Lecture IV: Collisions

The Story so Far

- Rigid bodies moving in space as forces are applied to them.
 - Gravity, drag, rotation, etc.
- Reaction forces occur when a rigid body comes in contact with another body.
- Handling the event correctly is then two problems:
 - Collision detection
 - Collision resolution

Collisions & Geometry

- We need the actual geometry of the object
 - A point (*e.g.* COM) is not enough anymore.
 - We must know where the objects are in contact to apply the reaction force at that position.

CryEngine 3 (BeamNG)

Collision Detection Algorithms

- To save time and computation, collision detection is done top-down, to rule out non-collisions fast:
 - Broad phase
 - Disregard pairs of objects that cannot collide.
 - Model and space partitioning.
 - Mid phase
 - Determine potentially-colliding primitives.
 - ≻ movement bounds.
 - Narrow phase
 - determine exact contact between two shapes.
 - Convex object intersection (GJK algorithm)
 - ➤ Triangle-triangle intersections.

The Time Issue

- Looking at uncorrelated sequences of positions is not enough.
- Our objects are in motion and we need to know when and where they collide.

- Collision in-between steps can lead to tunneling.
 - Objects pass through each other
 - Colliding neither at t nor at $t + \Delta t!$
 - ...but somewhere in between.
 - Leads to false negatives.
- Tunneling is a serious issue in gameplay.
 - Players getting to places they should not.
 - Projectiles passing through characters and walls.
 - Impossibility for the player to trigger actions on contact events.

- Small objects tunnel more easily.

 - ... And fast moving objects.

- Possible solutions
 - Minimum size requirement?
 - Fast object still tunnel...
 - Maximum speed limit?
 - Small and fast objects not allowed (e.g. bullets...)
 - Smaller time step?
 - Essentially the same as speed limit!
- Another approach is needed!

Movement Bounds

- Bounds enclosing the motion of the shape.
- In the time interval Δt, the linear motion of the shape is enclosed.
- Convex bounds are used → movement bounds are also primitive shapes.

Movement Bounds

- Movement bounds do not collide → there is no collision.
- Movement bounds collide → possible collision.

Swept Bounds

- Primitive-based movement bounds do not have a really good fit.
- We use swept bounds.
 - More accurate & more costly.

• We use the affine transformation from t to t $+ \Delta t$.

What's Next?

- Collision detection (supposedly) reported a collision.
- We want to solve it
 - Bounce back the colliding objects?
 - Sticking together?
 - Breaking apart?

[Barbič and James 2010]

- In which direction and with what magnitude?
 - Momentum, velocity, forces...

Collision Kinematics

- Contact point.
 - point of impact.
 - Might be more than one!
- Contact normal.
 - To both surfaces.
 - Not always well defined (abstractly).
 - Normal to collision plane.
- Contact arms.
 - From COM to point.
- Line of impact: between COMs

Collision Resolution

- We estimated time of collision, contact points and contact normal.
- We still have to correct the position and orientation of the colliding objects

Types of Collisions

- Inelastic collisions
 - energy is not preserved.
 - Objects stop in place, stick together, etc.
 - · are easy to implement
 - Backing out or stopping process.

http://physics.about.com/od/energyworkpower/f/InelasticCollision.htm

- Elastic collisions
 - Energy is fully preserved.
 - e.g. (ideal) billiard balls.
 - More difficult to calculate.
 - Magnitude of resulting velocities

http://philschatz.com/physics-book/contents/m42183.html

Linear velocity

- Setting:
 - Objects A & B.
 - Masses $m_A \& m_B$.
 - Initial velocities $v_{A-} \& v_{B-}$.
 - Unit collision normal \hat{n} , and contact point *P*.
- $\vec{v}_{A-} \vec{v}_{B-}$: closing velocity.
- $\vec{v}_{A+} \vec{v}_{B+}$: separating velocity.

Instant impulses

- We can solve the collision by using an impulsebased technique.
 - At collision time we apply an impulse on each object at *P* in the direction \hat{n} ($-\hat{n}$ for the other object).
 - 'Pushing' the two objects apart.
 - The impulse magnitude: j. (impulse: $j\hat{n}$)
 - Velocity is then changed accordingly from v_{-} to v_{+} .

Reminder: Impulses

 A change in the momentum, or a force delivered in an instant:

$$\vec{F}\Delta t = \Delta \vec{p} = m(\vec{v}(t + \Delta t) - \vec{v}(t))$$

$$\vec{\tau}\Delta t = \Delta \vec{L} = \mathbf{I}(\vec{\omega}(t + \Delta t) - \vec{\omega}(t))$$

• Each type of momentum is always conserved:

 $m_A \vec{v}_A(t + \Delta t) + m_B \vec{v}_B(t + \Delta t) = m_A \vec{v}_A(t) + m_B \vec{v}_B(t)$ $\mathbf{I}_A \vec{\omega}_A(t + \Delta t) + \mathbf{I}_B \vec{\omega}_B(t + \Delta t) = \mathbf{I}_A \vec{\omega}_A(t) + \mathbf{I}_B \vec{\omega}_B(t)$

• In the same coordinate system to the same fixed point!

Linear velocity

• By the impulse we get:

$$m_A \vec{v}_{A-} + j\hat{n} = m_A \vec{v}_{A+}$$
$$m_B \vec{v}_{B-} - j\hat{n} = m_B \vec{v}_{B+}$$

• And explicitly for the velocities:

$$\vec{v}_{A+} = \vec{v}_{A-} + \frac{j}{m_A}\hat{n}$$
$$\vec{v}_{B+} = \vec{v}_{B-} - \frac{j}{m_B}\hat{n}$$

2 equations in 3 variables → missing 1 degree of of freedom!

Coefficient of Restitution

- The coefficient of restitution C_R models elasticity.
- The ratio of speeds after and before collision along the collision normal

$$C_{R} = -\frac{(\vec{v}_{A+} - \vec{v}_{B+}) \cdot \hat{n}}{(\vec{v}_{A-} - \vec{v}_{B-}) \cdot \hat{n}}$$

- $C_R = 1$: ideal elastic collision (E_k is conserved)
- $C_R < 1$: inelastic collision (loss of velocity).
- $C_R = 0$: the objects stick together.

$$\vec{v}_{A+} = \vec{v}_{A-} + \frac{j}{m_A}\hat{n}$$
$$\vec{v}_{B+} = \vec{v}_{B-} - \frac{j}{m_B}\hat{n}$$

• As the velocities before and after collision relate by the coefficient of restitution:

$$C_{R} = -\frac{(\vec{v}_{A+} - \vec{v}_{B+}) \cdot \hat{n}}{(\vec{v}_{A-} - \vec{v}_{B-}) \cdot \hat{n}}$$

• ...we calculate:

$$j = \frac{-(1 + C_R)[(\vec{v}_{A-} - \vec{v}_{B-}) \cdot \hat{n}]}{\left(\frac{1}{m_A} + \frac{1}{m_B}\right)}$$

Joint masses

Velocity Correction

• We can finally calculate the outgoing velocities:

$$\vec{v}_{A+} = \vec{v}_{A-} + \frac{j}{m_A}\hat{n}$$
$$\vec{v}_{B+} = \vec{v}_{B-} - \frac{j}{m_B}\hat{n}$$

Larger mass difference ⇔ less velocity change.

 Point of contact not on line of impact → normal off the center of rotation → the collision also produces a rotation of the two objects.

- Handling rotational collision similarly to linear collision.
- Impulse factor *j* is adapted accordingly.
- Rotational velocity contributes to the total closing velocity:

$$\bar{v}_{A-} = \vec{v}_{A-} + \vec{\omega}_{A-} \times \vec{r}_A$$
$$\bar{v}_{B-} = v_{B-} + \vec{\omega}_{B-} \times \vec{r}_B$$

- $\vec{\omega}$: angular velocities
- \vec{r} : collision arm = (point of contact) (center of rotation).

• The coefficient of restitution equation works with the total closing velocity:

$$C_R = -\frac{(\bar{\boldsymbol{v}}_{A+} - \bar{\boldsymbol{v}}_{B+}) \cdot \hat{n}}{(\bar{\boldsymbol{v}}_{A-} - \bar{\boldsymbol{v}}_{B-}) \cdot \hat{n}}$$

• The resulting impulse *j* will create both angular and linear velocities.

• By the impulse we get:

$$\mathbf{I}_{A}\vec{\omega}_{A-} + \vec{r}_{A} \times (j\hat{n}) = \mathbf{I}_{A}\vec{\omega}_{A+}$$
$$\mathbf{I}_{B}\vec{\omega}_{B-} - \vec{r}_{B} \times (j\hat{n}) = \mathbf{I}_{B}\vec{\omega}_{B+}$$

- 2 more equations and 2 more variables ($\vec{\omega}_{A+}$ and $\vec{\omega}_{B+}$).
- Inertia tensors: in world coordinates, around each center of rotation.
- And we get:

$$\vec{\omega}_{A+} = \vec{\omega}_{A-} + I_A^{-1}(\vec{r}_A \times (j\hat{n}))$$

$$\vec{\omega}_{B+} = \vec{\omega}_{B-} - I_B^{-1}(\vec{r}_B \times (j\hat{n}))$$

• The updated factor *j*:

$$j = \frac{-(1+C_R)[(\bar{v}_{A-}-\bar{v}_{B-})\cdot\hat{n}]}{\left(\frac{1}{m_A}+\frac{1}{m_B}\right) + \left[(\vec{r}_A \times \hat{n})^T I_A^{-1}(\vec{r}_A \times \hat{n}) + (\vec{r}_B \times \hat{n})^T I_B^{-1}(\vec{r}_B \times \hat{n})\right]}$$

Augmented mass and inertia

• With this updated factor *j*, we calculate the separating angular velocities

$$\vec{\omega}_{A+} = \vec{\omega}_{A-} + I_A^{-1}(\vec{r}_A \times (j\hat{n}))$$

$$\vec{\omega}_{B+} = \vec{\omega}_{B-} - I_B^{-1}(\vec{r}_B \times (j\hat{n}))$$

 This factor is also used to calculate the separating linear velocities (same as linear resolution):

$$\vec{v}_{A+} = \vec{v}_{A-} + \frac{j}{m_A}\hat{n}$$
$$\vec{v}_{B+} = \vec{v}_{B-} - \frac{j}{m_B}\hat{n}$$

Practical Considerations

- You need I_A^{-1} , I_B^{-1} in the world coordinate system, and around each individual COM.
 - Changes with rotation!
- You usually have: I'_A in the object coordinate system around each individual COM.
 - Preprocess computation.
- Problem: Inverse is expensive.
- Solution:
 - Invert once for object coordinate system $I_A^{\prime-1}$.
 - Apply orientation change R: $\mathbf{I}_A^{-1} = R^T \mathbf{I}_A^{\prime-1} R$.
 - Mind if to use R or R^T according to context!

Types of contact

- Most common (general position):
 - Point-face (PF).
 - Edge-edge (EE).
- Normals:
 - The face in PF.
 - Normal to both edges in EE.
- Note: other cases more difficult.

Time of Collision

- Computing the exact time (somewhere between t and $t + \Delta t$) of collision is not always feasible
- We can approximate it by bisection.
- Repeatedly bisecting the time interval and testing, finding a arbitrary short interval $[t_0, t_1]$ for which:
 - The objects do not collide at t_0 .
 - The objects collide at t_1 .
- Computationally expensive!
 - Usually in games, the frame rate Δt is small enough to not bother.
 - Correction method: interpenetration resolution.

Interpenetration

- Collision happens between t and $t + \Delta t$.
- We run a position update on $t + \Delta t$.
- Objects are now interpenetrating!
- Collision detection algorithms usually provide:
 - Closest point on one of the objects.
 - Contact normal (vector to point).
 - Interpenetration depth.

Resolving interpenetration

- Linear Projection
 - Simply "move back"
- Disadvantage: not realistic for rotations.
 - Also "twitched" movement
 - Adding non-existing friction.
- If one object is fixed, move only the other.
- If both mobile: by inverse mass weighting.

Resolving Interpenetration

- Non-linear Projection
 - Creating both linear and angular movement until penetration is resolved in the normal direction.
 - But how much of both?
 - Why no just "rollback time"?

Nonlinear Projection

- Compromise: move back on a linear path, and rotate in the process.
 - Until penetration is resolved.

Problem: multiple contacts

- Order is important!
- Approximation:
- Iterate until resolved.
- Always resolve worst.
- Problem: depths keep changing!
 - Update who's worst by applying Rig the velocities from the previous iteration.

Multiple Collisions

- Similar process:
 - Resolve the worst collision
 - Fastest closing velocity.
 - Use resulting separating velocities as closing velocities for the next worst collision.

Collision resolution

- The full algorithm:
 - Run collision detection to find contact point(s) and contact normal.
 - Resolve interpenetration.
 - Use coefficients of restitution and conservation of momentum to determine the impulses to apply.
 - Calculate linear and angular velocities at these contact points.
 - Solve for velocities using the impulses.
- Part of the greater rigid-body engine loop.

Resting contact

- Our resolution system is theoretically complete.
- Some special cases can be handled more efficiently.
- We can have resting contacts between objects
 - For example, a box colliding with on the floor.
 - the floor theoretically moves down, but is assumed stationary, because of theoretically very large mass.

Resting contact

 In a typical framework, a box sitting on the floor may 'jitter' around the surface.

Resting contact

- A resting contact velocity of the two objects along the normal is 0 (or <tolerance).

- A solution: to 'artificially' reduce C_R when we are in that case.
 - Either: Linearly dependent on the relative velocity,
 - Or: directly set to $C_R = 0$.
 - after resolution the two objects have 0 relative velocity
 ⇔ the box sticks to the unmoving floor.

Friction

- In practice, there is friction between two objects when in contact.
 - Static friction: relatively stationary.
 - Kinetic friction: moving relatively to each other.
 - Rolling friction: is usually ignored in game physics.
- We can add the friction force in our previous equations using impulses.

Friction

• The friction acts in the tangential plane of the collision normal and resists the movement

$$\vec{t} = \left(\hat{n} \times (\vec{v}_A - \vec{v}_B)\right) \times \hat{n}$$

Kinetic Friction

• The velocity equations become:

$$\vec{v}_{A+} = \vec{v}_{A-} + \frac{j_A(\hat{n} + \mu_k \hat{t})}{m_A}$$
$$\vec{v}_{B+} = \vec{v}_{B-} - \frac{j_B(\hat{n} + \mu_k \hat{t})}{m_B}$$
Note normalization of \hat{t} !

$$\vec{\omega}_{A+} = \vec{\omega}_{A-} + I_A^{-1}(\vec{r}_A \times (j(\hat{n} + \mu_k \hat{t})))$$

$$\vec{\omega}_{B+} = \vec{\omega}_{B-} - I_B^{-1}(\vec{r} \times (j(\hat{n} + \mu_k \hat{t})))$$

Static Friction

- For small relative velocity, static friction is used.
- The friction impulses need to be adjusted.
 - When will objects break off?