Lecture IV: Collisions

The Story so Far

* Rigid bodies moving in space as forces are applied
to them.
« Gravity, drag, rotation, etc.

» Reaction forces occur when a rigid body comes in
contact with another body.

* Handling the event correctly is then two problems:
 Collision detection ™ “
« Collision resolution ® 3600

Collisions & Geometry

* We need the actual geometry of the object

* Apoint (e.g. COM) is not enough anymore.

« We must know where the objects are in contact to apply
the reaction force at that position.

Collision Detection Algorithms

« To save time and computation, collision detection
Is done top-down, to rule out non-collisions fast:

* Broad phase
 Disregard pairs of objects that cannot collide.
» Model and space partitioning.
 Mid phase
» Determine potentially-colliding primitives.
» movement bounds.

* Narrow phase
« determine exact contact between two shapes.
« Convex object intersection (GJK algorithm)
» Triangle-triangle intersections.

The Time Issue

* Looking at uncorrelated sequences of positions is
not enough.

* Our objects are in motion and we need to know
when and where they collide.

Att

Att + At

Tunneling

* Collision in-between steps can lead to

tunneling.
 Objects pass through each other O Frame
» Colliding neither at t nor at t + At! —O Frame 2
 ...but somewhere in between. —@ Frame 3

« Leads to false negatives.

* Tunneling is a serious issue In
gameplay.
» Players getting to places they should not.
* Projectiles passing through characters and
walls.

« Impossibility for the player to trigger actions
on contact events.

Tunneling

Tunneling

« Small objects tunnel more easny

... And fast moving objects.

Tunneling

* Possible solutions
* Minimum size requirement?
« Fast object still tunnel...
* Maximum speed limit?
« Small and fast objects not allowed (e.qg. bullets...)

« Smaller time step?
« Essentially the same as speed limit!

* Another approach is needed!

Movement Bounds

« Bounds enclosing the

h
motion of the shape. Sphere AnBB

_a

OBB

* |n the time interval At,
the linear motion of
the shape is enclosed.

« Convex bounds are
used = movement
bounds are also
primitive shapes.

Movement Bounds

« Movement bounds do not collide = there is no
collision.

 Movement bounds collide = possible collision.

11

Swept Bounds

 Primitive-based
movement bounds do
not have a really good
fit.

 We use swept bounds.

* More accurate & more
costly.

* Union of all surfaces
(volumes) of a
transforming shape

 We use the affine
transformation fromttot
+ At.

VI

12

What's Next?

« Collision detection (supposedly) reported a
collision.

. ' PP PEPBEE
We want to solve it ot
« Bounce back the colliding objects? w

° SthkIng together? [Barbi¢ and James 2010]
« Breaking apart?

* |In which direction and with what magnitude?
 Momentum, velocity, forces...

13

Collision Kinematics

Contact point.
 point of impact.

* Might be more than one! “

Contact normal.

 To both surfaces.

* Not always well defined (abstractly).
* Normal to collision plane.

Contact arms.
 From COM to point.

Line of impact: between COMs

14

Collision Resolution

* We estimated time of collision, contact points and
contact normal.

* We still have to correct the position and orientation
of the colliding objects

16

Types of Collisions

* |nelastic collisions
* energy is not preserved.
» Obijects stop in place, stick together, etc.

e are easy to implement = e
¢ BaCking OUt Or Stopping proceSS http://physics.about.co/od/energywokpower/lelasticoIIision.htrr

« Elastic collisions
* Energy is fully preserved.
 e.g. (ideal) billiard balls.

« More difficult to calculate.
« Magnitude of resulting velocities

http://philschatz.com/physics-book/contents/m42183.html

17

Linear velocity

« Setting:
* Objects A & B.
« Masses m, & mg.
* |Initial velocities v,_ & vg_.

« Unit collision normal 7@, and contact point P.

« v,_ — vg_: closing velocity.
¢ Vs, — Vg, Separating velocity.

18

Instant impulses

* We can solve the collision by using an impulse-
based technique.

At collision time we apply an impulse on each object at
P in the direction 71 (—n for the other object).

« '‘Pushing’ the two objects apart.
* The impulse magnitude: j. (impulse: jn)
* Velocity is then changed accordingly from v_ to v,..

impulseg_, 4 impulsey_ g

19

Reminder: Impulses

* A change in the momentum, or a force delivered in
an instant:

FAt = Ap” = m(B (t + At) — B(t))
At = AL = 1(@ (t + At) — B(t))

« Each type of momentum is always conserved:

mAﬁA(t + At) + mBﬁB (t + At) —_ mAﬁA(t) + mBT})B (t)
Lyw,(t +At) + Igwg(t + At) = Liw,(t) + Izwg(t)
* |In the same coordinate system to the same fixed point!

20

Linear velocity

* By the impulse we get:
MuVus_ + JA = MyUyy
MmpVp_ — Jil = MpVp,

* And explicitly for the velocities:
J

1})A+:13A_+_ﬁ
mgy
By = Py — =1
B+ — VYB—
me

» 2 equations in 3 variables = missing 1 degree of
of freedom!

21

Coefficient of Restitution

* The coefficient of restitution Cr models elasticity.

* The ratio of speeds after and before collision along
the collision normal

- (§A+ o 7_7)B+) ' 1
(Vg —Vp-) - A

* Cpr = 1: ideal elastic collision (E}, is conserved)

* Cp < 1:inelastic collision (loss of velocity).

* Cr = 0: the objects stick together.

CR:

22

Velocity Correction

 As the velocities before and after collision relate by
the coefficient of restitution:

=)

CR:

- (§A+ o ﬁB+) |
(7}),4— — 773—)

=)

e ...we calculate:

- —(1+ CR)[Wy- — V) - 7]

=
(s * z)

Joint masses

23

Velocity Correction

« We can finally calculate the outgoing velocities:

- j/\
By = P+
mA
B =By — 2
B+ — VB—
m

» Larger mass difference < less velocity change.

24

Angular Velocity

* Point of contact not on line of impact =» normal off
the center of rotation =» the collision also produces
a rotation of the two objects.

25

Angular velocity

« Handling rotational collision similarly to linear
collision.

* Impulse factor j is adapted accordingly.
» Rotational velocity contributes to the total closing
velocity:

ﬁA— — 1})A— + JA_XFA
ﬁB— — Vp_ + BB—XFB

« w: angular velocities
r: collision arm = (point of contact) — (center of rotation).

26

Angular velocity

* The coefficient of restitution equation works with
the total closing velocity:

* The resulting impulse j will create both angular
and linear velocities.

27

Angular velocity

By the impulse we get:

IABA— + FAX(]ﬁ) —_ IA5A+
I[pwp_ — TgX(j1) = IpWpy

2 more equations and 2 more variables (w,, and
Wg+).

Inertia tensors: in world coordinates, around each
center of rotation.

And we get:
Wpy = Gy + [([T X (1))
Wpy = Wp_ — I5 (TpX (1))

28

Angular velocity
* The updated factor j:

—(1+ Cr)l[(Vy- —vp_) - 7]

j =

(mA + mB) + [FyxA)TI L (FyxA) + (FexA)T I (g X7)]
Augmented mass and inertia

29

Angular velocity

« With this updated factor j, we calculate the
separating angular velocities

Bpy = Wy + [T ([T X (1))
Bgy = wp_ — Iz (P x(j))

 This factor is also used to calculate the separating
linear velocities (same as linear resolution):

J

1})A+:13A_+_ﬁ
mgy
By = Py ———17
B+ — VYB—
m

30

Practical Considerations

You need I;*, Iz in the world coordinate system,
and around each individual COM.

« Changes with rotation!

You usually have: 1 in the object coordinate
system around each individual COM.
* Preprocess computation.

Problem: Inverse is expensive.

Solution:

» Invert once for object coordinate system I, 1.
- Apply orientation change R: I;'=RTI, 'R.

» Mind if to use R or RT according to context!

31

Types of contact

* Most common (general position):
« Point-face (PF).
« Edge-edge (EE).
 Normals:
* The face in PF.
* Normal to both edges in EE.

 Note: other cases more difficult.

CCCCCCC

CCCCCCC

CCCCCCC

dddddddd
ccccccc

33

Time of Collision

Computing the exact time (somewhere between t
and t + At) of collision is not always feasible

We can approximate it by bisection.
Repeatedly bisecting the time interval and testing,

finding a arbitrary short interval [t,, t;] for which:

* The objects do not collide at t,.
* The objects collide at t;.

Computationally expensive!

« Usually in games, the frame rate At is small enough to
not bother.

» Correction method: interpenetration resolution.

34

Interpenetration

Collision happens between t and t + At.
We run a position update on t + At.
Objects are now interpenetrating!

Collision detection algorithms usually provide:

« Closest point on one of the objects.
« Contact normal (vector to point).
* Interpenetration depth.

35

Resolving interpenetration

Linear Projection
« Simply “move back”

Disadvantage: not realistic for rotations.
 Also “twitched” movement

« Adding non-existing friction.

If one object is fixed, move only the other.
If both mobile: by inverse mass weighting.

Penetration Linear Projection

36

Resolving Interpenetration

* Non-linear Projection

» Creating both linear and angular movement until
penetration is resolved in the normal direction.

 But how much of both?
« Why no just “rollback time”?

L

Realistic (rotation
Penetration and linear

movement)

37

Nonlinear Projection

« Compromise: move back on a linear path, and
rotate in the process.
« Until penetration is resolved.

* Problem: excessive rotation
.
Centre
®
Rotation will

Angular motion cause opposite
cannot separation corner to
objects interpenetrate

Nonlinear projection
Path of object

Interpenetrating object

38

Problem: multiple contacts

lteration 1; Resolve

Order is important! Left |
Approximation: feration 2:Resolve

lterate until resolved. o / J

Always resolve worst. lteration 3: Resolve

Problem: depths keep Lef | |
changing! '

|teration 4: Resolve
« Update who's worst by applying Right
the velocities from the previous L 1
iteration.

4

39

Multiple Collisions

« Similar process:

» Resolve the worst collision
 Fastest closing velocity.

» Use resulting separating velocities as closing velocities
for the next worst collision.

40

Collision resolution

* The full algorithm:

Run collision detection to find contact point(s) and
contact normal.

Resolve interpenetration.

Use coefficients of restitution and conservation of
momentum to determine the impulses to apply.

Calculate linear and angular velocities at these contact
points.

Solve for velocities using the impulses.

« Part of the greater rigid-body engine loop.

42

Resting contact

* Our resolution system is theoretically complete.

e Some special cases can be handled more
efficiently.

 We can have resting contacts between objects

* For example, a box colliding with on the floor.
* the floor theoretically moves down, but is assumed

stationary, because of theoretically very large mass.

43

Resting contact

* In a typical framework, a box sitting on the floor
may 'jitter’ around the surface.

44

Resting contact

* Aresting contact < relative velocity of the two
objects along the normal is O (or <tolerance).

* A solution: to ‘artificially’ reduce Cr when we are in
that case.
 Either: Linearly dependent on the relative velocity,
« Or: directly setto Cr = 0.

« after resolution the two objects have 0 relative velocity
< the box to the unmoving floor.

45

Friction

 |n practice, there is friction between two objects
when in contact.
- Static friction: relatively stationary.
* Kinetic friction: moving relatively to each other.
 Rolling friction: is usually ignored in game physics.
 We can add the friction force in our previous
equations using impulses.

PLTSAA

<

46

Friction

« The friction acts in the tangential plane of the
collision normal and resists the movement

t = (AX(V, — Vp))xA

Pt
)
1

47

Kinetic Friction

* The velocity equations become:

. N _I_jA(ﬁ_I',ukf)

Vpy = VUy—
+ mA
B+ — VBp—
+ mB

Note normalization of t!

Bar = Gy + I TG @A + p 1))

Gpy = Gp- — Iz (FX((A + i £)))

48

Static Friction

« For small relative velocity, static friction is used.

« The friction impulses need to be adjusted.
* When will objects break off?

49

