Lecture IV: Collisions

The Story so Far

- Rigid bodies moving in space as forces are applied to them.
- Gravity, drag, rotation, etc.
- Reaction forces occur when a rigid body comes in contact with another body.
- Handling the event correctly is then two problems:
- Collision detection
- Collision resolution

Collisions \& Geometry

- We need the actual geometry of the object
- A point (e.g. COM) is not enough anymore.
- We must know where the objects are in contact to apply the reaction force at that position.

Collision Detection Algorithms

- To save time and computation, collision detection is done top-down, to rule out non-collisions fast:
- Broad phase
- Disregard pairs of objects that cannot collide.
> Model and space partitioning.
- Mid phase
- Determine potentially-colliding primitives.
> movement bounds.
- Narrow phase
- determine exact contact between two shapes.
- Convex object intersection (GJK algorithm)
$>$ Triangle-triangle intersections.

The Time Issue

- Looking at uncorrelated sequences of positions is not enough.
- Our objects are in motion and we need to know when and where they collide.

Tunneling

- Collision in-between steps can lead to tunneling.
- Objects pass through each other
- Colliding neither at t nor at $t+\Delta t$!
- ...but somewhere in between.

- Leads to false negatives.
- Tunneling is a serious issue in gameplay.
- Players getting to places they should not.
- Projectiles passing through characters and walls.
- Impossibility for the player to trigger actions on contact events.

Tunneling

Tunneling

- Small objects tunnel more easily.

- ... And fast moving objects.

Tunneling

- Possible solutions
- Minimum size requirement?
- Fast object still tunnel...
- Maximum speed limit?
- Small and fast objects not allowed (e.g. bullets...)
- Smaller time step?
- Essentially the same as speed limit!
- Another approach is needed!

Movement Bounds

- Bounds enclosing the motion of the shape.
- In the time interval Δt, the linear motion of the shape is enclosed.

AABB

- Convex bounds are used \rightarrow movement bounds are also primitive shapes.

Movement Bounds

- Movement bounds do not collide \rightarrow there is no collision.
- Movement bounds collide \rightarrow possible collision.

Swept Bounds

- Primitive-based movement bounds do not have a really good fit.
- We use swept bounds.
- More accurate \& more costly.
- Union of all surfaces (volumes) of a transforming shape
- We use the affine transformation from t to t $+\Delta t$.

What's Next?

- Collision detection (supposedly) reported a collision.
- We want to solve it
- Bounce back the colliding objects?
- Sticking together?

[Barbič and James 2010]
- Breaking apart?
- In which direction and with what magnitude?
- Momentum, velocity, forces...

Collision Kinematics

- Contact point.
- point of impact.
- Might be more than one!

- Contact normal.
- To both surfaces.
- Not always well defined (abstractly).
- Normal to collision plane.
- Contact arms.
- From COM to point.
- Line of impact: between COMs

Collision Resolution

- We estimated time of collision, contact points and contact normal.
- We still have to correct the position and orientation of the colliding objects

Types of Collisions

- Inelastic collisions
- energy is not preserved.
- Objects stop in place, stick together, etc.
- are easy to implement
- Backing out or stopping process.
- Elastic collisions
- Energy is fully preserved.
- e.g. (ideal) billiard balls.
- More difficult to calculate.
- Magnitude of resulting velocities

http://philschatz.com/physics-book/contents/m42183.html

Linear velocity

- Setting:
- Objects A \& B.
- Masses $m_{A} \& m_{B}$.
- Initial velocities $v_{A-} \& v_{B-}$.
- Unit collision normal \hat{n}, and contact point P.
- $\vec{v}_{A-}-\vec{v}_{B-}$: closing velocity.
- $\vec{v}_{A+}-\vec{v}_{B+}$: separating velocity.

Instant impulses

- We can solve the collision by using an impulsebased technique.
- At collision time we apply an impulse on each object at P in the direction \hat{n} ($-\hat{n}$ for the other object).
- 'Pushing' the two objects apart.
- The impulse magnitude: j. (impulse: $j \hat{n}$)
- Velocity is then changed accordingly from v_{-}to v_{+}.

Reminder: Impulses

- A change in the momentum, or a force delivered in an instant:

$$
\begin{aligned}
\vec{F} \Delta t & =\Delta \vec{p} \\
\vec{\tau} \Delta t & =\Delta \vec{L}=\mathbf{~}(\vec{v}(t+\Delta t)-\vec{\omega}(t)) \\
& =\Delta t)-\vec{\omega}(t))
\end{aligned}
$$

- Each type of momentum is always conserved:

$$
\begin{aligned}
m_{A} \vec{v}_{A}(t+\Delta t)+m_{B} \vec{v}_{B}(t+\Delta t) & =m_{A} \vec{v}_{A}(t)+m_{B} \vec{v}_{B}(t) \\
\mathbf{I}_{A} \vec{\omega}_{A}(t+\Delta t)+\mathbf{I}_{B} \vec{\omega}_{B}(t+\Delta t) & =\mathbf{I}_{A} \vec{\omega}_{A}(t)+\mathbf{I}_{B} \vec{\omega}_{B}(t)
\end{aligned}
$$

- In the same coordinate system to the same fixed point!

Linear velocity

- By the impulse we get:

$$
\begin{aligned}
m_{A} \vec{v}_{A-}+j \hat{n} & =m_{A} \vec{v}_{A+} \\
m_{B} \vec{v}_{B-}-j \hat{n} & =m_{B} \vec{v}_{B+}
\end{aligned}
$$

- And explicitly for the velocities:

$$
\begin{aligned}
\vec{v}_{A+} & =\vec{v}_{A-}+\frac{j}{m_{A}} \hat{n} \\
\vec{v}_{B+} & =\vec{v}_{B-}-\frac{j}{m_{B}} \hat{n}
\end{aligned}
$$

- 2 equations in 3 variables \rightarrow missing 1 degree of of freedom!

Coefficient of Restitution

- The coefficient of restitution C_{R} models elasticity.
- The ratio of speeds after and before collision along the collision normal

$$
C_{R}=-\frac{\left(\vec{v}_{A+}-\vec{v}_{B+}\right) \cdot \hat{n}}{\left(\vec{v}_{A-}-\vec{v}_{B-}\right) \cdot \hat{n}}
$$

- $C_{R}=1$: ideal elastic collision (E_{k} is conserved)
- $C_{R}<1$: inelastic collision (loss of velocity).
- $C_{R}=0$: the objects stick together.

Velocity Correction
 $\vec{v}_{A+}=\vec{v}_{A-}+\frac{j}{m_{A}} \hat{n}$ $\vec{v}_{B+}=\vec{v}_{B-}-\frac{j}{m_{B}} \hat{\imath}$

- As the velocities before and after collision relate by the coefficient of restitution:

$$
C_{R}=-\frac{\left(\vec{v}_{A+}-\vec{v}_{B+}\right) \cdot \hat{n}}{\left(\vec{v}_{A-}-\vec{v}_{B-}\right) \cdot \hat{n}}
$$

- ...we calculate:

$$
j=\frac{-\left(1+C_{R}\right)\left[\left(\vec{v}_{A-}-\vec{v}_{B-}\right) \cdot \hat{n}\right]}{\left(\frac{1}{m_{A}}+\frac{1}{m_{B}}\right)}
$$

Velocity Correction

- We can finally calculate the outgoing velocities:

$$
\begin{aligned}
\vec{v}_{A+} & =\vec{v}_{A-}+\frac{j}{m_{A}} \hat{n} \\
\vec{v}_{B+} & =\vec{v}_{B-}-\frac{j}{m_{B}} \hat{n}
\end{aligned}
$$

- Larger mass difference \Leftrightarrow less velocity change.

Angular Velocity

- Point of contact not on line of impact \rightarrow normal off the center of rotation \rightarrow the collision also produces a rotation of the two objects.

Angular velocity

- Handling rotational collision similarly to linear collision.
- Impulse factor j is adapted accordingly.
- Rotational velocity contributes to the total closing velocity:

$$
\begin{aligned}
& \bar{v}_{A-}=\vec{v}_{A-}+\vec{\omega}_{A-} \times \vec{r}_{A} \\
& \bar{v}_{B-}=v_{B-}+\vec{\omega}_{B-} \times \vec{r}_{B}
\end{aligned}
$$

- $\vec{\omega}$: angular velocities
- \vec{r} : collision arm = (point of contact) - (center of rotation).

Angular velocity

- The coefficient of restitution equation works with the total closing velocity:

$$
C_{R}=-\frac{\left(\bar{v}_{A+}-\bar{v}_{B+}\right) \cdot \hat{n}}{\left(\bar{v}_{A-}-\bar{v}_{B-}\right) \cdot \hat{n}}
$$

- The resulting impulse j will create both angular and linear velocities.

Angular velocity

- By the impulse we get:

$$
\begin{aligned}
\mathbf{I}_{A} \vec{\omega}_{A-}+\vec{r}_{A} \times(j \hat{n}) & =\mathbf{I}_{A} \vec{\omega}_{A+} \\
\mathbf{I}_{B} \vec{\omega}_{B-}-\vec{r}_{B} \times(j \hat{n}) & =\mathbf{I}_{B} \vec{\omega}_{B+}
\end{aligned}
$$

- 2 more equations and 2 more variables $\left(\vec{\omega}_{A+}\right.$ and $\vec{\omega}_{B+}$).
- Inertia tensors: in world coordinates, around each center of rotation.
- And we get:

$$
\begin{aligned}
& \vec{\omega}_{A+}=\vec{\omega}_{A-}+I_{A}^{-1}\left(\vec{r}_{A} \times(j \hat{n})\right) \\
& \vec{\omega}_{B+}=\vec{\omega}_{B-}-I_{B}^{-1}\left(\vec{r}_{B} \times(j \hat{n})\right)
\end{aligned}
$$

Angular velocity

- The updated factor j :

$$
j=\frac{-\left(1+C_{R}\right)\left[\left(\bar{v}_{A-}-\bar{v}_{B-}\right) \cdot \hat{n}\right]}{\left(\frac{1}{m_{A}}+\frac{1}{m_{B}}\right)+\left[\left(\vec{r}_{A} \times \hat{n}\right)^{T} I_{A}^{-1}\left(\vec{r}_{A} \times \hat{n}\right)+\left(\vec{r}_{B} \times \hat{n}\right)^{T} I_{B}^{-1}\left(\vec{r}_{B} \times \hat{n}\right)\right]} \text { Augmented mass and inertia }
$$

Angular velocity

- With this updated factor j, we calculate the separating angular velocities

$$
\begin{aligned}
& \vec{\omega}_{A+}=\vec{\omega}_{A-}+I_{A}^{-1}\left(\vec{r}_{A} \times(j \hat{n})\right) \\
& \vec{\omega}_{B+}=\vec{\omega}_{B-}-I_{B}^{-1}\left(\vec{r}_{B} \times(j \hat{n})\right)
\end{aligned}
$$

- This factor is also used to calculate the separating linear velocities (same as linear resolution):

$$
\begin{aligned}
\vec{v}_{A+} & =\vec{v}_{A-}+\frac{j}{m_{A}} \hat{n} \\
\vec{v}_{B+} & =\vec{v}_{B-}-\frac{j}{m_{B}} \hat{n}
\end{aligned}
$$

Practical Considerations

- You need $\mathbf{I}_{A}^{-1}, \mathbf{I}_{B}^{-1}$ in the world coordinate system, and around each individual COM.
- Changes with rotation!
- You usually have: \mathbf{I}_{A}^{\prime} in the object coordinate system around each individual COM.
- Preprocess computation.
- Problem: Inverse is expensive.
- Solution:
- Invert once for object coordinate system $\mathbf{I}_{A}^{\prime-1}$.
- Apply orientation change $R: \mathbf{I}_{A}^{-1}=R^{T} \mathbf{I}_{A}^{\prime-1} R$.
- Mind if to use R or R^{T} according to context!

Types of contact

- Most common (general position):
- Point-face (PF).
- Edge-edge (EE).
- Normals:
- The face in PF.
- Normal to both edges in EE.
- Note: other cases more difficult.

Time of Collision

- Computing the exact time (somewhere between t and $t+\Delta t$) of collision is not always feasible
- We can approximate it by bisection.
- Repeatedly bisecting the time interval and testing, finding a arbitrary short interval $\left[t_{0}, t_{1}\right]$ for which:
- The objects do not collide at t_{0}.
- The objects collide at t_{1}.
- Computationally expensive!
- Usually in games, the frame rate Δt is small enough to not bother.
- Correction method: interpenetration resolution.

Interpenetration

- Collision happens between t and $t+\Delta t$.
- We run a position update on $t+\Delta t$.
- Objects are now interpenetrating!
- Collision detection algorithms usually provide:
- Closest point on one of the objects.
- Contact normal (vector to point).
- Interpenetration depth.

Resolving interpenetration

- Linear Projection
- Simply "move back"
- Disadvantage: not realistic for rotations.
- Also "twitched" movement
- Adding non-existing friction.
- If one object is fixed, move only the other.
- If both mobile: by inverse mass weighting.

Resolving Interpenetration

- Non-linear Projection
- Creating both linear and angular movement until penetration is resolved in the normal direction.
- But how much of both?
- Why no just "rollback time"?

Nonlinear Projection

- Compromise: move back on a linear path, and rotate in the process.
- Until penetration is resolved.
- Problem: excessive rotation

Rotation will
Angular motion
cannot separation objects cause opposite corner to interpenetrate

Problem: multiple contacts

- Order is important!
- Approximation:
- Iterate until resolved.
- Always resolve worst.
- Problem: depths keep changing!

Iteration 3: Resolve
Left

Iteration 4: Resolve

- Update who's worst by applying Right the velocities from the previous
 iteration.

Multiple Collisions

- Similar process:
- Resolve the worst collision
- Fastest closing velocity.
- Use resulting separating velocities as closing velocities for the next worst collision.

Collision resolution

- The full algorithm:
- Run collision detection to find contact point(s) and contact normal.
- Resolve interpenetration.
- Use coefficients of restitution and conservation of momentum to determine the impulses to apply.
- Calculate linear and angular velocities at these contact points.
- Solve for velocities using the impulses.
- Part of the greater rigid-body engine loop.

Resting contact

- Our resolution system is theoretically complete.
- Some special cases can be handled more efficiently.
- We can have resting contacts between objects
- For example, a box colliding with on the floor.
- the floor theoretically moves down, but is assumed stationary, because of theoretically very large mass.

Resting contact

- In a typical framework, a box sitting on the floor may 'jitter' around the surface.

Resting contact

- A resting contact \Leftrightarrow relative velocity of the two objects along the normal is 0 (or <tolerance).
- A solution: to 'artificially' reduce C_{R} when we are in that case.
- Either: Linearly dependent on the relative velocity,
- Or: directly set to $C_{R}=0$.
- after resolution the two objects have 0 relative velocity \Leftrightarrow the box sticks to the unmoving floor.

Friction

- In practice, there is friction between two objects when in contact.
- Static friction: relatively stationary.
- Kinetic friction: moving relatively to each other.
- Rolling friction: is usually ignored in game physics.
- We can add the friction force in our previous equations using impulses.

Friction

- The friction acts in the tangential plane of the collision normal and resists the movement

$$
\vec{t}=\left(\hat{n} \times\left(\vec{v}_{A}-\vec{v}_{B}\right)\right) \times \hat{n}
$$

Kinetic Friction

- The velocity equations become:

$$
\begin{aligned}
\vec{v}_{A+} & =\vec{v}_{A-}+\frac{j_{A}\left(\hat{n}+\mu_{k} \hat{t}\right)}{m_{A}} \\
\vec{v}_{B+} & =\vec{v}_{B-}-\frac{j_{B}\left(\hat{n}+\mu_{k} \hat{t}\right)}{m_{B}}
\end{aligned}
$$

Note normalization of \hat{t} !

$$
\begin{aligned}
& \vec{\omega}_{A+}=\vec{\omega}_{A-}+I_{A}^{-1}\left(\vec{r}_{A} \times\left(j\left(\hat{n}+\mu_{k} \hat{t}\right)\right)\right) \\
& \vec{\omega}_{B+}=\vec{\omega}_{B-}-I_{B}^{-1}\left(\vec{r} \times\left(j\left(\hat{n}+\mu_{k} \hat{t}\right)\right)\right)
\end{aligned}
$$

Static Friction

- For small relative velocity, static friction is used.
- The friction impulses need to be adjusted.
- When will objects break off?

