NOB  [2] 
; 
again:  in r1, statusp  [3] 
             and r1 , r1, r3  [3] 
             jnz  r1, [again] [4] 
;  
              load r1, [r5]  [5] 
              out r1, datap  [3] 
              movi r1, strob_L [2] 
              out r1, controlp [3] 
              movi r1, s trob_H [2] 
              out r1, controlp [3] 
     addi r5, r5, 2   [3] 
              subi r7, r7, 1  [3] 
              jnz r7, [again] [4] 

              halt 
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The execution time for these two instructions is 2+3 = 5 clock periods. Therefore, 
STROBE# stays at logic1 for at least 5 clock periods i.e., during these two instructions. 
For a 10MHz FALCON-A CPU, this will correspond to 5x100 = 500nsec = 0.5µsec. 
Since the data to the printer is being sent by the CPU using the two instructions (load r1, 

[r5] and out r1, datap) which are before the first movi instruction, the printer’s data 
setup time requirement is satisfied as long as we do not increase the clock frequency 
beyond 10MHz. 

 
After these two instructions, the next two instructions in the program cause STROBE# to 
go to logic 1 again. 

 
                               movi r1, strb_H [2] 
                              out r1, controlp [3] 
 

These two instructions also take 5 clock periods, or 0.5µsec, to execute. Thus, the timing 
requirement of the STROBE# pulse width will also be satisfied as long as we do not 
increase the clock frequency beyond 10MHz. In case the frequency is greater than 
10MHz, other instruction can be used in between these two pairs of instructions. 

 
The printer’s data hold time requirement is easily satisfied because there are a number of 
instructions after this out instruction which do not change the control port, and the 
character value is already present in the data register within the interface since the end of 
the out r1, datap instruction. 

 
2. The three instructions given below: 

              again:  in r1, statusp [3]      
                        and r1, r1, r3 [3]  
                        jnz r1, [again] [4] 
 
form what is called a “polling loop”. The process of periodically checking the status of a 
device to see if it is ready for the next I/O operation is called “polling”. It is the simplest 
way for an I/O device to communicate with the CPU. The device indicates its readiness 
by setting certain bits in a status register, and the CPU can read these bits to get 
information about the device. Thus, the CPU does all the work and controls all the I/O  
activities.  The polling loop given above takes 10 clock periods. For a 10MHz FALCON-
A CPU, this is 10x100=1µsec. One pass of the main  loop takes a total of 
3+3+4+5+3+2+3+2+3+3+3+4 = 38 clock periods which is 38x100 = 3.8µsec. This is the 
time that the CPU takes to send one character to the printer. If we assume that a 1000 
character per second (cps) printer is connected to the CPU, then this printer has the 
capability to print one character in every 1msec or every 1000µsec. So, after sending a 
character in 3.8µsec to the printer, the CPU will wait for about 996µsec before it can send 
the next character to the printer. This implies that the polling loop will be executed about 
996 times for each character. This is indeed a very inefficient way of sending characters 
to the printer. 
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An improved way of doing this would be to include a memory of suitable size within the 
printer. This memory is also called a buffer, as explained earlier. The CPU can fill this 
buffer in a single “burst” at its own speed, and then do something else, while the printer 
picks up one character at a time from this buffer and prints it at its own speed. This is 
exactly the situation with today’s printers. The task of generating the STROBE# pulse 
will also be done by the electronic circuits within the printer. In effect, a dedicated 
processor within the printer will do this job. However, if the buffer within the printer fills 
up, the CPU will still not be able to transfer additional data to it. A different handshaking 
scheme will then be needed to make the CPU to communicate asynchronously with the 
buffer in the printer, resulting in an inefficient operation again. This is explained below.  
 
Assume that the printer has a FIFO type buffer of size 64 bytes that can be filled up 
without any delay at the time when the printer is not printing anything. When one or 
more character values are present in the buffer, the printer will pick up one value at a 
time and print it. Remember we have a 1000 cps printer, so it takes 1msec to print a 
character. The program for Example #1(lec26) is modified for this situation and is given 
below. All the assumptions are the same, unless otherwise mentioned. 
 
                again:   in r1, statusp [3]  
                             and r1, r1, r3  [3] 
                             jnz  r1, [again] [4] 
                             load r1, [r5] [5] 
                             out r1, datap [3] 

                            addi r5, r5, 2 [3] 
                            subi r7, r7, 1 [3] 
                            jnz r7, [again] [4] 
 

Note that while the instructions for generating the STROBE# pulse have been eliminated, 
the polling loop is still there. This is necessary because the BUSY signal will still be 
present, although it will have a different meaning n now. In this case, BUSY =1 will 
mean that the buffer within the printer is full and it can not accept additional bytes. 

 
The main loop shown in the program has an execution time of 28 clock periods, which is 
2.8µsec for a 10MHz FALCON-A CPU. The polling loop still takes 10 clock periods or 
1µsec. Assuming that this program starts when the buffer in the printer is empty, the 
outer loop will execute 64 times  before the CPU encounters a BUSY=1 condition. After 
that the situation will be the same as in the previous case. The polling loop will execute 
for about 996 times before BUSY goes to logic 0. This situation will persist for the 
remaining 16 characters (remember we are sending an 80 character line to the printer). 

 
One can argue that the problem can be solved by increasing the buffer size to more than 
80 bytes. Well, first of all, memory is not free. So, a large buffer will increase the cost of 
the printer. Even if we are willing to pay more for an improved printer, the larger buffer 
will still fill up whenever the number of characters is more than the buffer size. When 
that happens, we will be back to square one again. 
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A careful analysis of the situation reveals that there is something wrong with the scheme 
that is being used to send data to the printer. This problem of having a larger overhead of 
polling was recognized long ago, and therefore, interrupts were invented as an alternate 
to programmed I/O. Interrupt driven I/O will be the topic of the next lecture. 
 

Programmed I/O in SRC 
In this section, we will discuss some more examples of programmed I/O with our 
example processor SRC which uses the memory mapped I/O technique. 

 

Program for Character Output 

To understand how programmed I/O works in SRC, we will discuss a program which 
outputs the character to the printer. The first instruction loads the branch target and the 
second instruction loads the character into lower 8 bits of register r2. The 2-instruction 
loop reads the status register and tests the ready signal by checking its sign bit. It 
executes until the ready signal becomes logic one. On exit from the loop, the character is 
written to the device data register by the store instruction. 

lar r3, wait 
ldr r2, char 

wait: ld r1, COSTAT 
brpl r3, r1 

   st r2, COUT 
A 10 MIPS, SRC would execute 10,000 instructions waiting for a 1,000 character/sec 
printer. 

 

Program Fragment to Print 80-Character Line 

The next example for the SRC is of a program which sends an 80-character line to a line 
printer with a command register. There are two nested loops starting at label wait. The 
two instruction inner loop, which waits for ready and the outer seven instruction loop 
which performs the following tasks. 

• Outputs a character  

• Advance the buffer pointer 

• Decrement the register containing the number of characters left to print 

• Repeat if there are more characters left to send. 
The last two instructions issue the command to print the line. 
The next example discussed from the book is of a driver program for 32-character input 
devices (Figure 8.10, Page 388). 
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Comparisons of the SRC and FALCON-A Examples 
The FALCON-A and SRC programmed I/O examples discussed are similar with some 
differences. In the first example discussed for the SRC (i.e. Character output), the control 
signal responsible for data transfer by the CPU is the ready signal while for FALCON-A 
Busy (active low)signal is checked. In the second example for the SRC, the instruction 
set, address width and no. of lines on address is different. 
Although different techniques have been used to increase the efficiency of the 
programmed I/O, overheads due to polling can not be completely eliminated. 
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Lecture No. 27 

Interrupt Driven I/O 
 

Reading Material 
Vincent P. Heuring & Harry F. Jordan                                                       Chapter 8                                                         
Computer Systems Design and Architecture                                                 8.2.2 

Summary 
• Programmed I/O Driver for SRC 

• Interrupt Driven I/O 
 

Programmed I/O Driver for SRC 

 
Please refer to Figure 8.10 of the text and its associated explanation. 

 
Interrupt Driven I/O: 
 

Introduction: 
An interrupt is a request to the CPU to suspend normal processing and temporarily divert 
the flow of control through a new program. This new program to which control is 
transferred is called an Interrupt Service Routine or ISR. Another name for an ISR is an 
Interrupt Handler. 
 
• Interrupts are used to demand attention from the CPU. 
• Interrupts are asynchronous breaks in program flow that occur as a result of events 

outside the running program. 
• Interrupts are usually hardware related, stemming from events such as a key or button 

press, timer expiration, or completion of a data transfer. 
 
The basic purpose of interrupts is to divert CPU processing only when it is required. As 
an example let us consider the example of a user typing a document on word-processing 
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software running on a multi 
tasking operating system. It is 
up to the software to display a 
character when the user presses 
a key on the keyboard. To fulfill 
this responsibility the processor 
can repeatedly poll the keyboard 
to check if the user has pressed 
a key. However, the average 
user can type at most 50 to 60 
words in a minute. The rate of 
input is much slower than the 
speed of the processor. Hence, most of the polling messages that the processor sends to 
the keyboard will be wasted. A significant fraction of the processor’s cycles will be 
wasted checking for user input on the keyboard. It should also be kept in mind that there 
are usually multiple peripheral devices such as mouse, camera, LAN card, modem, etc. If 
the processor would poll each and every one of these devices for input, it would be 
wasting a large amount of its time. To solve this problem, interrupts are integrated into 
the system. Whenever a peripheral device has data to be exchanged with the processor, it 
interrupts the processor; the processor saves its state and then executes an interrupt 
handler routine (which basically exchanges data with the device). After this exchange is 
completed, the processor resumes its task. Coming back to the keyboard example, if it 
takes the average user approximately 500 ms to press consecutive keys a modern 
processor like the Pentium can execute up to 300,000,000 instructions in these 500 Ms. 
Hence, interrupts are an efficient way to handle I/O compared to polling.  

 

Advantages of interrupts: 
• Useful for interfacing I/O devices with low data transfer rates. 
• CPU is not tied up in a tight loop for polling the I/O device. 
 

Program Flow for an interrupt driven interface: 
The attached figure shows the program flow executing on a processor with interrupts 
enabled. As we can see, the program is interrupted in several locations to service various 
types of interrupts. 
 

Types of Interrupts: 
The general categories of interrupts are as follows: 
• Internal Interrupts 
• External Interrupts 

• Hardware Interrupts 
• Software Interrupts 

 

Internal Interrupts: 
• Internal interrupts are generated by the processor. 
• These are used by processor to handle the exceptions generated during instruction 

execution. 



Advanced Computer Architecture-CS501                                            
________________________________________________________ 

     Last Modified: 17-Feb-07   Page 275 

                                                                                                    

Internal interrupts are generated to handle conditions such as stack overflow or a divide-
by-zero exception. Internal interrupts are also referred to as traps. They are mostly used 
for exception handling. These types of interrupts are also called exceptions and were 
discussed previously. 
 

External Interrupts: 
External interrupts are generated by the devices other than the processor. They are of two 
types. 

• Hardware interrupts are generated by the external hardware. 
• Software interrupts are generated by the software using some interrupt instruction. 

 
As the name implies, external interrupts are generated by devices external to the CPU, 
such as the click of a mouse or pressing a key on a keyboard. In most cases, input from 
external sources requires immediate attention. These events require a quick service by the 
software, e.g., a word processing software must quickly display on the monitor, the 
character typed by the user on the keyboard. A mouse click should produce immediate 
results. Data received from the LAN card or the modem must be copied from the buffer 
immediately so that pending data is not lost because of buffer overflow, etc. 

 

Hardware interrupts:  
Hardware interrupts are generated by external events specific to peripheral devices. Most 
processors have at least one line dedicated to interrupt requests. When a device signals on 
this specific line, the processor halts its activity and executes an interrupt service routine. 
Such interrupts are always asynchronous with respect to instruction execution, and are 
not associated with any particular instruction. They do not prevent instruction completion 
as exceptions like an arithmetic overflows does. Thus, the control unit only needs to 
check for such interrupts at the start of every new instruction. Additionally, the CPU 
needs to know the identification and priority of the device sending the interrupt request. 

 

There are two types of hardware interrupt: 
� Maskable Interrupts 
� Non-maskable Interrupts 

 

Maskable Interrupts: 
• These interrupts are applied to the INTR pin of the processor. 
• These can be blocked by resetting the flag bit for the interrupts. 

 

Non-maskable Interrupts: 
• These interrupts are detected using the NMI pin of the processor. 
• These can not be blocked or masked. 
•  Reserved for catastrophic event in the system. 

 

 Software interrupts: 
Software interrupts are usually associated with the software. A simple output operation in 
a multitasking system requires software interrupts to be generated so that the processor 
may temporarily halt its activity and place the data on its data bus for the peripheral 
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device. Output is usually handled by interrupts so that it appears interactive and 
asynchronous. Notification of other events, such as expiry of a software timer is also 
handled by software interrupts. Software interrupts are also used with system calls. When 
the operating system switches from user mode to supervisor mode it does so through 
software interrupts. Let us consider an example where a user program must delete a file.  
The user program will be executing in the user mode. When it makes the specific system 
call to delete the file, a software interrupt will be generated, this will cause the processor 
to halt its current activity (which would be the user program) and switch to supervisor 
mode. Once in supervisor mode, the operating system will delete the file and then control 
will return to the user program. While in supervisor mode the operating system would 
need to decide if it could delete the specified file with out harmful consequences to the 
systems integrity, hence it is important that the system switch to supervisor mode at each 
system call. 

 

I/O Software System Layers: 
 

 
 
 
The above diagram shows the various software layers related to I/O.  At the bottom lies 
the actual hardware itself, i.e. the peripheral device. The peripheral device uses the 
hardware interrupts to communicate with the processor. The processor responds by 
executing the interrupt handler for that particular device. The device drivers form the 
bridge between the hardware and the software. The operating system uses the device 
drivers to communicate with the device in a hardware independent fashion, e.g.,  the 
operating system need not cater for a specific brand of CRT monitors, or keyboards, the 
specific device driver written for that monitor or keyboard will act as an intermediary 
between the operating system and the device. It would be clear from the previous 
statement that the operating system expects certain common functions from all brands of 
devices in a category. Actually implementing these functions for each particular brand or 
vendor is the responsibility of the device driver. The user programs run at top of the 
operating system. 

 

Interrupt Service Routine (ISR): 
• It is a routine which is executed when an interrupt occurs. 
• Also known as an Interrupt Handler. 
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• Deals with low-level events in the hardware of a computer system, like a tick of a 
real-time clock. 

As it was mentioned earlier, an interrupt once generated must be serviced through an 
interrupt service routine. These routines are stored in the system memory ready for 
execution. Once the interrupt is generated, the processor must branch to the location of 
the appropriate service routine to execute it. The branch address of the ISR is discussed 
next. 
 

Branch Address of the ISR: 
There are two ways used to choose the branch address of an Interrupt Service Routine. 
� Non-vectored Interrupts 
� Vectored Interrupts 

 

Non-vectored Interrupts: 
In non-vectored interrupts, the branch address of the interrupt service routine is fixed. 
The code for the ISR is loaded at fixed memory location. Non-vectored interrupts are 
very easy to implement and not flexible at all. In this case, the number of peripheral 
devices is fixed and may not be increased. Once the interrupt is generated the processor 
queries each peripheral device to find out which device generated the interrupt. This 
approach is the least flexible for software interrupt handling. 
 

Vectored Interrupts: 
Interrupt vectors are used to specify the address of the interrupt service routine. The code 
for ISR can be loaded anywhere in the memory. This approach is much more flexible as 
the programmer may easily locate the interrupt vector and change its addresses to use 
custom interrupt servicing routines. Using vectored interrupts, multiple devices may 
share the same interrupt input line to the processor. A process called daisy chaining is 
then used to locate the interrupting device.  
 

Interrupt Vector: 
Interrupt vector is a fixed size structure that stores the address of the first instruction of 
the ISR. 

Interrupt Vector Table: 
• All of the interrupt vectors are stored in the memory in a special table called 

Interrupt Vector Table. 
• Interrupt Vector Table is loaded at the memory location 0 for the 8086/8088. 

 

Interrupts in Intel 8086/8088: 

• Interrupts in 8086/8088 are vector interrupts. 
• Interrupt vector is of 4 bytes to store IP and CS. 
• Interrupt vector table is loaded at address 0 of main memory. 
• There is provision of 256 interrupts. 

Branch Address Calculation: 
• The number of interrupt is the number of interrupt vector in the interrupt vector 

table. 
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• Since size of each vector is 4 bytes and interrupt vector starts from address 0, 
therefore, the address of interrupt vector can be calculated by simply multiplying 
the number by 4. 

 

Interrupt Vector Example: 

In 8086/8088 machines the size of interrupt vector is 4 bytes that holds IP and CS of ISR. 
 
 

 
 

 

Returning from the ISR: 

Every ISA should have an instruction, like the IRET instruction, which should be 
executed when the ISR terminates. This means that the IRET instruction should be the 
last instruction of every ISR. This is, in effect, a FAR RETURN in that it restores a 
number of registers, and flags to their value before the ISR was called. Thus the previous 
environment is restored after the servicing of the interrupt is completed. 

 

Interrupt Handling: 
The CPU responds to the interrupt request by completing the current instruction, and then 
storing the return address from PC into a memory stack. Then the CPU branches to the 
ISR that processes the requested operation of data transfer. In general, the following 
sequence takes place. 
 

Hardware Interrupt Handling: 

� Hardware issues interrupt signal to the CPU. 
� CPU completes the execution of current instruction. 
� CPU acknowledges interrupt. 
� Hardware places the interrupt number on the data bus. 
� CPU determines the address of ISR from the interrupt number available on the data 

bus. 
� CPU pushes the program status word (flags) on the stack along with the current value 

of program counter. 
� The CPU starts executing the ISR. 

Code Segment Register Value  
(Most Significant Byte) 

Code Segment Register Value  
 (Least Significant Byte) 

Instruction Pointer Value 
(Most Significant Byte) 

Instruction Pointer Value 
(Least Significant Byte) 

a+3 

a+2 

a+1 

a 
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� After completion of the ISR, the environment is restored; control is transferred back 
to the main program. 

 

Interrupt Latency: 

Interrupt Latency is the time needed by the CPU to recognize (not service) an interrupt 
request. It consists of the time to perform the following: 

• Finish executing the current instruction.  

• Perform interrupt-acknowledge bus cycles.  

• Temporarily save the current environment. 

• Calculate the IVT address and transfer control to the ISR.  

If wait states are inserted by either some memory module or the device supplying the 
interrupt type number, the interrupt latency will increase accordingly. 

Interrupt Latency for external interrupts depends on how many clock periods remain in 
the execution of the current instruction. 

On the average, the longest latency occurs when a multiplication, division or a variable-
bit shift or rotate instruction is executing when the interrupt request arrives. 

Response Deadline: 
It is the maximum time that an interrupt handler can take between the time when interrupt 
was requested and when the device must be serviced. 

 

Expanding Interrupt Structure: 
When there is more than one device that can interrupt the CPU, an Interrupt Controller is 
used to handle the priority of requests generated by the devices simultaneously. 
 

Interrupt Precedence: 

Interrupts occurring at the same time i.e. within the same instruction are serviced 
according to a pre-defined priority.  

• In general, all internal interrupts have priority over all external interrupts; the 
single-step interrupt is an exception.  

• NMI has priority over INTR if both occur simultaneously.  
• The above mentioned priority structure is applicable as far as the recognition of 

(simultaneous) interrupts is concerned. As far as servicing (execution of the 
related ISR) is concerned, the single-step interrupt always gets the highest 
priority, then the NMI, and finally those (hardware or software) interrupts that 
occur last. If IF is not 1, then INTR is ignored in any case. Moreover, since any 
ISR will clear IF, INTR has lower "service priority" compared to software 
interrupts, unless the ISR itself sets IF=1.  
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Simultaneous Hardware Interrupt Requests: 
The priority of the devices requesting service at the same time is resolved by using two 
ways: 

� Daisy-Chained Interrupt 
� Parallel Priority Interrupt 

 

Daisy-Chaining Priority: 

• The daisy-chaining method to resolve the priority consists of a series connection of 
the devices in order of their priority. 

• Device with maximum priority is placed first and device with least priority is placed 
at the end. 

 

Daisy-Chain Priority Interrupt 
• The devices interrupt the CPU. 
• The CPU sends acknowledgement to the maximum priority device. 
• If the interrupt was generated by the device, the interrupt for the device is 

serviced. 
• Otherwise the acknowledgement is passed to the next device. 

 
 
If the higher priority devices are going to interrupt continuously then the device with the 
lower priority is not serviced. So some additional circuitry is also needed to introduce 
fairness. 
 
 

 
 

 

 

 



Advanced Computer Architecture-CS501                                            
________________________________________________________ 

     Last Modified: 17-Feb-07   Page 281 

                                                                                                    

Parallel Priority: 
• Parallel priority method for resolving the priority uses individual bits of a priority 

encoder. 
• The priority of the device is determined by position of the input of the encoder 

used for the interrupt. 
 

 

Parallel Priority Interrupt: 
                       
 
 

                                          
 
 
 
 
 

. 
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Lecture No. 28 

Interrupt Hardware and Software 
 
Reading Material 
 
Vincent P. Heuring & Harry F. Jordan                                    Chapter 8                                                 
Computer Systems Design and Architecture                               8.3                            

 

Summary                                                                                                                                       
 

• Comparison of Interrupt driven I/O and Polling 

• Design Issues 

• Interrupt Handler Software 

• Interrupt Hardware 

• Interrupt Software 
 

Comparison of Interrupt driven I/O and Polling 

 
Interrupt driven I/O is better than polling. In the case of polling a lot of time is wasted in 
questioning the peripheral device whether it is ready for delivering the data or not. In the 
case of interrupt driven I/O the CPU time in polling is saved. 
 
Now the design issues involved in implementation of the interrupts are twofold. There 
would be a number of interrupts that could be initiated. Once the interrupt is there, how 
the CPU does know which particular device initiated this interrupt. So the first question is 
evaluation of the peripheral device or looking at which peripheral device has generated 
the interrupt. Now the second important question is that usually there would be a number 
of interrupts simultaneously available. So if there are a number of interrupts then there 
should be a mechanism by which we could just resolve that which particular interrupt 
should be serviced first. So there should be some priority mechanism. 
 

Design Issues 
 
There are two design issues: 

1. Device Identification 
2. Priority mechanism 
 

Device Identification 

In this issue different mechanisms could be used. 

• Multiple interrupt lines 

• Software Poll 

• Daisy Chain 
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1. Multiple Interrupt Line 

 

This is the most straight forward approach, and in this method, a number of interrupt 
lines are provided between the CPU and the I/O module. However, it is impractical to 
dedicate more than a few bus lines or CPU pins to interrupt lines. Consequently, even if 
multiple lines are used, it is likely that each line will have multiple I/O modules attached 
to it. Thus on each line, one of the other technique would still be required. 

 

2. Software Poll 

 

CPU polls to identify the interrupting module and branches to an interrupt service routine 
on detecting an interrupt. This identification is done using special commands or reading 
the device status register. Special command may be a test I/O. In this case, CPU raises 
test I/O and places the address of a particular I/O module on the address line. If I/O 
module sets the interrupt then it responds positively. In the case of an addressable status 
register, the CPU reads the status register of each I/O module to identify the interrupting 
module. Once the correct module is identified, the CPU branches to a device service 
routine which is specific to that particular device. 

 

Simplified Interrupt Circuit for an I/O Interface 

 
For  above two techniques 
the implementation might 
require some hardware. 
The hardware would be 
specific to the processor 
which is being used. For 
example, for the case of 
SRC, simple hardware 
machanism is indicated. 
Now the basic technique 
is handshaking and in this 
case of handshaking, the peripheral device would initiate an interrupt. This interrupt 
needs to be enabled. We will have a mechanism of ANDing the two signals. One is 
interrupt enable and other is interrupt request. Now these two requests would be passed 
on the CPU. The CPU passes on the acknowledge signal to the device. The acknowledge 
signal is shared and it goes on to different devices. 
The information about interrupt vector is given in 8-bits, from bit 0 to 7, which is 
translated to bit 16 to 23 on the data bus. Now the other 16-bits, from 0 to 15 are mapped 
to the data lines from 0 to 15. Now both of these are available through the tri-state 
buffers, which would be enabled through interrupt acknowledge. 
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3. Daisy Chain 

 

The wired or interrupt signal allows several devices to request interrupt simultaneously. 
However, for proper operation one and only one requesting device must receive an 
acknowledge signal, otherwise if we have more than one devices, we would have a data 
bus contention and the interrupt information would not be resolved. The usual solution is 
called a daisy chain. Assuming that if we have jth devices requesting for interrupt then 
first device 0 would receive the acknowledge signal, so therefore, iack0=iack. The next 
device would only receive an acknowledge i.e., the jth device would receive an 
acknowledge if the previous device that means j-1 does not have an enabled interrupt 
request, that 
means interrupt 
was not initiated 
by the previous 
device. Now the 
figure shows this 
concept in the 
form of a 
connection from 
device 0 to 1. From 0, we see the acknowledge is generated for device 1, device 1 
generates acknowledge for device2 and so on. So this signal propagates from one device 
to other device. Logically we could write it in the form of equation:                          

                                   iackj= iack j-1^(reqj-1^enb j-1) 
 
As we said that the previous device should not have generated an interrupt, that 
means its interrupt was not enabled and therefore, it passes on the acknowledge 
signal from its output to he next device.  
  

Disadvantages of Software Poll and Daisy Chain 

 

The software poll has a disadvantage is that it consumes a lot of time, while the daisy 
chain is more efficient. The daisy chain has the disadvantage that the device nearest to the 
CPU would have highest priority. So, usually those devices which require higher priority 
would be connected nearer to the CPU. Now in order to get a fair chance for other 
devices, other mechanisms could be initiated or we could say that we could start instead 
of device 0 from that device where the CPU finishes the last interrupt and could have a 
cyclic provision to different devices. 
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Interrupt Handler Software 

 
Example using SRC 

                                     (Read from Book, Jordan page395) 
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Example using FALCON-A 

 

As an example of interrupt-driven I/O, consider an output device, such as a parallel 
printer connected to the FALCON-A CPU. Now suppose that we want to print a 
document while using an application program like a word processor or a spread sheet. In 
this section, we will explain the important aspects of hardware and software for 
implementing an interrupt driven parallel printer interface for the FALCON-A. During 
this discussion, we will also explain the differences and similarities between this interface 
and the one discussed earlier. To make things simple, we have made the assumption that 
only one interrupt pin is available on the FALCON-A, and only one interrupt is possible 
at a given time with this CPU.  Implications of allowing only one interrupt at a time are 
that 

 

• No NMI is possible 

• No nesting of interrupts is possible 

• No priority structure needed for multiple devices 

• No arbitration needed for simultaneous interrupts 

• No need for vectored interrupts, therefore, no need of interrupt vectors and 
interrupt vector tables 

• Effect of software initiated interrupts and internal interrupts (exceptions) has to 
be ignored in this discussion 

     
Along with the previous assumption, the following assumptions have also been used: 
 

• Hardware sets and clears the interrupt flag, in addition to handling other   
things like saving PC, etc. 

• The address of the ISR is stored at absolute address 2 in memory. 

• The ISR will set up a stack in the memory for saving the CPU’s environment 

• One ASCII character stored per 16-bit word in the FALCON-A’s memory and 
one character transferred during a 16-bit transfer. 

• The calling program will call the ISR for printing the first character through 
the printer driver. 

• Printer will activate ACKNLG# only when not BUSY. 

 

  Interrupt Hardware: 
 
The logic diagram for the interrupt 
hardware is shown in the Figure. The 
interrupt request is synchronized by 
handshaking signals, called IREQ 
and IACK. The timing diagram for 
the handshaking signals used in the 
interrupt driven I/O is shown in the 
next Figure. The printer will assert 
IREQ as soon as the ACKNLG# 
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signal goes low (i.e. as soon as the printer is ready to accept new data) provided that 
IREQN=1. The processor will complete the current instruction and respond by 
executing the interrupt service routine. The inverting tri-state buffer at the clock input 
of the D flip flop is enabled by IRQEN. This will make sure that after the current print 
job is complete, additional requests on IREQ are disabled. This can happen as a result 
of the printer being available even through the user may not have requested a print 
operation. The IACK line from the CPU is connected to the asynchronous reset, R, of 
the D flip flop so that the same interrupt request from the printer is not presented again 
to the CPU. The asynchronous set input of the D flip flop, labeled S in the diagram, is 
permanently connected to logic 1. 
This will make sure that the flip flop 
will never be set asynchronously. 
The D input is also permanently 
connected to logic 1, as a result of 
which the flip flop will always be set 
synchronously in response to 
ACKNLG# provided IRQEN=1. 
Recall that IRQEN is bit 4 on the 
centronics control port at logical 
address 2, and this is mapped onto 
address 60 of the FALCON-A’s I/O 
space. The rest of the hardware is 
case of the same as in the case of the programmed I/O example.  

 

Interrupt Software:    

 
Our software for the interrupt driven printer example consists of three parts: 

1). Dummy calling program 
2). Printer Driver 
3). ISR 
 

We are assuming that normal processing is taking place19 e.g., a word processor is 
executing. The user wants to print a document. This  

                                                 
19 Since only one interrupt is possible, a question may arise about the way the print command is presented 
to the word processor. It can be assumed that polling is used for the input device in this case. 
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document is placed in a buffer by the word processor. This buffer is usually present 
somewhere else in the memory. The responsibility of the calling program is to pass the 
number of bytes to be printed and the starting address of the buffer where these bytes are 
stored to the printer driver. The calling program can also be called the main program. 
Suppose that the total number of bytes to be printed are 40. (They are placed in a buffer 
having the starting address 1024.) When the user invokes the print command, the calling 
program calls the printer driver and passes these two parameters in r7 and r5 respectively. 
The return address of the calling program is stored in r4. A dummy calling program code 
is given below. 
Bufp, NOB, PB, and temp are the spaces reserved in memory for later use in the program. 
The first instruction is jump [main]. It is stored at absolute memory address 0 by using 
the .org 0 directive. It will transfer control to the main program. The first instruction of 
the main program is placed at address “main”, which is the entry point in this example. 
Note that the entry point is different in this case from the reset address, which is address 0 
for the FALCON-A. Also note that the address of the first instruction in the printer driver 
is stored at address “a4PD” using the .sw directive. This value is then brought into r6. 
The main program calls the printer driver by using the instruction call r4, r6. In an actual 
program, after returning from the printer driver, the normal processing resumes and if 
there are any error conditions, they will be handled at this point. Next, consider the code 
for the printer driver, shown in the attached text box. 
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; filename: Example_Falcon-A .asmfa 
;This program sends a single character 
;to a FALCON-A parallel printer 
;using an interrupt driven I/O interface 
; 
; Notes: 
; 1. 8-bit printer data bus connected to  
; D<7..0> of the FALCON-A (remember big-endian) 
; Thus, the printer actually uses addresses 57, 59 & 61 
; 
; 2. one character per 16-bits of data xfered ;     
; 
 .org 0 
 jump [main] 
a4ISR: .sw  beginISR 
a4PD: .sw  Pdriver 
dv1:  .sw 1024 
dv2:    .sw 40 
Bufp: .dw  1 
NOB: .dw  1 
PB: .dw 1 
temp:  .dw 6 
; 
; Dummy Calling Program, e.g., a word processor 
; 
 .org 32  
main: load r6, [a4PD] ;r6 holds address of printer driver 
; 
; user invokes print command here 
; 
 load r5, [dv1]  ;Prepare registers for passing   
 load r7, [dv2]  ; information about print buffer. 
; 
; 
; call printer driver 
; 
 call r4, r6 
; Handle error conditions, if any , upon return. 
; Normal processing resumes 
; 
 halt 

 
 
The printer driver is loaded at address 50. Initialization of the variables includes setting 
of port addresses, variables for the STROBE# pulse, initializing the printer and enabling 
its IRQEN. The variables can be defined anywhere in the program because they reserve 
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no memory space. When the printer driver starts, the PB flag is tested to make sure that a 
previous print job is not in progress. If so, the ISR is not invoked and a message is 
returned to the main program indicating that printing is in progress. This may display a 
“printer busy” icon on the user’s screen, or cause some other appropriate action. If the 
printer is available, it is initialized by the driver. The following activities are also 
performed by the driver (see the attached flow chart also). 

 

• Set port addresses 

• Set up variables for the STROBE# puls 

• Initialize printer and enable its IRQEN. 

• Set up printer ISR by pointing to the buffer and initializing counter 

• Make sure that the previous print job is not in progress 

• Set PB flag to block further print jobs till current one is complete 

• Invoke ISR for the first time 

• Pass error message to main program if ISR reports an error 

• Return to main program 
 

The code and flow chart for the interrupt service routine (ISR) are discussed in the next 
few paragraphs. 
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We have assumed that the address of the ISR is stored at absolute memory address 2 by 
the operating system. One way to do that is by using the .sw directive (as done in the 
dummy calling program). The symbol sw stands for “storage of word”. It enables the user 
to identify storage for a constant, or the value of a variable, an address or a label at a 
fixed memory location during the assembly process.  

; Printer driver 
; 
 .org 50   ; starting address of Printer driver 
; 
datap:    .equ 56 
statusp:  .equ 58 
controlp: .equ 60 
; 
reset:  .equ 17  ; or 11h  
; used to set unidirectional, enable interrupts,  
; auto line feed, and strobe high 
disable: .equ 5 
; 
strb_H: .equ 21  ; or 15h 
strb_L:  .equ 20  ; or 14h 
; 
; check PB flag first, if set,  
; return with message. 
; 
Pdriver: load r1, [PB] 
 jnz r1, [message] 
 movi r1, 1 
 store r1, [PB]  ; a 1 in PB indicates Print In Progress 
 movi r1, reset  ; use r1 for data xfer 
 out r1, controlp 
 store r5, [Bufp] 
 store r7, [NOB] 
; 
; 
 int 
; 
 jump [finish] 
message: nop   ; in actual situation, put a message routine here 
    ;to indicate print in progress 
finish: ret r4 

; 
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These values become part of the binary file and are then loaded into the memory when 
the binary file is loaded and executed. In response to a hardware interrupt or the software 
interrupt int, the control unit of the FALCON-A CPU will pick up the address of the first 
instruction in the ISR from memory location 2, and transfer control to it. This effectively 
means that the behavioral RTL of the int instruction will be as shown below:  

 

int    IPC← PC, PC ← M[2], IF ← 0 

  
The IPC register in the CPU is a holding place for the current value of the PC. It is 
invisible to the programmer. Since the iret instruction should always be the last 
instruction in every ISR, its behavior RTL will be as shown below: 

 
 iret    PC ← IPC, IF ← 1 

   
The saving and restoring of the other elements of the CPU environment like the general 
purpose registers should be done within the ISR. The five store instructions at the 
beginning are used to save these registers into the memory block starting at address 
temp, and the five load instructions at the end are used to restore these registers to their 
original values.  
 
 
 
 

;   ISR starts here 
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 .org 100  
beginISR: movi r6, temp 
 store r1, [r6] 
 store r3, [r6+2] 
 store r4, [r6+4] 
 store r5, [r6+6] 
 store r7, [r6+8] 
 movi r3, 1 
 shiftl r3,r3,7  ; to set mask to 0080h 
 load r5, [Bufp]  ; not necessary to use r5 & r7 here 
 load r7, [NOB] ; using r7 as character counter 
 in r1, statusp 
 and r1,r1,r3  ; test if BUSY = 1 ? 
 jnz r1, [error]  ; error if BUSY = 1 
 load r1, [r5]  ; get char from printer buffer 
 out r1, datap 
 movi r1, strb_L 
 out r1, controlp 
 movi r1, strb_H 
 out r1, controlp 
 addi r5, r5, 2 
 store r5, [Bufp] ; update buffer pointer 
 subi r7, r7, 1  ; update character counter 
 store r7, [NOB] 
 jz r7, [suspend] 
 jump [last] 
suspend: store r7, [PB] ; clear PB flag 
 movi r1, disable ; disable future interrupts till  
      out r1, controlp ; printer driver called again 
 jump [last] 
error: movi r7, -1    ; error code in r7 
; other error codes go here 
; 
last: load r1, [r6] 
 load r3, [r6+2] 
 load r4, [r6+4] 
 load r5, [r6+6] 
 load r7, [r6+8] 
 iret 
 .end 

 
After setting the mask to 80h in r3, the current value of the buffer pointer and the number 
of bytes to be printed are brought from the memory into r5 and r7 respectively. After a 
byte is printed, these values are updated in the memory for use by the ISR when it is 
invoked again. The rest of the code in the ISR is the same as it was in case of the 
programmed I/O example. Note that we are testing the printer’s BUSY flag within the 
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ISR also. However, the difference here is that this testing is being done for a different 
reason, and it is done only once for each call to the ISR. 
 

 

 
 
 
 

The memory map for this program is as shown in the Figure. The point to be noted here 
is that the ISR can be loaded anywhere in the memory but its address will be present at 
memory location 2 i.e. M[2]. 
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Lecture No. 29 

FALSIM 
 
Reading Material 
       Handouts                                                                                                         Slides    
 

Summary      
• Introduction to FALSIM 

• Preparing source files for FALSIM 

• Using FALSIM 

• FALCON-A assembly language techniques 
 

Introduction to FALSIM: 

FALSIM is the name of the software application which consists of the FALCON-A 
assembler and the FALCON-A simulator. It runs under Windows XP.  
 

FALCON-A Assembler:  

Figure 1 shows a snapshot of the graphical user interface (GUI) for the FALCON-A 
Assembler. This tool loads a FALCON-A assembly file with a (.asmfa) extension and 
parses it. It shows the parsed results in an error log, lets the user view the assembled file’s 
contents in the file listing and also provides the features of printing the machine code, an 
Instruction Table and a Symbol Table to a FALCON-A listing file. It also allows the user 
to run the FALCON-A Simulator.  
The FALCON-A Assembler source code has two main modules, the 1st-pass module and 
the 2nd-pass module. The 1st-pass module takes an assembly file with a (.asmfa) 
extension and processes the file contents. It then generates a Symbol Table which 
corresponds to the storage of all program variables, labels and data values in a data 
structure at the implementation level. The Symbol Table is used by the 2nd-pass module. 
Failures of the 1st-pass are handled by the assembler using its exception handling 
mechanism.  
The 2nd-pass module sequentially processes the .asmfa file to interpret the instruction op-
codes, register op-codes and constants using the Symbol Table. It then produces a list file 
with a .lstfa extension independent of successful or failed pass. If the pass is successful a 
binary file with a .binfa extension is produced which contains the machine code for the 
program contained in the assembly file.  
 
FALCON-A Simulator:  
Figure 6 shows a snapshot of the GUI for the FALCON-A Simulator. This tool loads a 
FALCON-A binary file with a (.binfa) extension and presents its contents into different 
areas of the simulator. It allows the user to execute the program to a specific point within 
a time frame or just executes it, line by line. It also allows the user to view the registers, 
I/O port values and memory contents as the instructions execute.  
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FALSIM Features:  
The FALCON-A Assembler provides its user with the following features: 
 Select Assembly File: Labeled as “1” in Figure 1, this feature enables the user to choose 
a FALCON-A assembly file and open it for processing by the assembler. 
 Assembler Options: Labeled as “2” in Figure 1.  

• Print Symbol Table  
This feature, if selected, writes the Symbol Table (produced after the execution of the 1st-
pass of the assembler) to a FALCON-A list file with an extension of (.lstfa). The Symbol 
Table includes variables, addresses and labels with their respective values.  

• Print Instruction Table  
This feature, if selected, writes the FALCON-A instructions along with their op-codes at 
the end of the list file.  
List File: Labeled as “3”, in Figure 1, the List File feature gives a detailed insight of the 
FALCON-A listing file, which is produced as a result of the execution of the 1st and 2nd-
pass. It shows the Program Counter value in hexadecimal and decimal formats along with 
the machine code generated for every line of assembly code. These values are printed 
when the 2nd-pass is completed.  
Error Log: The Error Log is labeled as “4” in Figure 1. It informs the user about the 
errors and their respective details, which occurs in any of the  two passes of the 
assembler. The size of this window can be changed by dragging the boundary line up or 
down. 
Highlight:  This feature is labeled as “5” in Figure 1 and helps the user to search for a 
certain input with the options of searching with “match whole” and “match any” parts 
of the string. The search also has the option of checking with/without considering “case-

sensitivity”. It searches the List File area and highlights the search results using the 
yellow color. It also indicates the total number of matches found.   
Start Simulator: This feature is labeled as “6” in Figure 1. The FALCON-A Simulator is 
run using the FALCON-A Assembler’s “Start Simulator” option. Its features are detailed 
as follows:  
Load Binary File: The button labeled as “11” in Figure 6, allows the user to choose and 
open a FALCON-A binary file with a (.binfa) extension. When a file is being loaded into 
the simulator all the register, constants (if any) and memory values are set.  
Registers: The area labeled as “12” in Figure 6. enables, the user to see values present in 
different registers before, during and after execution.  
Instruction: This area is labeled as “13” in Figure 6 and contains the value of PC, address 
of an instruction, its representation in Assembly, the Register Transfer Language, the op-
code and the instruction type.  
I/O Ports: I/O ports are labeled as “14” in Figure 6. These ports are available for the user 
to enter input operation values and visualize output operation values whenever an I/O 
operation takes place in the program. The input value for an input operation is given by 
the user before an instruction executes. The output values are visible in the I/O port area 
once the instruction has successfully executed.  
Memory: The memory is divided into two areas and is labeled as “15” in Figure 6, to 
facilitate the view of data stored at different memory locations before, during and after 
program execution.  
Processor’s State: Labeled as “16” in Figure 6, this area shows the current values of the 
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Instruction Register and the Program Counter while the program executes.  
Highlight: The highlight option for the FALCON-A simulator is labeled as “17” in 
Figure 6. This feature is similar to the way the highlight feature of the FALCON-A 
Assembler works. It offers to highlight the search string which is entered as an input, 
with the “All “ and “ Part “ option. The results of the search are highlighted using the 
yellow color. It also indicates the total number of matches.  
The following is a description of the options available on the button panel labeled as “18” 
in Figure 6. 
 Single Step: “Single Step” lets the user execute the program, one instruction at a time. 
The next instruction is not executed unless the user does a “single step” again. By default, 
the instruction to be executed will be the one next in the sequence. It changes if the user 
specifies a different PC value using the Change PC option (explained below).  

Change PC: This option lets the user change the value of PC (Program Counter). 
By changing the PC the user can execute the instruction to which the specified PC 
points. The value in the PC must be an even address. 
Execute: By choosing this button, the user is able to execute the loaded program 
with the options of execution with/without breakpoint insertion. In case of 
breakpoint insertion, the user has the option to choose from a list of valid 
breakpoint values. It also has the option to set a limit on the time for execution. 
This “Max Execution Time” option restricts the program execution to a time 
frame specified by the user.  
Change Register: Using the Change Register feature, the user can change the 
value present in a particular register.  
Change Memory Word: This feature enables the user to change values present at a 
particular memory location.  
Display Memory: Display Memory shows an updated memory area, after a 
particular memory location other than the pre-existing ones is specified by the 
user.  
Change I/O: Allows the user to give an I/O port value if the instruction to be 
executed requires an I/O operation. Giving in the input in any one of the I/O ports 
areas before instruction execution, indicates that a particular I/O operation will be 
a part of the program and it will have an input from some source. The value given 
by the user indicates the input type and source.  
Display I/O: Display I/O works in a manner similar to Display Memory. Here the 
user specifies the starting index of an I/O port. This features displays the I/O ports 
stating from the index specified. 
 

2. Preparing Source Files for FALSIM: 

In order to use the FALCON-A assembler and simulator, FALSIM, the source file 
containing assembly language statements and directives should be prepared 
according to the following guidelines: 

• The source file should contain ASCII text only. Each line should be terminated by 
a carriage return. The extension .asmfa should be used with each file name. After 
assembly, a list file with the original filename and an extension .lstfa, and a 
binary file with an extension .binfa will be generated by FALSIM.  
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• Comments are indicated by a semicolon (;) and can be placed anywhere in the 
source file. The FALSIM assembler ignores any text after the semicolon. 

• Names in the source file can be of one of the following types: 

• Variables: These are defined using the .equ directive. A value must also be 
assigned to variables when they are defined. 

• Addresses in the “data and pointer area” within the memory: These can be defined 
using the .dw or the .sw directive. The difference between these two directives is 
that when .dw is used, it is not possible to store any value in the memory.  The 
integer after .dw identifies the number of memory words to be reserved starting at 
the current address. (The directive .db can be used to reserve bytes in memory.) 
Using the .sw directive, it is possible to store a constant or the value of a name in 
the memory. It is also possible to use pointers with this directive to specify 
addresses larger than 127. Data tables and jump tables can also be set up in the 
memory using this directive. 

• Labels: An assembly language statement can have a unique label associated with 
it. Two assembly language statements cannot have the same name. Every label 
should have a colon (:) after it. 

• Use the .org 0 directive as the first line in the program. Although the use of this 
line is optional, its use will make sure that FALSIM will start simulation by 
picking up the first instruction stored at address 0 of the memory. (Address 0 is 
called the reset address of the processor). A jump [first] instruction can be placed 
at address 0, so that control is transferred to the first executable statement of the 
main program.  Thus, the label first serves as the identifier of the “entry point” in 
the source file. The .org directive can also be used anywhere in the source file to 
force code at a particular address in the memory. 

• Address 2 in the memory is reserved for the pointer to the Interrupt Service 
Routine (ISR). The .sw directive can be used to store the address of the first 
instruction in the ISR at this location. 

• Address 4 to 125 can be used for addresses of data and pointers20. However, the 
main program must start at address 126 or less21, otherwise FALSIM will 
generate an error at the jump [first] instruction. 

• The main program should be followed by any subprograms or procedures. Each 
procedure should be terminated with a ret instruction. The ISR, if any, should be 
placed after the procedures and should be terminated with the iret instruction. 

• The last line in the source file should be the .end directive.   

• The .equ directive can be used anywhere in the source file to assign values to 
variables. 

• It is the responsibility of the programmer to make sure that code does not 
overwrite data when the assembly process is performed, or vice versa. As an 
example, this can happen if care is not exercised during the use of the .org 
directive in the source file. 

                                                 
20 Any address between 4 and 14 can be used in place of the displacement field in load or store instructions. 
Recall that the displacement field is just 5 bits in the instruction word.   
21 This restriction is because of the fact that the immediate operand in the movi instruction must fit an 8-bit 
field in the instruction word. 
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3. Using FALSIM:   

• To start FALSIM (the FALCON-A assembler and simulator), double click on the 
FALSIM icon. This will display the assembler window, as shown in the Figure 1. 

• Select one or both assembler options shown on the top right corner of the 
assembler window labeled as “2”. If no option is selected, the symbol table and 
the instruction table will not be generated in the list (.lstfa) file. 

• Click on the select assembly file button labeled as “1”. This will open the dialog 
box as shown in the Figure 2. 

• Select the path and file containing the source program that is to be assembled. 

• Click on the open button. FALSIM will assemble the program and generate two 
files with the same filename, but with different extensions. A list file will be 
generated with an extension .lstfa, and a binary (executable) file will be generated 
with an extension .binfa. FALSIM will also display the list file and any error 
messages in two   separate panes, as shown in Figure 3. 

• Double clicking on any error message highlights and displays the corresponding 
erroneous line in the program listing window pane for the user. This is shown in 
Figure 4. The highlight feature can also be used to display any text string, 
including statements with errors in them. If the assembler reported any errors in 
the source file, then these errors should be corrected and the program should be 
assembled again before simulation can be done. Additionally, if the source file 
had been assembled correctly at an earlier occasion, and a correct binary (.binfa) 
file exists, the simulator can be started directly without performing the assembly 
process. 

• To start the simulator, click on the start simulation button labeled as “6”. This will 
open the dialog box shown in Figure 6. 

• Select the binary file to be simulated, and click Open as shown in Figure 7. (It is 
also possible to open the file by double clicking on the file name in the “Open” 
window). 

• This will open the simulation window with the executable program loaded in it as 
shown in Figure 8. The details of the different panes in this window were given in 
section 1 earlier. Notice that the first instruction at address 0 is ready for 
execution.  All registers   are initialized to 0. The memory contains the address of 
the ISR (i.e., 64h which is 100 decimal) at location 2 and the address of the 
printer driver at location 4. These two addresses are determined at assembly time 
in our case.  In a real situation, these addresses will be determined at execution 
time by the operating system, and thus the ISR and the printer driver will be 
located in the memory by the operating system (called re-locatable code). 
Subsequent memory locations contain constants defined in the program. 

• Click single step button labeled as “19”. FALSIM will execute the jump [main] 
instruction at address 0 and the PC will change to 20h (32 decimal), which is the 
address of the first instruction in the main program (i.e., the value of main).  

• Although in a real situation, there will be many instructions in the main program, 
those instructions are not present in the dummy calling program. The first useful 
instruction is shown next. It loads the address of the printer driver in r6 from the 
pointer area in the memory. The registers r5 and r7 are also set up for passing the 



Advanced Computer Architecture-CS501                                            
________________________________________________________ 

     Last Modified: 17-Feb-07   Page 300 

                                                                                                    

starting address of the print buffer and the number of bytes to be printed. In our 
dummy program, we bring these values in to these registers from the data area in 
the memory, and then pass these values to the printer driver using these two 
registers. Clicking on the single step button twice, executes these two instructions. 

• The execution of the call instruction simulates the event of a print request by the 
user. This transfers control to the printer driver. Thus, when the call r4, r6 

instruction is single stepped, the PC changes to 32h (50 decimal) for executing the 
first instruction in the printer driver. 

• Double click on memory location 000A, which is being used for holding the PB 
(printer busy) flag. Enter a 1 and click the change memory button. This will store 
a 0001 in this location, indicating that a previous print job is in progress. Now 
click single step and note that this value is brought from memory location 000E 
into register r1. Clicking single step again will cause the jnz r1, [message] 
instruction to execute, and control will transfer to the message routine at address 
0046h. The nop instruction is used here as a place holder. 

• Click again on the single step button.  Note that when the ret r4 instruction 
executes, the value in r4 (i.e., 28h) is brought into the PC. The blue highlight bar 
is placed on the next instruction after the call r4, r6 instruction in the main 
program. In case of the dummy calling program, this is the halt instruction. 

• Double click on the value of the PC labeled as “20”. This will open a dialog box 
shown below. Enter a value of the PC (i.e., 
26h) corresponding to the call r4, r6 
instruction, so that it can be executed 
again. A “list” of possible PC values can 
also be pulled down using, and 0026h can 
be selected from there as well.  

• Click single step again to enter the printer 
driver again. 

• Change memory location 000A to a 0, and then single step the first instruction in 
the printer driver. This will bring a 0 in r1, so that when the next jnz r1, 

[message] instruction is executed, the branch will not be taken and control will 
transfer to the next instruction after this instruction. This is movi r1, 1 at address 
0036h. 

• Continue single stepping. 

• Notice that a 1 has been stored in memory location 000A, and r1 contains 11h, 
which is then transferred to the output port at address 3Ch (60 decimal) when the 
out r1, controlp instruction executes. This can be verified by double clicking on 
the top left corner of the I/O port pane, and changing the address to 3Ch. Another 
way to display the value of an I/O port is to scroll the I/O window pane to the 
desired position.  

•  Continue single stepping till the int instruction and note the changes in different 
panes of the simulation window at each step. 

•    When the int instruction executes, the PC changes to 64h, which is the address of 
the first instruction in the ISR.  Clicking single step executes this instruction, and 
loads the address of temp (i.e., 0010h) which is a temporary memory area for 
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storing the environment. The five store instructions in the ISR save the CPU 
environment (working registers) before the ISR change them.  

•  Single step through the ISR while noting the effects on various registers, memory 
locations, and I/O ports till the iret instruction executes. This will pass control 
back to the printer driver by changing the PC to the address of the jump [finish] 
instruction, which is the next instruction after the int instruction.  

•   Double click on the value of the PC. Change it to point to the int instruction and 
click single step to execute it again. Continue to single step till the in r1, statusp 
instruction is ready for execution. 

•  Change the I/O port at address 3Ah (which represents the status port at address 
58) to 80 and then single step the in r1, statusp instruction. The value in r1 
should be 0080.  

• Single step twice and notice that control is transferred to the movi r7, FFFF
22  

     instruction,which stores an error code of –1 in r1. 
 
 

                                                            
 
 
                                                  
 
                                                                                      
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

                                                                                    
 
 
 
                                                                                        Figure 1 

                                                 
22 The instruction was originally movi r7, -1. Since it was converted to machine language by the assembler, 
and then reverse assembled by the simulator, it became movi r7, FFFF.  This is because the machine code 
stores the number in 16-bits after sign-extension. The result will be the same in both cases.  
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4. FALCON-A assembly language programming techniques:   

• If a signed value, x, cannot fit in 5 bits (i.e., it is outside the range -16 to +15), 
FALSIM will report an error with a load r1, [x] or a store r1, [x] instruction. To 
overcome this problem, use movi r2, x followed by load r1, [r2].   

• If a signed value, x, cannot fit in 8 bits (i.e., it is outside the range      -128 to +127), 
even the previous scheme will not work. FALSIM will report an error with the movi 

r2, x instruction. The following instruction sequence should be used to overcome this 
limitation of the FALCON-A. First store the 16-bit address in the memory using the 
.sw directive. Then use two load instructions as shown below: 

a:   .sw x 

 load r2, [a] 

 load r1, [r2]  
This is essentially a “memory-register-indirect” addressing. It has been made possible 
by the .sw directive. The value of a should be less than 15. 

• A similar technique can be used with immediate ALU instructions for large values of 
the immediate data, and with the transfer of control (call and jump) instructions for 
large values of the target address. 

• Large values (16-bit values) can also be stored in registers using the mul instruction 
combined with the addi instruction. The following instructions bring a 201 in register 
r1. 
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movi r2, 10 

movi r3, 20 

mul r1, r2, r3  ; r1 contains 200 after this instruction 

addi r1, r1, 1   ; r1 now contains 201 

• Moving from one register to another can be done by using the instruction  addi r2, 

r1, 0. 

• Bit setting and clearing can be done using the logical (and, or, not, etc) instructions. 

• Using shift instructions (shiftl, asr, etc.) is faster that mul and div, if the multiplier or 
divisor is a power of 2. 
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Lecture No. 30 
 

Interrupt Priority and Nested Interrupts 
 
Reading Material 
 
Vincent P. Heuring & Harry F. Jordan                                                       Chapter 8                                                         
Computer Systems Design and Architecture                                               8.3.3, 8.4                                                                                                                            

 

Summary                                                                                                                                                                                                                                                                         

 
• Nested Interrupts 

• Interrupt Mask 

• DMA 
 

Nested Interrupts 
                                    (Read from Book, Jordan Page 391) 

 

Interrupt Mask 
                                    (Read from Book, Jordan Page 391) 

 

Priority Mask 
                                     (Read from Book, Jordan Page 392) 

 

Examples 

 
Example # 1

23
 

Assume that three I/O devices are connected to a 32-bit, 10 MIPS CPU. The first device 
is a hard drive with a maximum transfer rate of 1MB/sec. It has a 32-bit bus. The second 
device is a floppy drive with a transfer rate of 25KB/sec over a 16-bit bus, and the third 
device is a keyboard that must be polled thirty times per second. Assuming that the 
polling operation requires 20 instructions for each I/O device, determine the percentage 
of CPU time required to poll each device. 
 

Solution: 
The hard drive can transfer 1MB/sec or 250 K 32-bit words every second. Thus, this hard 
drive should be polled using at least this rate. 
 
Using 1K=210, the number of CPU instructions required would be  
 
 250 x 210 x 20 = 5120000 instructions per second. 

                                                 
23 Adopted from [H&P org] 
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Percentage of CPU time required for polling is  
 
 (5.12 x 106)/ (10 x106) = 51.2% 
 
The floppy disk can transfer 25K/2= 12.5 x 210 half-words per second.  It should be 
polled with at least this rate. The number of CPU instructions required will be 12.5 x 210 
x 20 = 256,000 instructions per second. 
 
Therefore, the percentage of CPU time required for polling is  
 
 (0.256 x 106)/ (10 x 106) = 2.56%.  
 
For the keyboard, the number of instructions required for polling is  
 
 30 x 20 = 600 instructions per second.  
 
Therefore, the percentage of CPU time spent in polling is  
 
 600 / (10 x 106) = 0.006% 
 
It is clear from this example that while it is acceptable to use polling for a keyboard or a 
floppy drive, it is very risky to use polling for the hard drive. In general, for devices with 
a high data rate, the use of polling is not adequate. 
 
Example # 2

2 
a. What should be the polling frequency for an I/O device if the average delay 

between the time when the device wants to make a request and the time when it is 
polled, is to be at most 10 ms?  

b. If it takes 10,000 cycles to poll the I/O device, and the processor operates at 
100MHz, what % of the CPU time is spent polling? 

c. What if th24e system wants to provide an average delay of 1msec? 
 

Solution: 

a. Assuming that the I/O requests are distributed evenly in time, the average time 
that a device will have to wait for the processor to poll is half the time between 
polling attempts. Therefore, to provide an average delay of 10 ms, the processor 
will have to poll every 20 ms, or 50 times per second.  

b. If each polling attempt takes 10,000 cycles, then the processor will spend 500,000 
cycles polling each second. The % of CPU time spent in polling is then 
(0.5x106)/(100x106)=0.5% 

c. To provide an average delay of 1ms, the polling frequency must be increased. The 
processor will have to poll every 2ms, or 500 times per second. This will consume 
5,000,000 cycles for polling. The % of CPU time spent polling then becomes 
5/100=5%.  

 

                                                 
24 Adopted from [Schaum] 
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Example # 3
25  

What percentage of time will a 20MIPS processor spend in the busy wait loop of an 80-
character line printer when it takes 1 msec to print a character and a total of 565 
instructions need to be executed to print an 80 character line. Assume that two 
instructions are executed in the polling loop. 
 

Solution: 
Out of the total 565 instructions executed to print a line, 80x2=160 are required for 
polling. For a 20MIPS processor, the execution of the remaining 405 instructions takes 

405/ (20x106) = 20.25µsec. Since the printing of 80 characters takes 80ms, (80-0.02025) 
=79.97msec is spent in the polling loop before the next 80 characters can be printed. This 
is 79.97/80=99.96% of the total time. 
 
Example # 4

26 
Consider a 20 MIPS processor with several input devices attached to it, each running at 
1000 characters per second. Assume that it takes 17 instructions to handle an interrupt. If 

the hardware interrupt response takes 1µsec, what is the maximum number of devices 
that can be handled simultaneously? 
 

Solution: 

A service for one character requires 17/ (20x106) +1µsec=1.85µsec. Since each device 
runs at 1000 characters per second, 1.85 ms of handling time is required by each device 
every second. Therefore the maximum number of devices that can be handled is 1/ 
(1.85x10-3) = 540. 
 
Example # 5

27  
Assume that a floppy drive having a transfer rate of 25KB per second  is attached to a 32 
bit, 10MIPS CPU using an interrupt driven interface. The drive has a 16-bit data bus. 
Assume that the interrupt overhead is 20 instructions. Calculate the fraction of CPU time 
required to service this drive when it is active. 
 

Solution: 
Since the floppy drive has a 16-bit data bus, it can transfer two bytes at one time. Thus its 
transfer rate is 25/2 = 12.5K half-words (16-bits each) per second. This corresponds to an 
overhead of 20 instructions or 12.5K x 20 = 12.5 x 210 x 20 = 256000 instructions per 
second.  

 

Example # 6
28 

A processor with a 500 MHz clock requires 1000 clock cycles to perform a context 

switch and start an ISR. Assume each interrupt takes 10,000 cycles to execute the ISR 

                                                 
25 Adopted from [H&J] 
26 Adopted from [H&J] 
27 Adopted from [H&P org] 
28 Adopted from [Schaum] 
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and the device makes 200 interrupt requests per second. Also, assume that the processor 

polls every 0.5msec during the time when there are no interrupts. Further assume that 

polling an I/O device requires 500 cycles. Compute the following: 

a. How many cycles per second does the processor spend handling I/O from the 
device if only interrupts are used? 

b. What fraction of the CPU time is used in interrupt handling for part (a)? 
c. How many cycles per second are spent on I/O if polling is also used with 

interrupts?  
d. How often should the processor poll so that polling incurs the same overhead as 

interrupts? 
 

Solution: 

a. The device makes 200 interrupt requests per second, each of which takes  
      10,000 + 2x1000 (context switching to the ISR and back from it)  
      = 12,000 cycles.  
 
      Thus, a total of 200x12,000=2,400,000 cycles per second are spent handling I/O 

using      interrupts. 
 
b. The percentage of the processor time used in interrupt handling is 

 2,400,000/(500x106)   or 0.48%. 
 

c. There are 200 interrupt requests per second, or one interrupt request every 5 ms. 
Every interrupt consumes a total of 12,000 cycles, as calculated in part (a). For a 
500 MHz CPU, this is  

  
 12000/(500 x 106 ) = 24 microseconds. 
 
 For 200 interrupts per second, this is 4.8 msec.  
 
 This leaves 1000 - 4.8 = 995.2 msec for polling. 
 
 Since the processor polls once every 0.5 msec during the time when there is no      

interrupt, this corresponds to  
  
 995/0.5 = 1990 times per second. 
 
 The total number of cycles required for polling is 
 
 1990 x 500 = 995,000 cycles per second. 
 
 Thus, the total time spent on I/O when using polling with  interrupts is  
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 2,400,000 + 995,000 = 3,395,000 cycles per second. 
 

d. The interrupt overhead is 1000 cycles per second for a context switch to the ISR 
and 1000 cycles per second back from it.  This is a total of 2 x 1000 cycles per 
second.  With 200 interrupts per second, this is  

 200 x 2000 = 400,000 cycles per second. 
 

The polling overhead is 500 cycles per second. Thus, for the same  overhead as 
interrupts, the polling operation should be performed  

 400,000 / 500 = 800 times per second,  
 or 1/800 =  every 1.25 msec. 

 

Direct Memory Access (DMA) 
Direct memory access is a technique, where by the CPU passes its control to the memory 
subsystem or one of its peripherals, so that a contiguous block of data could be 
transferred from peripheral device to memory subsystem or from memory subsystem to 
peripheral device or from one peripheral device to another peripheral device. 

 
Advantage of DMA 

The transfer rate is pretty fast and conceptually you could imagine that through disabling 
the tri-state buffers, the system bus is isolated and a direct connection is established 
between the I/O subsystem and the memory subsystem and then the CPU is free. It is idle 
at that time or it could do some other activity. Therefore, the DMA would be quite useful, 
if a large amount of data needs to be transferred, for example from a hard disk to a printer 
or we could fill up the buffer of a printer in a pretty short time. 
As compared to interrupt driven I/O or the programmed I/O, DMA would be much faster. 
What is the consequence? The consequence is that we need to have another chip, which is 
a DMA controller. “A DMA controller could be a CPU in itself and it could control the 
total activity and synchronize the transfer of data”. DMA could be considered as a 
technique of transferring data from I/O to memory and from memory to I/O without the 
intervention of the CPU. The CPU just sets up an I/O module or a memory  
subsystem, so that it passes control and the data could be passed on from I/O to memory 
or from memory to I/O or within the memory from one subsystem to another subsystem 
without interaction of the CPU. After this data transfer is complete, the control is passed 
from I/O back to the CPU. 
Now we can illustrate further the advantage of DMA using following example. 
 

Example of DMA 

If we write instruction load as follows: 
                                                             load [2], [9] 
 
This instruction is illegal and not available in the SRC processor. The symbols [2] and [9] 
represent memory locations. If we want to have this transfer to be done then two steps 
would be required. The instruction would be: 
                                                             load  r1, [9] 
                                                             store r1, [2] 
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Thus it is not possible to transfer from one memory location to another without involving 
the CPU. The same applies to transfer between memory and peripherals connected to I/O 
ports. For example we cannot have: 
                                                            out [6], datap 
It has to be done again in two steps: 
                                                            load r1, [6] 
                                                            out   r1, datap 
Similar comments apply to the “in” instruction. Thus the real cause of the limited transfer 
rate is the CPU itself. It acts as an unnecessary middle man. The example illustrates that 
in general, every data word travels over the system bus twice and this is not necessary, 
and therefore, the DMA in such cases is pretty useful. 
 

DMA Approach 

The DMA approach is to turn off i.e. through tri-state buffers and therefore, electrically 
disconnect from the system bus, the CPU and let a peripheral device or a memory 
subsystem or any other module or another block of the same module communicate 
directly with the memory or with another peripheral device. This would have the 
advantage of having higher transfer rates which could approach that of limited by the 
memory itself. 
 

Disadvantage of DMA 

The disadvantage however, would be that an additional DMA controller would be 
required, that could make the system a bit more complex and expensive. Generally, the 
DMA requests have priority over all other bus activities including interrupts. No 
interrupts may be recognized during a DMA cycle. 
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Lecture No. 31 
 

Direct Memory Access (DMA) 
 

Reading Material 
 
Vincent P. Heuring & Harry F. Jordan                                                            Chapter 8 
Computer Systems Design and Architecture                                                        8.4 
 

Summary 
• Direct Memory Access (DMA): 

 

Direct Memory Access (DMA): 
 

Introduction 
Direct Memory Access is a technique which allows a peripheral to read from and/or write 
to memory without intervention by the CPU. It is a simple form of bus mastering where 
the I/O device is set up by the CPU to transfer one or more contiguous blocks of memory. 
After the transfer is complete, the I/O device gives control back to the CPU.  
The following DMA transfer combinations are possible:  

• Memory to memory  
• Memory to peripheral  
• Peripheral to memory  
• Peripheral to peripheral  

The DMA approach is to "turn off" (i.e., tri-state and electrically disconnect from the 
system buses) the CPU and let a peripheral device (or memory - another module or 
another block of the same module) communicate directly with the memory (or another 
peripheral).  
ADVANTAGE: Higher transfer rates (approaching that of the memory) can be achieved.  
DISADVANTAGE: A DMA Controller, or a DMAC, is needed, making the system 
complex and expensive.  
Generally, DMA requests have priority over all other bus activities, including interrupts. 
No interrupts may be recognized during a DMA cycle.  

 

Reason for DMA:  
The instruction load [2], [9] is illegal. The symbols [2] and [9] represent memory 
locations. This transfer has to be done in two steps:  

• load r1,[9]  
• store r1,bx  

Thus, it is not possible to transfer from one memory location to another without involving 
the CPU. The same applies to transfer between memory and peripherals connected to I/O 
ports. e.g., we cannot have out [6], datap.  It has to be done in two steps:  
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• load r1,[6]  
• out r1, datap  

Similar comments apply to the in instruction.  

Thus, the real cause of the limited transfer rate is the CPU itself. It acts as an 

unnecessary "middleman". The above discussion also implies that,  in general, every 

data word travels over the system bus twice. 

   

Some Definitions: 

• MASTER COMPONENT: A component connected to the system bus and 
having control of it during a particular bus cycle.  

• SLAVE COMPONENT: A component connected to the system bus and with 
which the master component can communicate during a particular bus cycle. 
Normally the CPU with its bus control logic is the master component.  

• QUALIFICATIONS TO BECOME A MASTER: A Master must have the 
capability to place addresses on the address bus and direct the bus activity during 
a bus cycle.  

• QUALIFIED COMPONENTS:  
o Processors with their associated bus control logic.  
o DMA controllers.  

• CYCLE STEALING: Taking control of the system bus for a few bus cycles. 

Data Transfer using DMA: 
Data transfer using DMA takes place in three steps. 

1
st
 Step: 

in this step when the processor has to transfer data it issues a command to the DMA 
controller with the following information: 
� Operation to be performed i.e., read or write operation. 
� Address of I/O device. 
� Address of memory block. 
� Size of data to be transferred. 
After this, the processor becomes free and it may be able to perform other tasks.  

2
nd

 Step: 

In this step the entire block of data is transferred directly to or from memory by the DMA 
controller. 

3
rd

 Step: 

In this, at the end of the transfer, tthhee  DDMMAA  ccoonnttrroolllleerr  iinnffoorrmmss  tthhee  pprroocceessssoorr  bbyy  sseennddiinngg  aann  

iinntteerrrruupptt  ssiiggnnaall..      
 
See figure 8.18 on the page number 400 of text book. 

The DMA Transfer Protocol:  
 Most processors have a separate line over which an external device can send a request 
for DMA. There are various names in use for such a line.  HOLD, RQ, or Bus Request 
(BR), etc. are examples of these names. 
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The DMA cycle usually begins with the alternate bus master requesting the system bus 
by activating the associated Bus Request line and, of course, satisfying the setup and hold 
times. The CPU completes the current bus cycle, in the same way as it does in case of 
interrupts, and responds by floating the address, data and control lines.  A Bus Grant 
pulse is then output by the CPU to the same device from where the request occurred. 
After receiving the Bus Grant pulse, and waiting for the "float delay" of the CPU, the 
requesting device may drive the system bus. This precaution prevents bus contention. To 
return control of the bus to the CPU, the alternate bus master relinquishes bus control and 
issues a release pulse on the same Bus Request line. The CPU may drive the system bus 
after detecting the release pulse. The alternate bus master should be tri-stated off the local 
bus and have other CPU interface circuits re-enabled within this time.  

 

DMA has priority over Interrupt driven I/O: 

In interrupt driven I/O the I/O transfer depends upon the speed at which the processor 
tests and service a device. Also, many instructions are required for each I/O transfer. 
These factors become bottleneck when large blocks of data are to be transferred. While in 
the DMA technique the I/O transfers take place without the intervention by the CPU, 
rather CPU pauses for one bus cycle. So DMA technique is the more efficient technique 
for I/O transfers. 

 

DMA Configurations: 
• Single Bus Detached DMA 
• Single Bus Integrated DMA 
• I/O Bus 

 

Single Bus Detached DMA 
In the example provided by the above diagram, there is a single bidirectional bus 
connecting the processor, the memory, 
the DMA module and all the I/O 
modules. When a particular I/O 
module needs to read or write large 
amounts contiguous data it requests the processor for direct memory access. If permission 
is granted by the processor, the I/O module sends the read or write address and the size of 
data needed to be read or written to the DMA module. Once the DMA module 
acknowledges the request, the I/O module is free to read or write its contiguous block of 
data from or onto main memory. Even though in this situation the processor will not be 
able to execute while the transfer is going on (as there is a just a single bus to facilitate 
transfer of data), DMA transfer is much faster then having each word of memory being 
read by the processor and then being written to its location. 
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Single Bus Integrated DMA 
In this configuration the DMA and one 
or more I/O modules are integrated 
without the inclusion of system bus 
functioning as the part of I/O module 
or may be as a separate module 

controlling the I/O module. 
 

IO Bus 
In this configuration we integrate the 
DMA and I/O modules through an I/O 
bus. So it will cut the number of I/O 
interfaces required between DMA and 
I/O module. 

 

 
Example  
An I/O device transfers data at a rate of 10MB/s over a 100MB/s bus. The data is 
transferred in 4KB blocks. If the processor operates at 500MHz, and it takes a total of 
5000 cycles to handle each DMA request, find the fraction of CPU time handling the data 
transfer with and without DMA. 
 
Solution. 
Without DMA 
 The processor here copies the data into memory as it is sent over the bus. Since 
the I/O device sends data at a rate of 10MB/s over the 100MB/s bus, 10 % of each second 
is spent transferring data. Thus 10% of the CPU time is spent copying data to memory.   
With DMA 
 Time required in handling each DMA request is 5000 cycles. Since 2500 DMA 
requests are issued (10MB/4KB) the total time taken is 12,500,000 cycles. As the CPU 

clock is 500MHZ, the fraction of CPU time spent is  12,500,000/(500x106) or 2.5%. 
 
Example  
A hard drive with a maximum transfer rate of 1Mbyte/sec is connected to a 32-bit, 
10MIPS CPU operating at a clock frequency of 100 MHz. Assume that the I/O interface 
is DMA based and it takes 500 clock cycles for the CPU to set-up the DMA controller. 
Also assume that the interrupt handling process at the end of the DMA transfer takes an 
additional 300 CPU clock cycles. If the data transfer is done using 2 KB blocks, calculate 
the percentage of the CPU time consumed in handling the hard drive. 
 
Solution 
Since the hard drive transfers at 1MB/sec, and each block size is 2KB, there are  

 
1000/2= 500 blocks transferred/sec 
 

Every DMA transfer uses 500+300=800 CPU cycles. This gives us  



Advanced Computer Architecture-CS501                                            
________________________________________________________ 

     Last Modified: 17-Feb-07   Page 320 

                                                                                                    

 
  800x500 = 400,000 = 400x103 cycles/sec 
 
For the 100 MHz CPU, this corresponds to  
 
  (400x103) / (100x106)= 4x10-3 = 0.4% 
This would be the case when the hard drive is transferring data all the time. In actual 
situation, the drive will not be active all the time, and this number will be much smaller 
than 0.4%.  
Another assumption that is implied in the previous example is that the DMA controller is 
the only device accessing the memory. If the CPU also tries to access memory, then 
either the DMAC or the CPU will have to wait while the other one is actively accessing 
the memory. If cache memory is also used, this can free up main memory for use by the 
DMAC.   
 

Cycle Stealing 
The DMA module takes control of the bus to transfer data to and from memory by 
forcing the CPU to temporarily suspend its operation. This approach is called Cycle 
Stealing because in this approach DMA steals a bus cycle. 
 

DMA and Interrupt breakpoints 

during an instruction cycle 
The figure shows that the CPU suspends 
or pauses for one bus cycle when it 
needs a bus cycle, transfers the data and 
then returns the control back to the CPU. 
 

I/O processors 

When I/O module has its own local 
memory to control a large number of I/O 
devices without the involvement of CPU is called I/O processor. 

 

I/O Channels 
When an I/O module has a capability of executing a specific set of instructions for 
specific I/O devices in the memory without the involvement of CPU is called I/O 
channel. 

 

I/O channel architecture: 

 

Types of I/O channels: 

 

Selector Channel 
It is the DMA controller that can do 
block transfers for several devices but 
only one at a time. 
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Multiplexer Channel 
It is the DMA controller that can do 
block transfers for several devices at 
once. 

 

Types of Multiplexer Channel 
• Byte Multiplexer 
• Block Multiplexer 

 

Byte Multiplexer 
• Byte multiplexer accepts or    transmits characters. 
• Interleaves bytes from several devices. 
• Used for low speed devices. 

 

 Block Multiplexer 
• Block multiplexer accepts or transmits block of characters. 
• Interleaves blocks of bytes from several devices. 
• Used for high speed devices. 

 

Virtual Address: 

Virtual address is generated be the logical by the memory management unit for 
translation. 
 

Physical Address: 

Physical address is the address in the memory. 

 

DMA and memory system 

DMA disturbs the relationship between the memory system and CPU.  

 

Direct memory access and the memory system 

Without DMA, all memory accesses are handled by the CPU, using address translation 
and cache mechanism. When DMA is implemented into an I/O system memory accesses 
can be made without intervening the CPU for address translation and cache access. The 
problems created by the DMA in virtual memory and cache systems can be solved using 
hardware and software techniques. 

 

Hardware Software Interface 

One solution to the problem is that all the I/O transfers are made through the cache to 
ensure that modified data are read and updated in the cache on the I/O write. This method 
can decrease the processor performance because of infrequent usage of the I/O data. 
Another approach is that the cache is invalidated for an I/O read and for an I/O write, 
write-back (flushing) is forced by the operating system. This method is more efficient 
because flushing of large parts of cache data is only done on DMA block accesses.  
Third technique is to flush the cache entries using a hardware mechanism, used in 
multiprogramming system to keep cache coherent. 
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SOME clarifications: 

• The terms "serial" and "parallel" are with respect to the computer I/O ports --- not 
with respect to the CPU. The CPU always transfers data in parallel.  

• The terms "programmed I/O", "interrupt driven I/O" and "DMA" are with respect 
to the CPU. Each of these terms refers to a way in which the CPU handles I/O, or 
the way data flow through the ports is controlled.  

• The terms "simplex" and "duplex" are with respect to the transmission medium or 
the communication link.  

• The terms "memory mapped I/O" and "independent I/O" are with respect to the 
mapping of the interface, i.e., they refer to the CPU control lines used in the 
interface.  
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Lecture No. 32 

Magnetic Disk Drives 
 
Reading Material 
 
Vincent P. Heuring & Harry F. Jordan                                                           Chapter 9 
Computer Systems Design and Architecture                                                       9.1 
                                                                                                                       

Summary 
• Hard Disk 

• Static and Dynamic Properties 

• Examples 

• Mechanical Delays and Flash Memory 

• Semiconductor Memory vs. Hard Disk 

 
Hard Disk 

 

Peripheral devices connect the outside world with the central processing unit through the 
I/O modules. One important feature of these peripheral devices is the variable data rate. 
Peripheral devices are important because of the function they perform. 
A hard disk is the most frequently used peripheral device. It consists of a set of platters. 
Each platter is divided into tracks. The track is subdivided into sectors. To identify each 
sector, we need to have an address. So, before the actual data, there is a header and this 
header consisting of few bytes like 10 bytes. Along with header there is a trailer. Every 
sector has three parts: a header, data section and a trailer. 
 

Static Properties 

The storage capacity can be determined from the number of platters and the number of 
tracks. In order to keep the density same for the entire surface, the trend is to use more 
number of sectors for outer tracks and lesser number of sectors for inner tracks. 

 

Dynamic Properties 

When it is required to read data from a particular location of the disk, the head moves 
towards the selected track and this process is called seek. The disk is constantly rotating 
at a fixed speed. After a short time, the selected sector moved under the head. This 
interval is called the rotational delay. On the average, the data may be available after half 
a revolution. Therefore, the rotational latency is half revolution. 
The time required to seek a particular track is defined by the manufacturer. Maximum, 
minimum and average seek times are specified. Seek time depends upon the present 
position of the head and the position of the required sector.  For the sake of calculations, 
we will use the average value of the seek time.  
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• Transfer rate 

When a particular sector is found, the data is transferred to an I/O module. This would 
depend on the transfer rate. It would typically be between 30 and 60 Mbytes/sec defined 
by the manufacturer.  

 

• Overhead time 

Up till now, we have assumed that when a request is made by the CPU to read data, then 
hard disk is available. But this may not be the case. In such situation we have to face a 
queuing delay. There is also another important factor: the hard disk controller, which is 
the electronics present in the form of a printed circuit board on the hard disk. So the time 
taken by this controller is called over head time. 
The following examples will clarify some of these concepts. 
 

Example 1 

Find the average rotational latency if the disk rotates at 20,000 rpm. 
 

Solution 

The average latency to the desired data is halfway round the disk so 
Average rotational latency  =0.5/(20,000/60) 
                                          =1.5ms 

Example 2 
A magnetic disk has an average seek time of 5 ms. The transfer rate  
is 50 MB/sec. The disk rotates at 10,000 rpm and the controller overhead is 0.2 msec. 
Find the average time to read or write 1024 bytes.    
 

Solution 

Average Tseek=5ms 
Average Trot=0.5*60/10,000=3 ms 
Ttransfer=1KB/50MB=0.02ms 
Tcontroller=0.2ms 
The total time taken= Tseek +Trot+ Ttsfr +Tctr 
                                =5+3+0.02+0.2 
                                =8.22 ms 

Example 3 

A hard disk with 5 platters has 1024 tracks per platter,512 sectors  
per track and 512 bytes/sector. What is the total capacity of the  
disk? 
 

Solution  

512 bytes x 512  
sectors=0.2MB/track 
0.2MB x 1024 tracks=0.2GB/platter 
Therefore the hard disk has the total capacity of 5 x 0.2=1GB 
 
 

Example 4 
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How many platters are required for a 40GB disk if there are 1024  
bytes/sector, 2048 sectors per track and 4096 tracks per platter 
 

Solution 

The capacity of one platter 
= 1024 x 2048 x 4096 
= 8GB 
For a 40GB hard disk, we need 40/8 
= 5  such platters. 
 

Example 5 

Consider a hard disk that rotates at 3000 rpm. The seek time to move  
the head between adjacent tracks is 1 ms. There are 64sectors per  
track stored in linear order. 
Assume that the read/write head is initially at the start of sector 1 on track 7.  

a. How long will it take to transfer sector 1 on track 7 to sector 1 on track 9? 
b. How long will it take to transfer all the sectors on track 12 to corresponding 

sectors on track 13? 
 

Solution 

Time for one revolution=60/3000=20ms 
a. Total transfer time=sector read time+head  
 movement time+rotational delay+sector write time 
  
         Time to read or write on sector=20/64=0.31ms/sector 
  
          Head movement time from track 7 to track 9=1msx2=2ms 
   

After reading sector 1 on track 7, which takes .31ms, an    additional 19.7 ms of 
rotational delay is needed for the head to line   up with sector 1 again.  
The head movement time of 2 ms gets included in the19.7 ms.               Total 
transfer time=0.31ms+19.7ms+0.31ms=20.3ms 

 
 

b. The time to transfer all the sectors of track 12 to track 13 can be computed in the 
similar way. Assume that the memory buffer can hold an entire track. So the time 
to read or write an entire track is simply the rotational delay for a track, which is 

20 ms. The head movement time is 1ms, which is also the time for 1/0.3=3.3≈ 4 
sectors to pass under the head. Thus after reading a track and repositioning the 
head, it is now on track 13, at four sectors past the initial sector that was read on 
track 12. (Assuming track 13 is written starting at sector 5)  

 therefore total transfer time= 20+1+20=41ms.  
If writing of track 13 start at the first sector, an additional 19 ms      should be 
added, giving a total transfer time= 60 ms 

  

Example 6 
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Calculate time to read 64 KB (128 sectors) for the following disk parameters. 
–180 GB, 3.5 inch disk 
–12 platters, 24 surfaces 
–7,200 RPM; (4 ms avg. latency) 
–6 ms avg. seek (r/w) 
–64 to 35 MB/s (internal) 
–0.1 ms controller time 
 

Solution   

Disk latency =  average seek time + average rotational delay + transfer             time + 
controller overhead 
 = 6 ms + 0.5 x 1/(7200 RPM) /(60000ms/M)) + 64 KB / (64 MB/s) + 0.1 ms  
 = 6 + 4.2 + 1.0 + 0.1 ms = 11.3 ms 
 

Mechanical Delay and Flash Memory 

 

Mechanical movement is involved in data transfer and causes mechanical delays which 
are not desirable in embedded systems. To overcome this problem in embedded systems, 
flash memory is used. Flash memory can be thought of a type of electrically erasable 
PROM. Each cell consists of two MOSFET and in between these two transistors, we have 
a control gate and the presence/absence of charge tells us that it is a zero or one in that 
location of memory. 
The basic idea is to reduce the control overheads, and for a FLASH chip, this  control 
overhead is low. Furthermore flash memory has low power dissipation. For embedded 
devices, flash is a better choice as compared to hard disk. Another important feature is 
that read time is small for flash. However the write time may be significant. The reason is 
that we first have to erase the memory and then write it. However in embedded system, 
number of write operations is less so flash is still a good choice. 
 

Example 7 

Calculate the time to read 64 KB for the previous disk, this time using 1/3 of quoted seek 
time, 3/4 of internal outer track bandwidth 
 

Solution 

 
Disk latency =  average seek time + average rotational delay + transfer time + controller 
overhead 
 = (0.33* 6 ms) + 0.5 * 1/(7200 RPM)  
+ 64 KB / (0.75* 64 MB/s) + 0.1 ms  
 = 2 ms + 0.5 /(7200 RPM/(60000ms/M))  
+ 64 KB / (48 KB/ms) + 0.1 ms 
 = 2 + 4.2 + 1.3+ 0.1 ms = 7.6 ms  
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Semiconductor Memory vs. Hard Disk 

At one time developers thought that development of semiconductor memory would 
completely wipe out the hard disk. There are two important features that need to be kept 
in mind in this regard: 

1. Cost  

It is low for hard disk as compared to semi-conductor memory. 

2. Latency 
Typically latency of a hard disk is in milliseconds. For SRAM, it is 105 times lower as 
compared to hard disk. 
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Lecture No. 33 

Error Control 
Reading Material 
 
William Stallings 6th edition                                                         
Computer Organization and Architecture                                                

 

Summary 
• Operating System Interface 

• Error Control 

• RAID 

 

Operating System Interface 
The Operating system interface plays an important role for disk operation. Operating 
system would define a logic block telling the controller about the track, sector, etc. There 
are different ways to define logic blocks. For example, we can define 5 bytes containing 
this  information such that: the first 4 bits contain disk number(in case of a system having 
more than one disk), the next 4 bits contain the address of a particular track followed by a 
sector number and at the end, the number of  bytes to transferred. So this defines a logical 
block transferred by the controller. Along this, we have additional information about 
control and status of the controller. The operating system essentially insulates the users 
from the hardware details of the disk. 

 

Error Control 

There are two main issues in   error control: 
1. Detection of Error 
2. Correction of Error 

For detection of error, we just need to know that there exists an error. When the error is 
detected then the next step is to ask the source to resend that information. This process is 
called automatic request for repeat. In some cases there is also possibility that redundancy 
is enough and we reconstruct and find out exactly which particular bits are in error. This 
is called error correction. 
There are three schemes commonly used for error control. 

1. Parity code 
2. Hamming code 
3. CRC mechanism 
 

1. Parity code 

Along with the information bits, we add up another bit, which is called the parity bit. The 
objective is the total number of 1’s as even or odd. If the parity at the receiving end is 
different, an error is indicated. Once error is found, CPU may request to repeat that data. 
The concept of parity bit could be enhanced. In such a case, we would like to increase the 
distance between different code words. Consider a code word consists of four bits, 0000, 
and second code word consists of 1111. The distance between two codes is four. So the 
distance between the two codes would be the number of bits in which they differ from 
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each other. So the concept of introducing redundancy is increase this distance. Larger the 
distance, higher will be the capacity of the code. For single parity, the distance is two, we 
can only detect the parity. But if the distance is three, we could also correct these single 
errors.  
If D= minimum distance between two code words then D-1 errors could be detected and 
D/2 errors could be corrected. 
 

2. Hamming code 

Hamming code is an example of block code. We have an encoder which could be a 
program or a hardware device. We feed k inputs to it. These are k information input bits. 
We also feed some extra bits. Let r be the number of redundant bits. So at output we have 
r+k = m bits. As an example, for parity bit, we have k=7 and r=1 and m=8. So for 7 bits 
we get eight output bits. 
For any positive integer m<=3, a Hamming code with following parameters exists: 
 

• Code Length:                 
           n=2m-1 

• Number of information symbols: 
           k = 2m-1-m 

• Number of parity-check symbols: 
           n – k = m 
 

3. CRC 

The basic principle for CRC is very simple. We divide a particular code word and make it 
divisible by a prime number, and if it is divisible by a prime number then it is a valid 
code word. 
CRC does not support error correction but the CRC bits generated can be used to detect 
multi-bit errors. At the transmitter, we generate  extra CRC bits, which are appended to 
the data word and sent along. The receiving entity can check for errors by re computing 
the CRC and comparing it with the one that was transmitted. 
CRC has lesser overhead as compared to Hamming code. It is practically quite simple to 
implement and easy to use. 

 

RAID 

The main advantage of having an array of disks is that we could have a simultaneous I/O 
request. Latency could also be reduced.. 
 

RAID Level 0 
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• Not a true member of the RAID family. 
• Does not include redundancy to improve performance. 
• In few applications, capacity and performance are primary concerns than 

improved reliability. So RAID level 0 is used in such applications. 
• The user and system data are distributed across all the disks in the array. 
• Notable advantage over the use of a single large disk. 
• Two requests can be issued in parallel, reducing the I/O queuing time. 

 

Performance of RAID Levels 

Performance of RAID Levels depends upon two factors: 
 

•   Request pattern of the host system 
•   Layout of the data 

 

Similarities between RAID Levels 2 and 3 

 

• Make use of parallel access techniques. 
• All member disks participate in execution of every request. 
• Spindles of the individual drives are synchronized  
• Data striping is used. 
• Strips are as small as a single byte or word. 

 

 

Differences between RAID2 and RAID 3 
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• In RAID 2, error-correcting code is calculated across corresponding bits on each 
data disk.  

• RAID 3 requires only a single redundant disk. 
• Instead of an error-correcting code, a simple parity bit is computed for the set of 

individual bits in RAID 3 
 
 

RAID Level 4  

 

• Make use of independent access technique. 
• Data striping is used. 
• A bit-by-bit parity strip is calculated across corresponding strip on each data disk. 
• Involves a write penalty when an I/O write request of small size is performed. 
• To calculate the new parity, the array management software must read the old 

user parity strip.  

 
 

RAID Level 5 
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• Organized in a similar fashion to RAID 4  
• The only difference is that RAID 5 distributes the parity strips across all disks. 
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Lecture No. 34 
 

Number Systems and Radix Conversion 
 
Reading Material 
 
Vincent P. Heuring & Harry F. Jordan                                                              Chapter 6                                         
Computer Systems Design and Architecture                                                      6.1, 6.2 

 

Summary 
 

• Introduction to ALSU 

• Radix Conversion 

• Fixed Point Numbers 

• Representation of Numbers  

• Multiplication and Division using Shift Operation 

• Unsigned Addition Operation 
 

Introduction to ALSU 
29

 

ALSU is a combinational circuit so inside an ALSU, we have AND, OR, NOT and other 
different gates combined together in different ways to perform addition, subtraction, and, 
or, not, etc. Up till now, we consider ALSU as a “black box” which takes two operands, a 
and b, at the input and has c at the output. Control signals whose values depend upon the 
opcode of an instruction were associated with this black box. 
 
In order to understand the operation of the ALSU, we need to understand the basis of the 
representation of the numbers. For example, a designer needs to specify how many bits 
are required for the source operands and how many will be needed for the destination 
operand after an operation to avoid overflow and truncation.  
 

Radix Conversion 
Now we will consider the conversion of numbers from a representation in one base to 
another. As human works with base 10 and computers with base 2, this radix conversion 
operation is important to discuss here. We will use base c notion for decimal 
representation and base b for any other base. The following figure shows the algorithm of 
converting from base b to base c: 
 

                                                 
29 In our discussion we have used ALU and ALSU for the same thing. We use ALSU when the shift aspect 
also needs to be emphasized. 
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Example 1 

 

Convert the hexadecimal number B316 to base 10. 
 

Solution 

 
According to the above algorithm, 
X=0 
X= x+B (=11) =11 
X=16*11+3= 179 
Hence B316=17910 
 
The following figure shows the algorithm of converting from base c to base b: 
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Example 2 

 

Convert 39010 to base 16. 

Solution 

 

According to the above algorithm 
390/16 =24( rem=6), x0=6 
24/16= 1(rem=8), x1=8, x2=1 
Thus 39010=18616 
 

Fixed Point Numbers 
Suppose we have a number with a radix point. For example, in 16.12, there are two digits 
on the left side and two digits on the right of the decimal point. In this case, the radix 
point is a decimal point because we suppose that given number is a decimal number.  
If we have an integer, then this decimal point will be on the right most position i.e. 
1612.0 and if it is in fraction then decimal will be at the left most position i.e. 0.1612 
There are situations when we shift the position of the radix point. Shifting of the radix 
point towards left or right is called scaling and we could have multiplication with a base 
or division by a base respectively. 
The following figure shows the algorithm of converting a base b fraction to base c: 
 

 
 

 
 

Example 3 

 

Convert (.4cd) 16 to Base 10. 
  

Solution  

 
F=0 
F=(0+13)/16=0.8125 
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F=(0.8125+12)/16=0.80078125 
F=(0.80078125+4)/16=(0.3000488) 10 
 
 
The following figure shows the algorithm of converting fraction from base c to base b: 
 

 
 

Example 4 

 

Convert 0.2410 to base 2. 
 

Solution  

 
0.24*2=0.48, f-1=0 
0.48*2=0.96, f-2=0 
0.96*2=1.92, f-3=1 
0.92*2=1.84, f-4=1 
0.84*2=1.68, f-5=1,… 
Thus 0.2410 =(0.00111) 2 
 
 

Representation of Numbers  
There are four possibilities to represent integers. 
 

1. Sign magnitude form 
2. Radix complement form 
3. Diminished radix complement form 
4. Biased representation 
 

Sign magnitude form 

• This is the simplest form for representing a signed number 
• A symbol representing the sign of the number is appended to the left of the 

number 
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• This representation complicates the arithmetic operations 
 

Radix complement form 

• This is the most common representation. 
• Given an m-digit base b number x, the radix complement of x is 

  xc = ( bm– x) mod bm 
• This representation makes the arithmetic operations much easier.  

 

Diminished radix complement form 

• The diminished radix complement of an m-digit number x is 
            xc’=bm -1- x 

• This complement is easier to compute than the radix complement. 
• The two complement operations are interconvertible, as 

   xc= ( xc’+1)mod bm 

    

 

Table 6.1 of the text book shows the complement representation of negative numbers for 
radix complement and diminished radix complement form: 
Table 6.2 of the text book shows the base 2 complement representation for 8-bit 2’s and 
1’s complement numbers. 
 

Example 5 

The following table shows the decimal values in 2’s complement, 1’s complement, sign 
magnitude, 16’s complement and in unsigned form: 
 

 
 

 

 

 

 

 

Multiplication and Division using Shift Operation 
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Shift left and shift right are two important operations used for various purposes. One 
typical example could be multiplication or division by base b. The following examples 
explain multiplication and division by using shift operation. 
 

Example 6 

• 6x4 
 001102 x 410 =110002=2410 
Overflow would occur if we will use 4 bits instead of 5 bits here. 

• 60/16 
 01111002/1610=00000112=310 
The fractional portion of the result is lost. 
 

Example 7 

• -6x4 
 -6 = (11010) 2 
 -6x4 = (01000) 2=8 which is wrong! 
 using less no. of bits might change sign 
So, -6 = (111010) 2 
    -6x4 = (101000) 2 = -24 
 

Example 8 

 

Multiplication and division of negative numbers 

 

Solution 

 

-24x2 

-24= (101000) 2 
-24x2= (010100)2 =   20 
-24x2= (110100)2 = -12 
Changing the size of the number, 
24= 011000 (n=6) to 00011000 (n=8) 
-24= 101000 (n=6) to 11101000 (n=8) 
 

Unsigned Addition Operation 
The following diagram shows the digit 
wise procedure for adding m-digit base 
b numbers, x and y: 
 

Example 9 

 
Unsigned addition in base 2 and 
base16. 
 

 

Solution  
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Base 16 addition 

 

Base 2 addition 

                       A B 4 2 16 
                    + 3 1 C 1 16 
           carry    0  1 0  0 
           sum     D D 0 3 16 

                        100011 2 
                     + 011011 2 
             carry   000110 
             sum     111110 2 

 
 
 
The following diagram shows the logic 
circuit for 1-bit half adder. It takes two 
1-bit inputs x and y and as a result, we 
get a 1-bit sum and a 1-bit carry. This 
circuit is called a half adder because it 
does not take care of input carry. In 
order to take into account the effect of 
the input carry, a 1-bit full adder is 
used which is also shown in the figure. 
We can add two m-bit numbers by 
using a circuit which is made by 
cascading m 1-bit full adders.  
 
The situation, when addition of unsigned m-bit numbers results in an m+1 bit number, is 
called overflow. Overflow is treated as exception in some processors and the overflow 
flag is used to record the status of the result. 
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Lecture No. 35 

 

Multiplication and Division of Integers 
 
Reading Material 
 
Vincent P. Heuring & Harry F. Jordan                                                                   Chapter 6                               
Computer Systems Design and Architecture                                                            6.3, 6.4                          

 

Summary 
 

• Overflow 

• Different Implementations of the adder 

• Unsigned and Signed Multiplication 

• Integer and Fraction Division 

• Branch Architecture 
 

Overflow 

When two m-bit numbers are added and the result exceeds the capacity of an m-bit 
destination, this situation is called an overflow. The following example describes this 
condition: 
 

Example 1 

Overflow in fixed point addition: 

 

 
In these three cases, the fifth position is not allowed so this results in an overflow. 
 

Different Implementations of the Adder 

 
For a binary adder, the sum bit is obtained by following equation: 
           _ _   _   _   _ _ 
                        sj = xjyjcj+xjyjcj+xjyjcj+xjyjcj 
and the equation for carry bit is 
             cj+1=xjyj+xjcj+yjcj 
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where x and y are the input bits. 
The sum can be computed by the two methods: 
 

• Ripple Carry Adder 
• Carry Look ahead Adder 

 

Ripple Carry Adder 

In this adder circuit, we feed carry out from the previous stage to the next stage and so 
on. For 64 bit addition, 126 logic levels are required between the input and output bits. 
The logic levels can be reduced by using a higher base (Base 16). This is a relatively slow 
process. 

Complement Adder/Subtractor 

 

We can perform subtraction using an unsigned adder by 
• Complement the second input 
• Supply overflow detection hardware 

 

2’s Complement Adder/Subtractor 

A combined adder/subtractor can be built using a mux to select the second adder input. In 
this case, the mux also determines the carry-in to the adder. The equation for mux output 
is : 
                            _    _ 
                                                   qj =y j r + yj r 

Carry Look ahead Adder 

The basic idea in carry look ahead is to speed up the ripple carry by determining whether 
the carry is generated at the j position after addition, regardless of the carry-in at that 
stage or the carry is propagated from input to output in the digit. 
This results in faster addition and lesser propagation delay of the carry bits. It divides the 
carry into two logical variables Gj (generate) and Pj (propagate). These variables are 
defined as: 
   G j = x j y j  
   P j = x j +y j  
Hence the carry out will be 
   c j +1= G j +P j c j  
Here the G and P each require one gate, and the sum bit needs two more gates in the full 
adder. This results in a less complexity i.e. log(m) which is much less as compare to 
ripple carry adder where complexity is m (m is the number of bits of  a digit to be added). 
Ripple carry and look ahead schemes are can be mixed by producing a carry-out at the 
left end of each look ahead module and using ripple carry to connect modules at any level 
of the look ahead tree. 
 

Unsigned Multiplication 

The general schema for unsigned multiplication in base b is shown in Figure 6.5 of the 
text book. 
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Parallel Array Multiplier 

 

Figure 6.6 of the text book shows the structure of a fully parallel array multiplier for base 
b integers. All signal lines carry base b digits and each computational block consists of a 
full adder with an AND gate to form the product xiyj. In case of binary, m2 full adders are 
required and the signals will have to pass through almost 4m gates. 

 

Series parallel Multiplier 

 

A combination of parallel and sequential hardware is used to build a multiplier. This 
results in a good speed of operation and also saves the hardware.  

 

Signed Multiplication 

 

The sign of a product is easily computed from the sign of the multiplier and the 
multiplicand. The product will be positive if both have same sign and negative if both 
have different sign. Also, when two unsigned digits having m and n bits respectively are 
multiplied, this results in a (m+n) –bit product, and (m+n+1)-bit product in case of sign 
digits. There are three methods for the multiplication of sign digits: 
 

1. 2’s complement multiplier 
2. Booth recoding 
3. Bit-Pair recoding 

 

2’s complement Multiplication 

 

If numbers are represented in 2’s complement form then the following three 
modifications are required: 

1. Provision for sign extension 
2. Overflow prevention 
3. Subtraction as well as addition of the partial product 

 

 Booth Recoding 

 

The Booth Algorithm makes multiplication simple to implement at hardware level and 
speed up the procedure. This procedure is as follows: 

 

1. Start with LSB and for each 0 of the original number, place a 0 in the recorded 
number until a 1 in indicated. 

2. Place a 1 for 1in the recorded table and skip any succeeding 1’s until a 0 is 
encountered. 

3. Place a 0 with 1 and repeat the procedure. 
 

Example 2 
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Recode the integer 485 according to Booth procedure. 
 

Solution 

Original number: 
00111100101=256+128+64+32+4+1=485 
Recoded Number: 
          _    _  _  
01000101111=+512-32+8-4+2-1=485 
           

Bit-Pair Recoding 

 

Booth recoding may increase the number of additions due to the number of isolated 1s. 
To avoid this, bit-pair recoding is used. In bit-pair recoding, bits are encoded in pairs so 
there are only n/2 additions instead of n.   
 

Division 

 

There are two types of division: 
 

• Integer division 

• Fraction division 
 

Integer division 

 
The following steps are used for integer division: 

 

1. Clear upper half of dividend register and put dividend in lower half. Initialize 
quotient counter bit to 0 

2. Shift dividend register left 1 bit 
3. If difference is +ve, put it into upper half of dividend and shift 1 into quotient. If –

ve, shift 0 into quotient 
4. If quotient bits<m, goto step 2 
5. m-bit quotient is in quotient register and m-bit remainder is in upper half of 

dividend register 
 

Example 3 

 

Divide 4710 by 510. 
 

Solution   

 

D=000000 101111, d=000101 
 
D 000001 011110 
d 000101 
Diff(-)     q 0 
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D 000010 111100 
d 000101 
Diff(-)     q 00  
D 000101 111000 
d 000101 
Diff(+)                q 001  
D 000001 110000 
d 000101 
Diff(-)     q 0010  
D 000011 100000 
d 000101 
Diff(-)     q 00100  
D 000111 000000 
d 000101 
Diff(+)000010               q 001001  
  
 Hence remainder = (000010)2 = 210 
               Quotient = (001001)2 = 910 

 

Fraction Division 

 
The following steps are used for fractional division: 
 

1. Clear lower half of dividend register and put dividend in upper half. Initialize 
quotient counter bit to 0 

2. If difference is +ve, report overflow 
3. Shift dividend register left 1 bit 
4. If difference is +ve, put it into upper half of dividend and shift 1 into quotient. If 

negative, shift 0 into quotient 
5. If quotient bits<m, go to step 3 
6. m-bit quotient has decimal at the left end and remainder is in upper half of 

dividend register 
 

Branch Architecture 

 

The next important function perform by the ALU is branch. Branch architecture of a 
machine is based on  
 

1. condition codes 
2. conditional branches 

 

Condition Codes 

Condition Codes are computed by the ALU and stored in processor status register. The 
‘comparison’ and ‘branching’ are treated as two separate operations. This approach is not 
used in the SRC. Table 6.6 of the text book shows the condition codes after subtraction, 
for signed and unsigned x and y. Also see the SRC Approach from text book. 
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Usually implementation with flags is easier however it requires status registers. In case of 
branch instructions, decision is based on the branch itself. 
 
Note: For more information on this topic, please see chapter 6 of the text book. 
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Lecture No. 36 

Floating-Point Arithmetic 
 
Reading Material 
 
Vincent P. Heuring & Harry F. Jordan                                                           Chapter 6 
Computer Systems Design and Architecture                                               6.3.2, 6.4, 6.4.1   
                                                                                                                      6.4.2, 6.4.3 

Summary 
 

• NxN Crossbar Design for Barrel Rotator 

• Barrel Shifter with Logarithmic Number of Stages 

• ALU Design 

• Floating-Point Representations 

• IEEE Floating-Point Standard  

• Floating-Point Addition and Subtraction 

• Floating-Point Multiplication 

• Floating-Point Division 
 

NxN Crossbar Design for Barrel Rotator 
 
Figure 6.11 of the text book 
The figure shows an NxN crossbar design for barrel rotator. x indicates the input. So 
x0,x1,…,xn-1 are applied to the rows. The vertical lines are indicated by y1, y2,…yn-1  
where y shows the output. So this forms a cross of x and y and the number of cross points 
are NxN. There is also a connection between each input and output using a tri-state 
buffer. At the input, we have a decoder which is used to select the shift count. Each 
output from the decoder is connected diagonally to the tri-state buffers. This arrangement 
requires N2 gates. 
 

Barrel Shifter with Logarithmic Number of Stages 
Another alternate to an NxN crossbar barrel rotator is a logarithmic barrel shifter. This 
design is time-space trade-off. In this case, the number of shifts required is eight, and 
then there will be three stages for this purpose. Now a word is passed as input to the 
shifter. There are two possibilities. First the input word is passed to the next stage without 
any shift. This process is called bypass and second option is shift. The word is passed to 
the next stage after shift. 
For the first stage, we have 1-bit right shift, for second stage, 2-bit right shift and so on. 
There is also a shift count unit which controls the number of shifts. For example, if 1-bit 
shift is required then only s0 will be one and other signals from shift count will be zero. If 
we want a 3-bit shift, then s0 and s1 will be 1 and all other signals will be zero. 
The figure also shows one shift/bypass cell which is a combinational logic circuit. A 
shift/bypass signal decides whether the input word should be shifted or bypassed. This 
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design requires only O (NlogN) switches but propagation delay has increased i.e. from 
O(1) to O(logN). 
 
Figure 6.12 of the text book  
 

ALU Design 

 
ALU is a combination of arithmetic, logic and shifter unit along with some multiplexers 
and control unit. The idea is that based on the op-code of an instruction, appropriate 
control signals are activated to perform required ALU operation. 
Figure 6.13 of the text book 
The diagram shows two inputs x and y and one output z. All these are of n-bits. The 
inputs x and y are simultaneously provided to arithmetic, logic and shifter unit. There is a 
control unit which accepts op-code as input. Based on the op-code, it provides control 
signals to arithmetic, logic and shifter unit. The control unit also provides control signals 
to the two multiplexers. One mux has three inputs; each from arithmetic, logic and shifter 
unit and its output is z. The second mux provides status output corresponding to 
condition codes. 
  

Floating Point Representations 
Example 

 -0.5 × 10-3 
 Sign = -1 
 Significand= 0.5 
 Exponent= -3 
 Base = 10= fixed for given type of representation 
Significand is also called mantissa. 
In computers, floating-point representation uses binary numbers to encode significant, 
exponent and their sign in a single word. 
The diagram on Page 293 of the text shows an m-bit floating point number where s 
represents the sign of the floating point number. If s = 1 then the floating-point number 
will be a positive number; if s= 0 then it will be a negative number. The e field shows the 
value of exponent. To represent the exponent, a biased representation is used. So we 
represent e^ instead of e to show biased representation. In this technique, a number is 
added to the exponent so that the result is always positive. In general floating point 
numbers are of the form. 
 (-1)s × f × 2e 

Normalization 

A normalized, non zero floating point number has a significand whose left-most digit is 
non- zero and is a single number. 
Example 
 0.56 × 10-3……….. (Not normalized) 
   5.6 × 10-3……….. (Normalized form) 
Same is the case for binary. 
 

IEEE Floating-Point Standard  
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IEEE floating -point standard has the following features. 

 

Single-Precision Binary Floating Point Representation 

• 1-bit sign 

• 8-bit exponent 

• 23-bit fraction 

• A bias of 127 is used. 
Figure 6.15 of the text book  

 

Double precision Binary Floating Point Representation  

• 1-bit sign 

• 11-bit exponent 

• 52-bit fraction 

• Exponent bias is 1023 
Figure 6.16 of the text book. 
 

Overflow 
 In table 6.7 of the text book, e^= 255, denotes numbers with no numeric value including 
+ ∞ and - ∞ and called Not-a-Number or NaN. In computers, a floating-point number  
ranges from 1.2 × 10-38 ≤ x ≤ 3.4 × 1038 can be represented. If a number does not lie in 
this range, then overflow can occur. 
Overflow occurs when the exponent is too large and can not  be represented in the 
exponent field. 

 

Floating –Point Addition and Subtraction 
The following are the steps for floating-point addition and subtraction. 

• Unpack sign , exponent and fraction fields 

• Shift the significand 

• Perform addition 

• Normalize the sum 

• Round off the result 

• Check for overflow 
 

Figure 6.17 of the text book. 

 

Example 1 

Perform addition of the following floating-point numbers. 
0.510    ,   -0.437510 
Binary: 
0.510 = 1/210= 0.12= 1.000 x 2-1 
 -0.437510= -7/1610 = -7/24= -0.01112 = - 1.110 x 2-2 
 
Align:   -1.110 x 2-2 → -0.111 x 2-1 
 
Addition: 1.000 x 2-1 + (-0.111 x 2-1) = 0.001 x 2-1 
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Normalization of Sum:                  
             0.001 2 x 2-1= 0.0102  x 2-2 
                                                  = 1.000 2 x 2-4 
 

Hardware Structure for Floating-Point Add and Subtract 

Figure 6.17 of the text book. 
 

Floating-Point Multiplication 
 

The floating-point multiplication uses the following steps: 

• Unpack sign, exponent and significands 

• Apply exclusive-or operation to signs, add exponents and then multiply 
significands. 

• Normalize, round and shift the result. 

• Check the result for overflow. 

• Pack the result and report exceptions. 
 

Floating-Point Division 
 

The floating-point division uses the following steps: 

• Unpack sign, exponent and significands 

• Apply exclusive-or operation to signs, subtract the exponents and then divide the  
significands. 

• Normalize, round and shift the result. 

• Check the result for overflow. 

• Pack the result and report exceptions. 
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Lecture No. 37 
 

Components of memory Systems 
 

Reading Material 

 
Vincent P. Heuring & Harry F. Jordan                                                       Chapter 7                                                         
Computer Systems Design and Architecture                                               7.1, 7.2                                                                                                                                                                                                                                 

 

Summary     
 

• CPU to Memory Interface 

• Static RAM cell Organization and Operation 

• One & two Dimensional Memory Cells 

• Matrix and Tree Decoders 

• Dynamic RAM  

 

CPU to Memory Interface 
 The memory address register (MAR) is m-bits wide and contains memory address 
generated by the CPU directly connected to the m-bit wide address bus. The memory 
buffer register (MBR) is w-bit wide and contains a data word, directly connected to the 
data bus which is b-bit wide. The register file is a collection of 32, 32-bit wide registers 
used for data transfer between memory and the CPU.  Memory address ranges from 0 to 

2m-1.There also exist three control signals: , REQUEST, and COMPLETE. When 

 signal is high, this would correspond to a read operation equivalent to having an 
input data to the CPU and output from the memory. If this signal is low then it would be a 
write operation and data would come from the CPU as an output and it would be written 
into a portion in the memory. In this case, the REQUEST signal coming from the CPU 
telling the memory that some interaction is required between the CPU and memory.  As a 
result of this request (either read/write), along with the signal on the control and the 
address on the address bus, we might have the corresponding data on the data bus for a 
read operation and after the operation is complete, the memory would issue a control 
signal which corresponds in this case to COMPLETE. Figure 7.1 of the text book. 
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Static RAM Cell Organization and Operation 
A Typical Memory Cell 

A memory cell provides four functions: Select, DataIn, DataOut, and Read/Write. DataIn 
means input and DataOut means output. The select signal would be enabled to get an 
operation of Read/Write from this cell. 
Figure 7.3 of the text book. 

           
1×8 Memory Cell Array (1D) 

In this arrangement, each block is connected through a bi-directional data bus 

implemented with 2 tri-state buffers.  and Select signals are common to all these 
cells. This 1-dimentional memory array could not be very efficient, if we need to have a 
very large memory.  

                      
4×8 Memory Cell Array (2D) 

In this arrangement, 4×8 memory cell array is arranged in 2-dimensions. At the input, we 
have a 2×4 decoder. Two address bits at the input A0 and A1 would be decoded into 4 

select lines. The decoder selects one of four rows of cells and then  signal specifies 
whether the row will be read or written.  
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A 64k×1 Static RAM Chip 

The cell array is indicated as 256 × 256. So, there would be 256 rows and 256 columns. 

A 64k × 1 cell array requires 16 address lines, a read/write line, , a chip select line, 
CS, and only a single data line. The lower order 8-address lines select one of the 256 
rows using an 8-to-256 line row decoder. Thus the selected row contains 256 bits. The 
higher order 8-address lines select one of those 256 bits. The 256 bits in the row selected 
flow through a 256-to-1 line multiplexer on a read. On a memory write, the incoming bit 
flows through a 1-to-256 line demultiplexer that selects the correct column of the 256 
possible columns.  

  

                
A 16k×4 Static RAM Chip 

In this case, memory is arranged in the form of four 64×256 memory cells. Four bits can 
be read and written at a time. For this, we use one 8-256 row decoder, four 64-1 muxes 
and four 1-64 de muxes. The lower address lines (A0-A7) are decoded into 28 lines, 26 
lines from these 28 are used to select row from one of the four 64×256 cell array and the 
remaining 22 lines are used to select one of the 64×256 cell array. Now the upper address 
lines (A8-A13) are input into the 4 muxes and their output is used to select the required 

column from the four 64×256 cell arrays. Control lines read/write, , chip select, CS, 
are just similar to previous arrangement.  
 
   

                    
 

Matrix and Tree Decoders 
A typical one level decoder has n inputs and 2n output, using one level of gates, each with 
a fan-in of n. Two level decoders are limited in size because of high gate fan-in. In order 
to reduce the gate fan-in to a value of 8 or 6, tree and matrix decoders are utilized.  
 

Six Transistor SRAM Cell 
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In this arrangement, the cross connection is through inverters to make the latch, the basic 
storage cell. This implementation uses six transistor cells. One transistor is used to 
implement each of the two inverters, two transistors are used to control access to the 
inverters for reading and writing, and two are used as active loads.  

 

SRAM Read Operation 

 First of all, the CPU provides the  address on the external address bus. The read/write 
signal becomes active high. After time "tAA", the data becomes available on the data bus.  
The chip retains this data on the data lines until the control signals are de asserted.  

                    
SRAM Write Operation 
In the case of write cycle, the major difference is that along with the address the CPU has 
also provided the data on the data bus. The chip select, CS, is immediately provided and 

write signal is made low. The  line must be held valid for a minimum time interval 
tw , the write time, until data, address, and control information have been propagated to 
the cell and strobe into it. During this period the data lines must be driven with the data to 
be written.  

                   
Dynamic RAM 
As an alternate to the SRAM cell, the data can be stored in the form of a charge on a 
capacitor (a charging/discharging transistor that can become a valid memory element), 
and this type of memory is called dynamic memory. The capacitor has to be refreshed 
and recharged to avoid data loss. 

               



Advanced Computer Architecture-CS501                                            
________________________________________________________ 

     Last Modified: 17-Feb-07   Page 354 

                                                                                                    

 

 

Dynamic RAM Cell Operation 
In a DRAM cell, the storage capacitor will discharge in around 4-15ms. Refreshing the 
capacitor by reading or sensing the value on bit line, amplifying it, and placing it back on 
to the bit line is required. The need to refresh the DRAM cell complicates the DRAM 
system design. 
 For details, refer to Chapter 7 of the text book. 
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Lecture No. 38 
 

Memory Modules 
 

Reading Material 

 
Vincent P. Heuring & Harry F. Jordan                                                       Chapter 7                                                         
Computer Systems Design and Architecture                                                7.2.6, 7.3                                                                                                                                                                                                                                                                                    

 

Summary    
 

• Memory Modules  

• Read Only Memory (ROM) 

• Cache 

 

Memory Module 
 Static RAM chips can be assembled into systems without changing the timing 
characteristics of a memory access. Dynamic RAM chips, however, have enough timing 
complexity that a memory module built from dynamic RAM chips will have complex 
control. The cause of timing complexity is the time-multiplexed row and column 
addresses, and the refresh operation. 

 
Word Assembly from Narrow Chips 

Chips can be combined to expand the memory word size while keeping the same number 
of words. Address, chip select, and R/W signals are connected in parallel to all the chips. 
Only the data signals are kept separate, with those from each chip supplying different bits 
of the wider word. For high capacity memory chips, narrow words are used. This is 
because adding a data pin to a chip with 2m words of s bits increases the number of bits it 
can store by only a factor of (s+1)/s, while adding an address pin always doubles the 
capacity.  
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Dynamic RAM Module with Refresh Control 
For Dynamic RAM chips the total address is divided into row and column address. Row 
address strobe signal RAS and a column strobe signal CAS are used to differentiate 
between these two signals.  
 

Read Only Memory (ROM) 
ROM is the read-only memory which contains permanent pattern of data that cannot be 
changed. ROM is nonvolatile i.e. it retains the information in it when power is removed 
from it. Different types of ROMs are discussed below. 
  

PROM  

The PROM stands for Programmable Read only Memory. It is also nonvolatile and may 
be written into only once. For PROM, the writing process is performed electrically in the 
field. PROMs provide flexibility and convenience.  
 

EPROM 

Erasable Programmable Read-only Memory or EPROM chips have quartz windows and 
by applying ultraviolet light erase the data can be erased from the EPROM. Data can be 
restored in an EPROM after erasure. EPROMs are more expensive than PROMs and are 
generally used for prototyping or small-quantity, special purpose work. 

 
EEPROM 

EEPROM stands for Electrically Erasable Programmable Read-only Memory. This is a 
read-mostly memory that can be written into at any time without erasing prior contents; 
only the byte or bytes addressed are updated. The write operation takes considerably 
longer than the read operation. It is more expensive than EPROM. 
 

Flash Memory 

An entire flash memory can be erased in one or a few seconds, which is much faster than 
EPROM. In addition, it is possible to erase just blocks of memory rather than an entire 
chip.  
 

Cache  

Cache by definition is a place for safe storage and provides the fastest possible storage 
after the registers.  The cache contains a copy of portions of the main memory. When the 
CPU attempts to read a word from memory, a check is made to determine if the word is 
in the cache. If so, the word is delivered to the CPU. If not, a block of the main memory, 
consisting of some fixed number of words, is read into the cache and then the word is 
delivered to the CPU.    

Spatial Locality 

This would mean that in a part of a program, if we have a particular address being 
accessed then it is highly probable that the data available at the next address would be 
highly accessed.  
 

Temporal Correlation 
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In this case, we say that at a particular time, if we have utilized a particular part of the 
memory then we might access the adjacent parts very soon. 
  

Cache Hit and Miss 

When the CPU needs some data, it communicates with the cache, and if the data is 
available in the cache, we say that a cache hit has occured. If the data is not available in 
the cache then it interacts with the main memory and fetches an appropriate block of data. 
This is a cache miss.  
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Lecture No. 39 

The Cache 
 

Reading Material 
Vincent P. Heuring & Harry F. Jordan                                                       Chapter 7                                                        
Computer Systems Design and Architecture                                                7.4, 7.5 

Summary 
• Cache Organization and Functions 

• Cache Controller Logic 

• Cache Strategies 
 

Cache Organization and Functions: 
The working of the cache is based on the principle of locality which has two aspects. 
Spatial Locality: refers to the fact when a given address has been referenced, the next 
address is highly probable to be accessed within a short period of time. 
Temporal Locality refers to the fact that once a particular data item is accessed, it is 
likely that it will be referenced again within a short period of time. 
To exploit these two concepts, the data is transferred in blocks between cache and the 
main memory. For a request for data, if the data is available in the cache it results in a 
cache hit. And if the requested data is not present in the cache, it is called a cache miss. In 
the given example program segment, spatial locality is shown by the array ALPHA, in 
which next variable to be accessed is adjacent to the one accessed previously. Temporal 
locality is shown by the reuse of the loop variable 100 times in For loop instruction. 
Int ALPHA [100], SUM; 
SUM=0; 
For (i=0; i<100; i++) 
{SUM= SUM+ALPHA[i];} 
 

Cache Management 

To manage the working of the cache, cache control unit is implemented in hardware, 
which performs all the logic operations on the cache. As data is exchanged in blocks 
between main memory and cache, four important cache functions need to be defined. 

• Block Placement Strategy 

• Block Identification 

• Block Replacement  

• Write Strategy 

 

Block Diagram of a Cache System 

In the figure, the block diagram of a 
system using cache is shown. It 
consists of two components. 

• Fast Memory 

• Control Logic Unit 
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Control logic is further divided into two parts. 
Determine and Comparison Unit:  For determining and comparisons of the different 
parts of the address and to evaluate hit or miss. 
Tag RAM: Second part consists of tag memory which stores the part of the memory 
address (called tag) of the information (block) placed in the data cache. It also contains 
additional bits used by the cache management logic. 
Data Cache: is a block of fast memory which stores the copies of data and instructions 
frequently accessed by the CPU. 
  
 

Cache Strategies 
In the next section we will discuss various cache functions, and strategies used to 
implement these functions. 

 

Block Placement 

Block placement strategy needs to be defined to specify where blocks from main memory 
will be placed in the cache and how to place the blocks. Now various methods can be 
used to map main memory blocks onto the cache .One of these methods is the associative 
mapping explained below. 

 

Associative Mapping: 

In this technique, block of data from main memory can be placed at any location in the 
cache memory.  A given block in cache is identified uniquely by its main memory block 
number, referred to as a tag, which is stored inside a separate tag memory in the cache. 
To check the validity of the cache blocks, a valid bit is stored for each cache entry, to 
verify whether the information in the corresponding block is valid or not. 
Main memory address references have two fields. 

• The word field becomes a “cache address” which specifies where to find the word 
in the cache. 

• The tag field which must be compared against every tag in the tag memory.  
 

Associative Mapping Example 

Refer to Book Ch.7 Section (7.5) Figure 7.31(page 350-351) for detailed explanation. 
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Mechanism of the Associative Cache Operation 

For details refer to book Ch.7, Section 7.5, Figure 7.32 (Page 351-352). 
 

 
Direct Mapping  

In this technique, a particular block of data from main memory can be placed in only one 
location into the cache memory. It relies on principle of locality. 
Cache address is composed of two fields: 

• Group field 
• Word field 

Valid bit specifies that the information in the selected block is valid. 
For a direct mapping example, refer to the book Ch.7, Section 7.5, Figure 7.33 (page 352 
– 353). 
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Logic Implementation of the Controller for Direct Mapping 

Logic design for the direct mapping is simpler as compared to the associative mapping. 
Only one tag entry needs to be compared with the part of the address called group field.  
 

Tasks Required For Direct Mapping Cache: 

For details refer to the book Ch. 7, Section 7.5, Figure 7.34 (Page 353-354). 

 
Cache Design: Direct Mapped Cache  

To understand the principles of cache design, we will discuss an example of a direct 
mapped cache. 
The size of the main memory is 1 MB. Therefore 20 address bits needs to be specified. 
Assume that the block size is 8 bytes. Cache memory is assumed to be 8 KB organized as 
1 K lines of cache memory. Cache memory addresses will range from 0 up to 1023. Now 
we have to specify the number of bits required for the tag memory. The least significant 
three bits will define the block. The next 10 bits will define the number of bits required 
for the cache. The remaining 7 bits will be the width of the tag memory.  
Main memory is organized in rectangular form in rows and columns. Number of rows 
would be from 0 up to 1023 defined by 10 bits. Number of rows in the main memory will 
be the same as number of lines in the cache. Number of columns will correspond to 7 bits 
address of the tag memory. Total number of columns will be 128 starting from 0 up to 
127. With direct mapping, out of any particular row only one block could be mapped into 
the cache. Total number of cache entries will be 1024 each of 8 bytes. 

 

Advantage: 

           Simplicity 

 Disadvantage: 
            Only a single block from a given group is present in cache at any time. Direct 
map Cache imposes a considerable amount of rigidity on cache organization. 

 

Set Associative Mapping 
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In this mapping scheme, a set consisting of more than one block can be placed in the 
cache memory. 
The main memory address is divided into two fields. The Set field is decoded to select 
the correct group. After that the tags in the selected groups are searched. Two possible 
places in which a block can reside must be searched associatively. Cache group address is 
the same as that of the direct-mapped cache. 
For details of the Set associative mapping example, refer to the book Ch.7, Section 7.5, 
Figure 7.35 (Page 354-355). 

 
 

Replacement Strategy 

For a cache miss, we have to replace a cache block with the data coming from main 
memory.  Different methods can be used to select a cache block for replacement. 
Always Replacement: For Direct Mapping on a miss, there is only one block which 
needs replacement called always replacement. 
For associative mapping, there are no unique blocks which need replacement .In this case 
there are two options to decide which block is to be replaced. 

• Random Replacement: To randomly select the block to be replaced 

• LFU: Based on the statistical results, the block which has been least used in the 
recent past, is replaced with a new block. 

 

Write Strategy 

When a CPU command to write to a memory data will come into cache, the writing into 
the cache requires writing into the main memory also.  
Write Through: As the data is written into the cache, it is also written into the main 
memory called Write Through. The advantages are: 

• Read misses never result in writes to the lower level. 
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• Easy to implement than write back 
 

Write Back: Date resides in the cache, till we need to replace a particular block then the 
data of that particular block will be written into the memory if that needs a write, called 
write back. The advantages are: 

• Write occurs at the speed of the cache 

• Multiple writes with in the same block requires only one write to the lower 
memory. 

• This strategy uses less memory bandwidth, since some writes do not go to the 
lower level; useful when using multi processors. 
 

Cache Coherence 

Multiple copies of the same data can exist in memory hierarchy simultaneously. The 
Cache needs updating mechanism to prevent old data values from being used. This is the 
problem of cache coherence. Write policy is the method used by the cache to deal with 
and keep the main memory updated. 
Dirty bit is a status bit which indicates whether the block in cache is dirty (it has been 
modified) or clean (not modified). If a block is clean, it is not written on a miss, since 
lower level contains the same information as the cache. This reduces the frequency of 
writing back the blocks on replacement. 
Writing the cache is not as easy as reading from it e.g., modifying a block can not begin 
until the tag has been checked, to see if the address is a hit. Since tag checking can not 
occur in parallel with the write as is the case in read, therefore write takes longer time. 
Write Stalls: For write to complete in Write through, the CPU has to wait. This wait state 
is called write stall. 
Write Buffer: reduces the write stall by permitting the processor to continue as soon as 
the data has been written into the buffer, thus allowing overlapping of the instruction 
execution with the memory update. 

Write Strategy on a Cache Miss 

On a cache miss, there are two options for writing. 
Write Allocate: The block is loaded followed by the write. This action is similar to the 
read miss. It is used in write back caches, since subsequent writes to that particular block 
will be captured by the cache. 
No Write Allocate: The block is modified in the lower level and not loaded into the 
cache. This method is generally used in write through caches, because subsequent writes 
to that block still have to go to the lower level. 
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Lecture No. 40 

Virtual Memory 
 
Reading Material 
 
Vincent P. Heuring & Harry F. Jordan                                                       Chapter 7                                                         
Computer Systems Design and Architecture                                                    7.6      

Summary 
• Virtual Memory Introduction 

• Virtual Memory Organization  
 

Virtual Memory 

 
Introduction 

Virtual memory acts as a cache between main memory and secondary memory. Data is 
fetched in advance from the secondary memory (hard disk) into the main memory so that 
data is already available in the main memory when needed. The benefit is that the large 
access delays in reading data from hard disk are avoided. 
Pages are formulated in the secondary memory and brought into the main memory. This 
process is managed both in hardware (Memory Management Unit) and the software (The 
operating systems is responsible for managing the memory resources). 
The block diagram shown (Book Ch.7, Section 7.6, and figure 7.37) specifies how the 
data interchange takes place between cache, main memory and the disk. The Memory 
Management unit (MMU) is located between the CPU and the physical memory. Each 
memory reference issued by the CPU is translated from the logical address space to the 
physical address space, guided by operating system controlled mapping tables. As 
address translation is done for each memory reference, it must be performed by the 
hardware to speed up the process. The operating system is invoked to update the 
associated mapping tables. 

 

Memory Management and Address Translation 

The CPU generates the logical address.  During program execution, effective address is 
generated which is an input to the MMU, which generates the virtual address.  The virtual 
address is divided into two fields. First field represents the page number and the second 
field is the word field. In the next step, the MMU translates the virtual address into the 
physical address which indicates the location in the physical memory. 

 

Advantages of Virtual Memory 

• Simplified addressing scheme: the programmer does not need to bother 
about the exact locations of variables/instructions in the physical memory. 
It is taken care of by the operating system. 

• For a programmer, a large virtual memory will be available, even for a 
limited physical memory. 

• Simplified access control. 
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Virtual Memory Organization  
Virtual memory can be organized in different ways. This first scheme is segmentation. 

Segmentation: 

In segmentation, memory is divided into segments of variable sizes depending upon the 
requirements. Main memory segments identified by segments numbers, start at virtual 
address 0, regardless of where they are located in physical memory. 
 In pure segmented systems, segments are brought into the main memory from the 
secondary memory when needed. If segments are modified and not required any more, 
they are sent back to secondary memory. This invariably results in gap between 
segments, called external fragmentation i.e. less efficient use of memory. Also refer to 
Book Ch.7 , Section 7.6, Figure 7.38. 

        
Addressing of Segmented Memory 

The physical address is formed by adding each virtual address issued by the CPU to the 
contents of the segment base register in the MMU. Virtual address may also be compared 
with the segment limit register to keep track and avoiding the references beyond the 
specified limit. By maintaining table of segment base and limit registers, operating 
system can switch processes by switching the contents of the segment base and limit 
register. This concept is used in multiprogramming. Refer to book Ch.7, Section 7.6, and 
Figure 7.39 
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Paging: 

In this scheme, we have pages of fixed size. In demand paging, pages are available in 
secondary memory and are brought into the main memory when needed.  
Virtual addresses are formed by concatenating the page number with the word number. 
The MMU maps these pages to the pages in the physical memory and if not present in the 
physical memory, to the secondary memory. (Refer to Book Ch.7, Section 7.6, and 
Figure 7.41)  

             
 

 

Page Size: A very large page size results in increased access time. If page size is small, it 
may result in a large number of accesses.  
The main memory address is divided into 2 parts.  

• Page number: For virtual address, it is called virtual page number. 

• Word Field 
 

Virtual Address Translation in a Paged MMU: 

Virtual address composed of a page number and a word number, is applied to the MMU. 
The virtual page number is limit checked to verify its availability within the limits given 
in the table. If it is available, it is added to the page table base address which results in a 
page table entry. If there is a limit check fault, a bound exception is raised as an interrupt 
to the processor.  

Page Table  

The page table entry for each page has two fields. 
� Page field 
� Control Field: This includes the following bits. 



Advanced Computer Architecture-CS501                                            
________________________________________________________ 

     Last Modified: 17-Feb-07   Page 367 

                                                                                                    

• Access control bits: These bits are used to specify read/write, and execute 
permissions. 

• Presence bits: Indicates the availability of page in the main memory. 

• Used bits: These bits are set upon a read/ write. 
If the presence bit indicates a hit, then the page field of the page table entry contains the 
physical page number. It is concatenated with the word field of the virtual address to 
form a physical address. 
Page fault occurs when a miss is indicated by the presence bit. In this case, the page field 
of the page table entry would contain the address of the page in the secondary memory. 
Page miss results in an interrupt to the processor. The requesting process is suspended 
until the page is brought in the main memory by the interrupt service routine.  
Dirty bit is set on a write hit CPU operation. And a write miss CPU operation causes the 
MMU to begin a write allocate (previously discussed) process. (Refer to book Ch.7, 
Section 7.6, and Figure 7.42) 

 
 
 

Fragmentation: 

Paging scheme results in unavoidable internal fragmentations i.e. some pages (mostly last 
pages of each process) may not be fully used. This results in wastage of memory. 
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Processor Dispatch -Multiprogramming 

Consider the case, when a number of tasks are waiting for the CPU attention in a 
multiprogramming, shared memory environment. And a page fault occurs. Servicing the 
page fault involves these steps. 

1. Save the state of suspended process 
2. Handle page fault 
3. Resume normal execution 

 
Scheduling: If there are a number of memory interactions between main memory and 
secondary memory, a lot of CPU time is wasted in controlling these transfers and number 
of interrupts may occur.  
To avoid this situation, Direct Memory Access (DMA) is a frequently used technique. 
The Direct memory access scheme results in direct link between main memory and 
secondary memory, and direct data transfer without attention of the CPU. But use of 
DMA in virtual memory may cause coherence problem. Multiple copies of the same page 
may reside in main memory and secondary memory. The operating system has to ensure 
that multiple copies are consistent.  

Page Replacement 

On a page miss (page fault), the needed page must be brought in the main memory from 
the secondary memory. If all the pages in the main memory are being used, we need to 
replace one of them to bring in the needed page. Two methods can be used for page 
replacement. 
Random Replacement: Randomly replacing any older page to bring in the desired page. 
Least Frequently Used: Maintain a log to see which particular page is least frequently 
used and to replace that page. 

Translation Lookaside buffer 

Identifying a particular page in the virtual memory requires page tables (might be very 
large) resulting in large memory space to implement these page tables. To speed up the 
process of virtual address translation, translation Lookaside buffer (TLB) is implemented 
as a small cache inside the CPU, which stores the most recent page table entry reference 
made in the MMU. It contents include 

• A mapping from virtual to physical address  

• Status bits i.e. valid bit, dirty bit, protection bit 
It may be implemented using a fully associative organization 

Operation of TLB 

For each virtual address reference, the TLB is searched associatively to find a match 
between the virtual page number of the memory reference and the virtual page number in 
the TLB. If a match is found (TLB hit) and if the corresponding valid bit and access 
control bits are set, then the physical page mapped to the virtual page is concatenated. 
(Refer to Book Ch.7, Section 7.6, and Figure 7.43) 
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Working of Memory Sub System 

When a virtual address is issued by the CPU, all components of the memory subsystem 
interact with each other. If the memory reference is a TLB hit, then the physical address 
is applied to the cache. On a cache hit, the data is accessed from the cache. Cache miss is 
processed as described previously. On a TLB miss (no match found) the page table is 
searched. On a page table hit, the physical address is generated, and TLB is updated and 
cache is searched. On a page table miss, desired page is accessed in the secondary 
memory, and main memory, cache and page table are updated. TLB is updated on the 
next access (cache access) to this virtual address. (Refer to Book Ch.7, Section 7.6, and 
Figure 7.44). 
 
To reduce the work load on the CPU and to efficiently use the memory sub system, 
different methods can be used. One method is separate cache for data and instructions. 
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Instruction Cache: It can be implemented as a Translation Lookaside buffer. 
Data Cache: In data cache, to access a particular table entry, it can be implemented as a 
TLB either in the main memory, cache or the CPU.  
 



Advanced Computer Architecture-CS501                                            
________________________________________________________ 

     Last Modified: 17-Feb-07   Page 371 

                                                                                                    

Lecture No. 41 
 

Numerical Examples of DRAM and Cache 
 
Reading Material 
 
Vincent P. Heuring & Harry F. Jordan                                                            
Computer Systems Design and Architecture                                                        

 

Summary 
 
Numerical Examples related to 
 

• DRAM 
• Pipelining, Pre-charging and Parallelism 
• Cache 
• Hit Rate and Miss Rate 
• Access Time 
 

Example 1 

 

If a DRAM has 512 rows and its refresh time is 9ms, what should be the frequency of 
row refresh operation on the average? 
 

Solution 

Refresh time= 9ms 
Number of rows=512 
Therefore we have to do 512 row refresh operations in a 9 ms interval, in other words  
one row refresh operation every  (9x10-3)/512 =1.76x10-5seconds.   
  

Example 2 

 

Consider a DRAM with 1024 rows and a refresh time of 10ms.  
a. Find the frequency of row refresh operations. 
b. What fraction of the DRAM’s time is spent on refreshing if each refresh takes 100ns.   

 

Solution 

 
Total number of rows = 1024 
Refresh period = 10ms 
One row refresh takes place after every  
10ms/1024=9.7micro seconds 
Each row refresh takes 100ns, so fraction of the DRAM’s time taken by row refreshes is,  
100ns/9.7 micro sec= 1.03%  
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Example 3 

Consider a memory system having the following specifications. Find its total cost and 
cost per byte of memory.  
 

Memory type Total bytes Cost per byte 

SRAM 256 KB 30$ per MB 

DRAM 128 MB 1$ per MB 

Disk 1 GB 10$ per GB 

 
 

Solution 

Total cost of system 
256 KB( ¼ MB) of SRAM costs = 30 x ¼ = $7.5 
128 MB of DRAM costs= 1 x 128= $128 
1 GB of disk space costs= 10 x 1=$10 
Total cost of the memory system 
= 7.5+128+10=$145.5 
Cost per byte 
Total storage= 256 KB + 128 MB + 1 GB 
= 256 KB + 128x1024KB + 1x1024x1024KB 
=1,179,904 KB 
Total cost = $145.5  
Cost per byte=145.5/(1,179,904x1024) 
= $1.2x10-7$/B  
 

Example 4 

 
Find the average access time of a level of memory hierarchy if the hit rate is 80%. The 
memory access takes 12ns on a hit and 100ns on a miss.  

Solution 

 
Hit rate =80% 
Miss rate=20% 
Thit=12 ns 
Tmiss=100ns 
Average Taccess=(hit rate*Thit)+(miss rate*Tmiss) 
                        =(0.8*12ns)+(0.2*100ns) 
                        = 29.6ns 



Advanced Computer Architecture-CS501                                            
________________________________________________________ 

     Last Modified: 17-Feb-07   Page 373 

                                                                                                    

 

Example 5 

 
Consider a memory system with a cache, a main memory and a virtual memory. The 
access times and hit rates are as shown in table. Find the average access time for the 
hierarchy.  
 

 Main memory cache virtual memory 

Hit rate 99% 80% 100% 

Access time 100ns 5ns 8ms 

 

Solution  

 
Average access time for requests that reach the main memory 
= (100ns*0.99)+(8ms*0.01) 
= 80,099 ns 
Average access time for requests that reach the cache             
 =(5ns*0.8)+(80,099ns*0.2) 
 =16,023.8ns  
 

Example 6 

 
Given the following memory hierarchy, find the average memory access time of the 
complete system  
 

Memory type Average access time Hit rate 

SRAM 5ns 80 % 

DRAM 60ns 80% 

Disk 10ms 100% 

 

 

Solution  
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For each level, average access time=( hit rate x access time for that level) + ((1-hit rate) x  
average access time for next level) 
Average access time for the complete system 
= (0.8x5ns) + 0.2 x((0.8x60ns) + (0.2)(1x10ms)) 
= 4 + 0.2(48+2000000) 
=4 + 400009.6 
= 400013.6 ns  
 

Example 7 

 
Find the bandwidth of a memory system that has a latency of 25ns, a pre charge time of 
5ns and transfers 2 bytes of data per access.  
 

Solution  

 
Time between two memory references  
=latency + pre charge time 
= 25 ns+ 5ns 
= 30ns 
Throughput = 1/30ns 
=3.33x107 operations/second 
Bandwidth   = 2x 3.33x107  
= 6.66x107  bytes/s  
 

Example 8 

 
Consider a cache with 128 byte cache line or cache block size. How many cycles does it 
take to fetch a block from main memory if it takes 20 cycles to transfer two bytes of data?  
 

Solution  

The number of cycles required for the complete transfer of the block 
=20 x 128/2  
= 1280 cycles 
  
 Using large cache lines decreases the miss rate but it increases the amount of time a 
program takes to execute as obvious from the number of clock cycles required to transfer 
a block of data into the cache.  
 

Example 9 

 

Find the number of cycles required to transfer the same 128 byte cache line if page-mode 
DRAM with a CAS-data delay of 8 cycles is used for main memory. Assume that the 
cache lines always lie within a single row of the DRAM, and each line lies in a different 
row than the last line fetched.  
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Solution 

 

Memory requests to fetch each cache line=128/2= 64 
Only the first fetch require the complete 20 cycles, and the other 63 will take only 8 clock 
cycles. Hence the no. of cycles required to fetch a cache line 
=20 + 8 x 63  
= 524 
 

Example 10 

 

Consider a 64KB direct-mapped cache with a line length of 32 bytes.  
 

a. Determine the number of bits in the address that refer to the byte within a cache 
line. 

b. Determine the number of bits in the address required to select the cache line.  

Solution 

Address breakdown 
        
                        n=log2 of number of bytes in line 
  m=log2 of number of lines in cache 
 

a.    For the given cache, the number of bits in the address to determine the byte 
within the line= n = log232 = 5 
 
b.   There are 64K/32= 2048 lines in the given cache.  The number of bits required to 
select the required line = m =log22048 = 11 

   
      Hence n=5 and m=11 for this example. 
 

Example 11 

 
Consider a 2-way set-associative cache with 64KB capacity and 16 byte lines. 
  

a.  How many sets are there in the cache? 
b.  How many bits of address are required to select a set in the cache? 
c.  Repeat the above two calculations for a 4-way set-associative cache with 

same size.    
 

Solution 

 
a. A 64KB cache with 16 byte lines contains  4096 lines of data. In a 2-way set 

associative cache, each set contains 2 lines, so there are 2048 sets in the cache.  
  
b. Log2(2048)=11. Hence 11 bits of the address are required to select the set.  
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c. The cache with 64KB capacity and 16 byte line has 4096 lines of data. For a 4-
way set associative cache, each set contains 4 lines, so the number of sets in the 
cache would be 1024 and Log 2 (1024) =10. Therefore 10 bits of the address are 
required to select a set in the cache.   

 

Example 12 

Consider a processor with clock cycle per instruction (CPI) = 1.0 when all memory 
accesses hit in the cache. The only data accesses are loads and stores, and these constitute 
60% of all the instructions. If the miss penalty is 30 clock cycles and the miss rate is 
1.5%, how much faster would the processor be if all instructions were cache hits?  

 

Solution 

 
Without any misses, the computer performance is 
CPU execution time = (CPU clock cycles + Memory stall cycles) x Clock cycle  
=(IC x CPI+ 0)x Clock cycle = IC x 1.0 x Clock cycle  
Now for the computer with the real cache, first we compute the number of memory stall 
cycles: 
Memory accesses      = IC x   Instruction x Miss Rate x Miss Penalty 
Memory stall cycles 
 
= IC x (l + 0.6) x 0.015 x 30  
= IC x 0.72 
 
where the middle term (1 + 0.6) represents one instruction access and 0.6 data accesses 
per instruction. The total performance is thus 
  
CPU execution time cache = (IC x 1.0 + IC x 0.72) x Clock cycle  
=  1.72  x  IC x Clock cycles  
 
The performance ratio is the inverse of the execution times 
 
 
CPU execution time cache  =  1.72 x IC x clock cycle 
   CPU execution time                 1.0 x IC x clock cycle 
 
The computer with no cache misses is 1.72 times faster 
 

Example 13 

 
Consider the above example but this time assume a miss rate of 20 per 1000 instructions. 
What is memory stall time in terms of instruction count? 

 

Solution 

 
Re computing the memory stall cycles: 
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Memory stall cycles=Number of misses x Miss penalty 
=IC *   Misses     * Miss penalty 
           Instruction 
  
=IC / 1000 *  Misses  * Miss penalty 
                         Instruction * 1000 
=IC / 1000 * 20 * 30 
= IC /1000 * 600= IC * 0.6  
 

Example 14 

 

What happens on a write miss? 

 

 Solution 

 
The two options to handle a write miss are as follows: 

Write Allocate 

The block is allocated on a write miss, followed by the write hit actions. This is just like 
read miss. 

No-Write Allocate 

Here write misses do not affect the cache. The block is modified only in the lower level 
memory. 
  

Example 15 

 
Assume a fully associative write-back cache with many cache entries that starts empty.  
Below is a sequence of five memory operations (the address is in square brackets): 
  
Write Mem[300]; 
Write Mem[300]; 
Read  Mem[400]; 
Write Mem[400]; 
WriteMem[300]; 
 
What is the number of hits and misses when using no-write allocate versus write allocate? 
 

Solution 

 
For no-write allocate, the address 300 is not in the cache, and there is no allocation on 
write, so the first two writes will result in misses. Address 400 is also not in the cache, so 
the read is also a miss. The subsequent write to address 400 is a hit. The last write to 300 
is still a miss. The result for no-write allocate is four misses and one hit.  
 For write allocate, the first accesses to 300 and 400 are misses, and the rest are hits since 
300 and 400 are both found in the cache. Thus, the result for write allocate is two misses  
and three hits.   
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Example 16 

 

Which has the lower miss rate?  
a 32 KB instruction cache with a 32 KB data cache or a 64 KB unified cache?  
Use the following Miss per 1000 instructions.  
 

 
 

Assumptions 

 
•  The percentage of instruction references is about 75%.  
•  Assume 40% of the instructions are data transfer instructions.  
• Assume a hit takes 1 clock cycle. 
• The miss penalty is 100 clock cycles.  
• A load or store hit takes 1 extra clock cycle on a unified cache if there is only one 

cache port to satisfy two simultaneous requests.  
• Also the unified cache might lead to a structural hazard. 
• Assume write-through caches with a write buffer and ignore stalls due to the   write 

buffer.   
 
What is the average memory access time in each case? 

 

Solution 

 
First let's convert misses per 1000 instructions into  
miss rates. 
                               
                                 Misses                     
Miss rate =  1000 Instructions  
                         Memory accesses 
                             Instruction   
  
Since every instruction access has exactly one memory access to fetch the instruction, the 
instruction miss rate is 
 
Miss rate32 KB instruction = 1.5/1000 = 0.0015 
                                                  1.00 
  
Since 40% of the instructions are data transfers, the data miss rate is 

size 

 
Instruction 
cache 

Data cache 

 
Unified 
cache 

32 KB 
 

1.5 
 

40 
 

42.2 
 

64 KB 
 

0.7 
 

38.5 
 

41.2 
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Miss Rate 32 kb data =   40 /1000        =  0.1 
                                           0.4 
  
The unified miss rate needs to account for instruction and data accesses: 
Miss Rate 64 kb unified =   42.2 /1000      =  0.031 
                                               1.00+ 0.4 
   
As stated above, about 75% of the memory accesses are instruction references. Thus, the 
overall miss rate for the split caches is 
(75% x 0.0015) + (25% x 0.1) = 0.026125 
Thus, a 64 KB unified cache has a slightly lower effective miss rate than two 16 KB 
caches. The average memory access time formula can be divided into instruction and data 
accesses:  
Average memory access time 
= % instructions x (Hit time + Instruction miss rate x Miss Penalty) + % data x (Hit time 
+ Data miss rate x Miss Penalty)  
 
Therefore, the time for each organization is:  
 
 Average memory access time split 
= 75%x(l +0.0015x 100) + 25%x(l +0.1x100)  
= (75% x 1.15) + (25% x 11)  
= 0.8625+2.75= 3.61 
Average memory access time unified 
= 75% x (1+0.031 x 100) +25% x (1 + 1+0.031 x 100)  
= (75% x 4.1) + (25% x 5.1) = 3.075+1.275  
= 4.35  
Hence split caches have a better average memory access time despite having a worse 
effective miss rate. Split cache also avoids the problem of structural hazard present in a 
unified cache.  



Advanced Computer Architecture-CS501                                            
________________________________________________________ 

     Last Modified: 17-Feb-07   Page 380 

                                                                                                    

Lecture No. 42 
 

Performance of I/O Subsystems 
 
Reading Material 
Patterson, D.A. and Hennessy, J.L.                                                                        Chapter 8 
Computer Architecture -A Quantitative Approach 

Summary 
• Introduction 

• Performance of I/O Subsystems 

• Loss System 

• Single Server Model 

• Little’s Law 

• Server Utilization 

• Poisson distribution 

• Benchmarks programs 

• Asynchronous I/O and operating system 
 

Introduction 

Consider a producer-server model. A buffer (or queue) is present between them. Tasks 
are being received and when one task is finished (i.e. served) then the second task is 
taken up by the server. Now latency and the response time depend upon how many tasks 
are present in the queue and how quickly they are served. If there is no task, ahead in the 
queue the latency would be low and response time would be shorter.   
Through put depends upon the average number of calls and the service time taken by a 
particular server. 
 

Performance of I/O Subsystems 

There are three methods to measure I/O subsystem performance: 

• Straight away calculations using execution time 

• Simulation 

• Queuing Theory 

 

Loss System 

 

Loss system is a simple system having no buffer so it does not have any provision for the 
queuing. In a loss system, provision is time in term of how many switches we do need, 
then provide some redundancy how many individuals I/O controllers we do need, then 
how many CPUs are there. It is also called dimension of a loss system. 
 

 

 

 

Delay System  
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This system provides additional facilities. If we find some call party busy, we can have 
provision of call waiting. If we have more than one call waiting, then once we finish the 
first call, we may receive the second call.  
 

Single Server Model 

 

Consider a black box. Suppose it represents an I/O controller. At the input, we have 
arrival of different tasks. As one task is done, we have a departure at the output. So in the 
black box, we have a server. Now if we expand and open-up the black box, we could see 
that incoming calls are coming into the buffer and the output of the buffer is connected to 
the server. This is an example of “single server model”. 
 

Little’s Law 

 

For a system with multiple independent requests for I/O service and input rate equal to 
output rate, we use Little’s law to find the mean number of tasks in the system and Time 
sys such that 
 
Mean number of tasks = Arrival Rate x Mean Response time 
and 
Timesys = Timeq + Times 
where 
Times   = Average time to serve task 
Timeq   = Average time per task in the queue 
Timesys = Aver time /task 
Arrival Rate = λ = Average number of arriving tasks 
Lengths = Average number of task in service 
Lengthq = Average length of queue 
 and 
Lengthsys= Lengthq +Lengths 
 

Server Utilization 

 

Server Utilization   =  Arrival Rate x Timeq 
                                  
Server utilization is also called traffic intensity and its value must be between 0 and 1. 
Server utilization depends upon two parameters: 

1. Arrival Rate 
2. Average time required to serve each task 

So, we can say that it depends on the I/O bandwidth and arrival rate of calls into the 
system. 

 

Example 1 
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Suppose an I/O system with a single disk gets (on average) 100 I/O requests/second. 
Assume that average time for a disk to service an I/O request is 5ms. What is the 
utilization of the I/O system? 

Solution 

Time for an I/O request = 5ms 
                                       =0.005sec 
Server utilization = 100 x 0.005 
                            = 0.5   

 

Poisson distribution 

 

In order to calculate the response time of an I/O system, we make the following 
assumptions: 

1. Arrival is random 
2. System is memory less. It means that incoming calls are not correlated. 

For characterize random events, according to above two assumptions, we use Poisson 
distribution: 
Probability (k)= (e-k x ak ) /k! 
 
 a= Rate of events x Elapsed time 
   = Arrival rate x t 
 
also 
 
                              Variance 
   C2   =   ----------------------------------- 
                    (Arithmetic mean time) 2  
and 
Average Residual Service Time  = ½  x weighted mean time x (1+C2 ) 

Example 2 

 
For the system of previous example having server utilization of 0.5, what is the mean 
number of I/O requests in the queue? 

Solution 

                    (Server utilization) 2   
Lengthq = --------------------------- 
                  (1- Server utilization) 
                       
Lengthq = (0.5) 2  / (1-0.5)= 0.5 
 

Assumptions about Queuing Model 

 

1. Poisson distribution is assumed 
2. The system is in equilibrium 
3. The length of the queue is infinity 
4. The system has only one server 
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5. The server will start the next task after finishing the previous one. 

 

Example 3 

 

Suppose a processor sends 10 disks I/O per second, these requests are exponentially 
distributed, and the average service time of an older disk is 10ms. Answer the following 
questions: 
 

• What is the number of requests in the queue? 

• What is the average time a spent in the queue? 

• What is the average response time for a disk request? 
 

Solution 

 
Average number of arriving tasks/second = 20 
Average disk time = 10ms = 0.01sec 
Sever utilization = 20 x 0.01=0.2 
Timeq = 10ms x 0.2/(1-0.2) = 2.5ms 
Average response time = 2.5+10=22.5ms 
 

M/M/m model of queuing theory 

A system which has multiple servers is called M/M/m model. 
The following formulas are used for M/M/m model: 
                         Arrival Rate x Times  
Utilization = ----------------------------- 
                             Ns 
 
   Lengths = Arrival Rate x Timeq 
 
                      
                        (Times  x (Ptasks>= Ns)) 
   Timeq  =  ---------------------------------- 
                          Ns x (1- utilization) 
 
                                   Ns x utilization  
Probtasks>= Ns =  --------------------------  x Prob0tasks  
                                Ns! x (1-utilization) 
 

Example#4 

 

Suppose instead of a new, faster disk, we add a second slow disk, and duplicate the data 
so that read can be serviced by either disk. Let’s assume that the requests are all reads. 
Recalculate the answers to the earlier questions, this time using an M/M/m queue. 

Solution 

 

The average utilization of the two disks is given as; 
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                                  Arrival rate x Times 
 Server utilization = ---------------------------- 
                                              Ns 
                              = (20 x 0.01) / 2 
                              = 0.1 
 
                                              (2 x utilization) 2              (2 x utilization ) n  
Prob0tasks            =  [  1 +    -------------------------  +   --------------------------] -1 
                                            2! x (1- utilization)                     n! 
 
                                 (2x 0.1) 2 
 Prob0tasks  =  [ 1 + ----------------   + (2 x 0.1)] -1 
                               2! x (1- 0.1) 
 
                 = (1 + .022 + 0.2 ) -1 
 
                = 1.222-1 
 
                                  (2 x utilization) 2  
Probtasks>= Ns  =  -------------------------  x  Prob0tasks 
                                2! x (1- utilization) 
 
                                    (2x 0.1) 2   
                      =        ----------------   x 1.222-1 
                                2! x (1- 0.1) 
 
                      =  0.018 
 
                                    Probtasks>= Ns   
Timeq = Times  x  ---------------------------- 
                       Ns x (1- utilization) 
 
              = 0.01 x 0.018 / ( 2 x 0.9) 
              = 0.1msec 
              
Average response time = 10msec + 0.1msec 
                                     =  10.01msec 

               

Benchmarks programs 

In order to measure the performance of real systems and to collect the values of 
parameters needed for prediction, Benchmark programs are used. 

Types of Benchmark programs 

Two types of benchmark programs are used: 
TPC-C 
SPEC 
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Asynchronous I/O and operating system 

In order to improve the I/O performance, parallelism is used. 
For this, two approaches are available: 

• Synchronous I/O  

• Asynchronous I/O 
Synchronous I/O 

In this approach, operating system requests data and switches to another process. Until 
the desire data arrived. Then the operating system switches back to the requesting 
process. 

Asynchronous I/O 

This model is of the process to continue after making a request and it is not blocked until 
it tries to read requested data. 

Bus versus switches 

Consider a LAN, using bus topology. If we replace the bus with a switch, the speed of the 
data transfer will be improved to a great extent. 
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Lecture No. 43 

 

Networks 
Reading Material 
 
Vincent P. Heuring & Harry F. Jordan                                                            
Computer Systems Design and Architecture                                                                
 
Patterson, D.A. and Hennessy, J.L.                                                                        Chapter 8                                        
Computer Architecture - A Quantitative Approach                                                                                           

 
Summary 

 

• Introduction to computer network 

• Difference between distributed computing and computer networks 

• Classification of networks 

• Interconnectivity in WAN 

• Performance Issues 

• Effective bandwidth versus Message size 

• Physical Media 
 

Introduction to Computer Networks 

A computer architect should know about computer networks because of the two main 
reasons: 

1. Connectivity 

Connection of components with in a single computer follows the same principles used for 
the connection of different computers. It is important for the computer architect to know 
about connectivity for better sharing of bandwidth 

Sharing of resources 

Consider a lab with 50 computers and 2 printers using a network, all these 50 computers 
can share these 2 printers.  

 Protocol 

A set of rules followed by different components in a network. These rules may be defined 
for hardware and software. 

Host  

It is a computer with a modem, LAN card and other network interfaces. Hosts are also 
called nodes or end points. Each node is a combination of hardware and software and all 
nodes are interconnected by means of some physical media. 

 

Difference between Distributed Computing and Computer Networks 

 

In distributed computing, all elements which are interconnected operate under one 
operating system. To a user, it appears as a virtual uni-processor system. 
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In a computer network, the user has to specify and log in on a specific machine. Each 
machine on the network has a specific address. Different machines communicate by 
using the network which exists among them. 

 

Classification of Networks 

We can classify a network based on the following two parameters: 

• The number and type of machines to be interconnected  

• The distance between these machines 
Based on these two parameters, we have the following type of networks: 

SAN (System/Storage Area Network) 

It refers to a cluster of machines where large disk arrays are present. Typical distances 
could be tens of meters. 

LAN (Local Area Network) 

It refers to the interconnection of machines in a building or a campus. Distances could be 
in Kilometers. 

WAN (Wide Area Network) 

It refers to the interconnection between LANs. 
 

Interconnectivity in WAN 

 

Two methods are used to interconnect WANs: 

1. Circuit switching  

      It is normally used in a telephone exchange. It is not an efficient way. 

2. Packet switching 

A block (an appropriate number of bits) of data is called a packet. Transfer of data in 
the form packets through different paths in a network is called packet switching. 
Additional bits are usually associated with each packet. These bits contain 
information about the packet. These additional bits are of two types: header and 
trailer. As an example, a packet may have the form shown below: 
 

 
If we use a 1- bit  header, we may have the following protocol:  
Header = 0, it means it is a request 
Header = 0, Reply 
By reading these header bits, a machine becomes able to receive data or supply data. 
To transfer data by using packets through hardware is very difficult. So all the transfer is 
done by using software. By using more number of bits, in a header, we can send more 
messages. For example if n bits are used as header then 2n is the number of messages that 
can be transmitted over a network by using a single header. 
For a 2 bit header: we may have 4 types of messages: 
                           00= Request 
                           01= Reply 
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                           10= Acknowledge request 
                           11= Acknowledge reply 

 

Error detection 

 

The trailer can be used for error detection. In the above example, a 4 bit checksum can be 
used to detect any error in the packet. The errors in the message could be due to the long 
distance transmission. If the error is found in some message, then this message will be 
repeated. For a reliable data transmission, bit error rate should be minimum. 

 

Software steps for sending a message: 

 

• Copy data to the operating system buffer. 
• Calculate the checksum, include in trailer and star timer. 
• Send data to the hardware for transmission. 

 

Software steps for message reception: 

 

• Copy data to the operating system buffer. 
• Calculate the checksum; if same, send acknowledge and copy data to the user area 

otherwise discard the message. 
 

Response of the sender to acknowledgment:  

 

• If acknowledgment arrives, release copy of message from the system buffer. 
• When timer expires, resend data and restart the time. 

 

Performance Issues 

 

1. Bandwidth 

It is the maximum rate at which data could be transmitted through networks. It is   
measured in bits/sec. 

2. Latency 

In a LAN, latency (or delay) is very low, but in a WAN, it is significant and this is 
due to the switches, routers and other components in the network 

3. Time of flight 

      It is the time for first bit of the message to arrive at the receiver including delays. 
Time of the flight increases as the distance between the two machines increases. 

4. Transmission time 

      The time for the message to pass through the network, not including the time of 
flight. 

5. Transport latency 

      Transport latency= time of flight + transmission time 

6. Sender overhead 

      It is the time for the processor to inject message in to the network. 

7. Receiver overhead 
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      It is the time for the processor to pull the message from the network. 

8. Total latency 
Total latency = Sender overhead + Time of flight + Message size/Bandwidth + Receiver  
overhead 

9. Effective bandwidth 

      Effective bandwidth = Message size/Actual Bandwidth 

      Actual bandwidth may be larger than the effective bandwidth. 
 

 

Example#1 

 

Assume a network with a bandwidth of 1500Mbits/sec. It has a sending overhead of 
100µsec and a receiving overhead of 120µsec. Assume two machines connected together. 
It is required to send a 15,000 byte message from one machine to the other (including 
header), and the message format allows 15, 00 bytes in a single message. Calculate the 
total latency to send the message from one machine to another assuming they are 20m 
apart (as in a SAN). Next, perform the same calculation but assume the machines are 
700m apart (as in a LAN). Finally, assume they are 1000Km apart (as in a WAN).  
 Assume that signals propagate at 66% of the speed of light in a conductor, and that the 
speed of light is 300,000Km/sec. 

 

Solution 

 
By using the assumption, we get: 
 
                           Distance between two machines in Km 
Time of flight = -------------------------------------------------- 
                            2/3 x 300,000Km/sec 
 
Total Latency = Sender overhead + Time of flight + Message size/bandwidth 
                          + Receiver overhead 
For SAN: 
 
Total latency = 100µsec  
                     + (0.020Km/(2/3 x 300,000Km/sec)) 
                     + 15,000bytes/ 1500Mbits/sec 
                     + 120µsec 
                     = 100µsec + 0.1µsec + 80µsec + 120µsec 
                     = 300.1µsec 

For LAN 

 
Total latency = 100µsec  
                     + (0.7Km/(2/3 x 300,000Km/sec)) 
                     + 15,000bytes/ 1500Mbits/sec + 120µsec 
                     = 100µsec + 3.5µsec + 80µsec + 120µsec                        
                    = 303.1µsec 

For WAN 
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Total latency = 100µsec  
                     + (1000Km/(2/3 x 300,000Km/sec)) 
                     + 15,000bytes/ 1500Mbits/sec 
                     + 120µsec 
                     = 100µsec + 5000µsec + 80µsec   + 120µsec   
                     = 5300µsec 
 

Effective bandwidth versus Message size 

Effective bandwidth is always less than the raw bandwidth. If the effective bandwidth is 
closer to the raw bandwidth, the size of the message will be larger. If the message size is 
larger then network will be more effective. 
If large number of the messages are present then a queue will be formed, and the user has 
to face delay. To minimize the delay, it is better to use packets of small size. 
 

Physical Media 
                                                             
 
 
 
 
 
Twisted pair does not provide good quality of transmission and has less bandwidth. To 
get high performance and larger bandwidth, we use co-axial cable. For increased 
performance, better performance, we use fiber optic cables, which are usually made of 
glass. Data transmits through the fiber in the form of light pulses. Photo diodes and 
sensors are used to produce and receive electronic pulses. 
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Lecture No. 44 
 

Communication Medium and Network Topologies 
 

Reading Material 
Patterson, D.A. and Hennessy, J.L.                                                                       Chapter 8 
Computer Architecture- A Quantitative Approach 

Summary 
• Physical Media (Continued) 

• Shared Medium 

• Switched Medium 

• Connection Oriented vs. Connectionless Communication 

• Network Topologies 

• Seven-layer OSI Model 

• Internet and Packet Switching 

• Fragmentation 

• Routing 
 

Modem 

To interconnect different computers by using twisted pair copper wire, an interface is 
used which is called modem. Modem stands for modulation/demodulation. Modems are 
very useful to utilize the telephone network (i.e. 4 KHz bandwidth) for data and voice 
transmission.  

Quality of Telephone Line 

Data transfer rate depends upon the quality of telephone line. If telephone line is of fine 
quality, then data transfer rate will be sufficiently high. If the phone line is noisy then 
data transfer rate will be decreased. 
 

Classification of Fiber Optic Cables 

Fiber optic cables can be classified into the following types. 

 

Multimode fiber 

This fiber has large diameter. When light is injected, it disperses, so the effective data 
rate decreases. 
 

Mono mode Fiber 

Its diameter is very small. So dispersion is small and data rate is very high. 

 

Wavelength –Division Multiplexing (WDM)  

Waves of different wavelengths are simultaneously sent through fiber. So as a result, 
throughput increases. 
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Wireless Transmission 
This is another effective medium for data transfer. Data is transferred in the form of 
electromagnetic waves. It has the following features: 
 

• Data rate is in Mbits/Sec. 

• Very effective because of flexibility. 

• Band width is much less than fiber. 
 

Example 1 

 

Suppose we have 20 magnetic tapes, each containing 40GB. Assume that there are 
enough tape readers to keep any network busy. How long will it take to transmit the data 
over a distance of 5Km? The choices are category 5 twisted-pair wires at 100Mbits/sec, 
multimode fiber at 1500Mbits/sec and single-mode fiber at 3000Mbits/sec. (Adapted 
from CA3: H&P) 

 

Solution 

 

The total amount of data  
= total no. of mag. tapes x capacity of each tape 
= 20 x 40GB= 800GB 
 
The time for each medium: 
Twisted pair = 800GB/100Mbits/sec 
                     = 65536 sec = 18.2 hr 
Multimode Fiber = 800GB/1500Mbits/sec 
                            = 4369.06sec = 1.213 hr 
 
Single mode Fiber = 800GB/3000Mbits/sec 
                              = 2184.55sec 
                              = 0.66hr 
 
Car = time to load car + transport time + time to unload car 
      = 250sec + 5Km/30Kph   + 250sec 
      = 500.16 sec = 0.13hr 
 

Shared/Switched Medium 
 
Shared Medium 

If a number of computers are connected with a single physical medium (i.e. coaxial or 
fiber), this situation is called shared medium. Because of many computers, collision takes 
place and affects the data transfer rate. As the number of machines on a physical medium 
increases, the data transfer rate decreases. 
 

Switched Medium 

To increase the throughput, a switched medium is used.  
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Example 2 

 

Compare 20 nodes connected in three different ways: a single 100Mbits/sec shared 
medium; a switch connected via cat5, each segment running at 100Mbits/sec; and a 
switch connected via optical fiber, each segment running at 1500Mbits/sec. The shared 
medium is 700m long, and the average length of each segment to a switch is 55m. Both 
switches can support full bandwidth. Assume each switch adds 6µsec to the latency, and 
the average message size is 200bytes. Ignore the overhead of sending or receiving a 
message and contention for the network. 

 

Solution   

 

First we will calculate the aggregate bandwidth: 
For shared medium 
   
Aggregate bandwidth = 100Mbits/sec 
For switched twisted pair 
 
Aggregate bandwidth = 20 x 100Mbits/sec 
                                   = 2000Mbits/sec 
For switched optical fiber 
 
Aggregate bandwidth = 20 x 1500Mbit/sec 
                                   = 30,000Mbits/sec 
 
Transport time = Time of flight + (message size/BW) 
 
                                           (700/1000)Km 
Transport time shared = ---------------------- x 106µsec 
                                       (2/3 x 300,000)Km 
                                  + (200 x 8bits / 100Mbits/sec) 
 
                                = 3.5µsec + 16µsec = 19.5µsec 
For the switches, the distance is twice the average segment. We must also add latency for 
the switch.  
 
                                              (55/1000)Km 
Transport time switch = 2x ---------------------- x 106µs 
                                             (2/3 x 300,000)Km 
                                       + 6µsec  
                                       + (200 x 8bits / 100Mbits/sec) 
 
                                     = 0.55µsec + 6µsec +16µsec  
                                     = 22.55µsec 
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                                                     (55/1000)Km 
Transport time fiber         = 2x ---------------------- x 106µs 
                                                     (2/3 x 300,000)Km 
                                       + 6µsec  
                                       + (200 x 8bits / 1500Mbits/sec) 
 
                                     = 0.55µsec + 6µsec +1.06µsec  
                                     = 7.61µsec 
 
Although the bandwidth of the switch is many times that of the shared medium, the 
latency for unloaded networks is comparable. 

 

Connection Oriented vs. Connection less Communication 
 

Connection Oriented Communication 

• In this method, same path is always taken for the transfer of messages. 

• It reserves the bandwidth until the transfer is complete. So no other server could 
use that path until it becomes free. 

• Telephone exchange and circuit switching is the example of connection oriented 
communication. 

 
Connection less Communication 

• Here message is divided into packets with each packet having destination address. 

• Each packet can take different path and reach the destination from any route by 
looking at its address. 

• Postal system and packet switching are examples of connection less 
communication. 

 

Network Topologies 
Computers in a network can be connected together in different ways. The following three 
topologies are commonly used: 

• Bus topology 

• Star topology 

• Ring topology 
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Bus Topology 

In this arrangement, computers are connected via a single shared physical medium. 
 

Star topology 

Computers are connected through a hub. All messages are broad cast because the hub is 
not an intelligent device. 
 

Ring Topology 

 All computers are connected through a ring. Only one computer can transmit data at one 
time, having a pass called “Token”. 
 

Seven Layer OSI Model 
There are seven layers in this model. 

1. Physical Layer 
2. Data Layer 
3. Network Layer 
4. Transport Layer 
5. Session Layer 
6. Presentation Layer 
7. Application Layer 

 
 

OSI Model Characteristics 

• An interface is present between any two layers.  

• A layer may use the data present in another layer.  

• Each layer is abstracted from other layers. 

• The service provided by one layer can be used by the other layer. 

• Two layers can provide same service e.g. Check Sum calculated at different 
layers. 

• On two machines, six layers are logically connected except the physical layer. 
The physical layers of two machines are physically connected. 
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Internet and Packet Switching 
Internet works on the concept of packet switching. Application layer passes data to the 
lower layer and that lower layer passes data to the next lower layer and on so on. In this 
data passing process through different layers, different headers are attached with the data 
which shows the source and destination addresses, number of data bytes in packet, type 
of message etc. At physical layer, this packet is transmitted into the network. At 
reception, reverse procedure is adopted.  
 

Fragmentation 
When a packet is lost in the network, it is re-transmitted. If the size of the packet is large 
then retransmission of packet is wastage of resources and it also increases the delay in the 
network. To minimize this delay, a large packet is divided into small fragments. Each 
fragment contains a separate header having destination address and fragment number. 
This fragmentation effectively reduces the queuing delay. At destination, these fragments 
are re-assembled and data is sent to the application layer. 
 

Routing 
Routing works on store-and-forward policy. There are three methods used for routing: 

• Source-based routing 

• Virtual Circuit 

• Destination-based routing 
 

TCP/IP 
Internet uses TCP/IP protocol. In the TCP/IP model, session and presentation layers are 
not present, so Store-Forward routing is used. 
 

 


