
Lecture IV: Collisions
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• Rigid bodies moving in space as forces are applied 
to them.
• Gravity, drag, rotation, etc.

• Reaction forces occur when a rigid body comes in 
contact with another body.

• Handling the event correctly is then two problems:
• Collision detection
• Collision resolution

The Story so Far
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• We need the actual geometry of the object
• A point (e.g. COM) is not enough anymore.
• We must know where the objects are in contact to apply 

the reaction force at that position.

Collisions & Geometry

CryEngine 3 
(BeamNG)
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• To save time and computation, collision detection 
is done top-down, to rule out non-collisions fast:
• Broad phase

• Disregard pairs of objects that cannot collide.
ØModel and space partitioning.

• Mid phase
• Determine potentially-colliding primitives.
Ømovement bounds.

• Narrow phase
• determine exact contact between two shapes.
• Convex object intersection (GJK algorithm)
ØTriangle-triangle intersections.

Collision Detection Algorithms
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• Looking at uncorrelated sequences of positions is 
not enough.

• Our objects are in motion and we need to know 
when and where they collide.

The Time Issue

At !

At ! + ∆!
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• Collision in-between steps can lead to 
tunneling.
• Objects pass through each other

• Colliding neither at ! nor at ! + ∆!!
• …but somewhere in between.

• Leads to false negatives.
• Tunneling is a serious issue in 

gameplay.
• Players getting to places they should not.
• Projectiles passing through characters and 

walls.
• Impossibility for the player to trigger actions 

on contact events.

Tunneling
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Tunneling
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• Small objects tunnel more easily.

• … And fast moving objects.

Tunneling
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• Possible solutions
• Minimum size requirement?

• Fast object still tunnel…

• Maximum speed limit?
• Small and fast objects not allowed (e.g. bullets...)

• Smaller time step?
• Essentially the same as speed limit!

• Another approach is needed!

Tunneling
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• Bounds enclosing the 
motion of the shape.

• In the time interval ∆", 
the linear motion of 
the shape is enclosed.

• Convex bounds are 
used è movement 
bounds are also 
primitive shapes.

Movement Bounds

Sphere AABB

OBB
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• Movement bounds do not collide è there is no 
collision.

• Movement bounds collide è possible collision.

Movement Bounds
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• Primitive-based 
movement bounds do 
not have a really good 
fit. 

• We use swept bounds.
• More accurate & more 

costly.

• Union of all surfaces 
(volumes) of a 
transforming shape
• We use the affine 

transformation from ! to t
+ ∆!.

Swept Bounds
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• Collision detection (supposedly) reported a 
collision.

• We want to solve it
• Bounce back the colliding objects?
• Sticking together?
• Breaking apart?

• In which direction and with what magnitude?
• Momentum, velocity, forces…

What’s Next?

[Barbič and James 2010]
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• Contact point.
• point of impact.
• Might be more than one!

• Contact normal.
• To both surfaces.
• Not always well defined (abstractly).
• Normal to collision plane.

• Contact arms.
• From COM to point.

• Line of impact: between COMs

Collision Kinematics
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• We estimated time of collision, contact points and 
contact normal.

• We still have to correct the position and orientation 
of the colliding objects

Collision Resolution



17

• Inelastic collisions
• energy is not preserved.

• Objects stop in place, stick together, etc.

• are easy to implement
• Backing out or stopping process.

• Elastic collisions
• Energy is fully preserved.

• e.g. (ideal) billiard balls.

• More difficult to calculate.
• Magnitude of resulting velocities

Types of Collisions

http://physics.about.com/od/energyworkpower/f/InelasticCollision.htm

http://philschatz.com/physics-book/contents/m42183.html
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• Setting: 
• Objects ! & ".
• Masses #$ & #%.
• Initial velocities &$' & &%'. 
• Unit collision normal (), and contact point *.

• &⃗$' − &⃗%': closing velocity.
• &⃗$- − &⃗%-: separating velocity.

Linear velocity

)

&$' &%'
&%-

&$-

*
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• We can solve the collision by using an impulse-
based technique.
• At collision time we apply an impulse on each object at 
! in the direction "# (−"# for the other object).

• ‘Pushing’ the two objects apart.
• The impulse magnitude: %. (impulse: % "#)
• Velocity is then changed accordingly from &' to &(.

Instant impulses

#

&)' &*'
&*(

&)(

+,-./01)→*+,-./01*→) !
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• A change in the momentum, or a force delivered in 
an instant:

"⃗Δ$ = Δ& = ' (⃗ ($ + Δ$ − (⃗($))
-⃗Δ$ = Δ. = / 0 ($ + Δ$ − 0($))

• Each type of momentum is always conserved:

'1(⃗1($ + ∆$) + '3(⃗3($ + ∆$) = '1(⃗1($) + '3(⃗3($)
/101($ + ∆$) + /303($ + ∆$) = /101($) + /303($)
• In the same coordinate system to the same fixed point!

Reminder: Impulses
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• By the impulse we get:
!"$⃗"% + ' () = !"$⃗"+
!,$⃗,% − ' () = !,$⃗,+

• And explicitly for the velocities:

$⃗"+ = $⃗"% +
'
!"

()

$⃗,+ = $⃗,% −
'
!,

()
• 2 equations in 3 variables è missing 1 degree of 

of freedom!

Linear velocity
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• The coefficient of restitution !" models elasticity.
• The ratio of speeds after and before collision along 

the collision normal

!" = − &⃗'( − &⃗)( * +,
&⃗'- − &⃗)- * +,

• !" = 1: ideal elastic collision (/0 is conserved)
• !" < 1: inelastic collision (loss of velocity).
• !" = 0: the objects stick together.

Coefficient of Restitution
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• As the velocities before and after collision relate by 
the coefficient of restitution:

!" = − &⃗'( − &⃗)( * +,
&⃗'- − &⃗)- * +,

• …we calculate:

. = −(1 + !") &⃗'- − &⃗)- * +,
1
3'

+ 1
3)

Velocity Correction

Joint masses

&⃗'( = &⃗'- +
.
3'

+,

&⃗)( = &⃗)- −
.
3)

+,
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• We can finally calculate the outgoing velocities:

"⃗#$ = "⃗#& +
(
)#

*+

"⃗,$ = "⃗,& −
(
),

*+

• Larger mass difference ó less velocity change.

Velocity Correction
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• Point of contact not on line of impact è normal off 
the center of rotation è the collision also produces 
a rotation of the two objects.

Angular Velocity

!
"

#$(&) #((&)

)$(&)
)((&)
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• Handling rotational collision similarly to linear 
collision.

• Impulse factor ! is adapted accordingly.
• Rotational velocity contributes to the total closing 

velocity:

#̅$% = #⃗$% + )$%×+⃗$
#̅,% = #,% + ),%×+⃗,

• ): angular velocities
• +⃗: collision arm = (point of contact) – (center of rotation).

Angular velocity
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• The coefficient of restitution equation works with 
the total closing velocity:

!" = − &̅'( − &̅)( * +,
&̅'- − &̅)- * +,

• The resulting impulse . will create both angular 
and linear velocities.

Angular velocity
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• By the impulse we get:

!"#"$ + '⃗"× ) *+ = !"#"-
!.#.$ − '⃗.×() *+) = !.#.-

• 2 more equations and 2 more variables (#"- and 
#.-).

• Inertia tensors: in world coordinates, around each 
center of rotation.

• And we get:

#"- = #"$ + 2"$3('⃗"× ) *+ )
#.- = #.$ − 2.$3('⃗.× ) *+ )

Angular velocity
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• The updated factor !:

! = −(1 + '() +̅,- − +̅.- / 01
1
2,

+ 1
2.

+ 4⃗,×01 67,-8 4⃗,×01 + 4⃗.×01 67.-8 4⃗.×01

Angular velocity

Augmented mass and inertia
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• With this updated factor !, we calculate the 
separating angular velocities

"#$ = "#& + (#&)(,⃗#× ! ./ )
"1$ = "1& − (1&)(,⃗1× ! ./ )

• This factor is also used to calculate the separating 
linear velocities (same as linear resolution):

3⃗#$ = 3⃗#& +
!
4#

./

3⃗1$ = 3⃗1& −
!
41

./

Angular velocity



31

• You need !"#$, !%#$ in the world coordinate system, 
and around each individual COM.
• Changes with rotation!

• You usually have: !"& in the object coordinate 
system around each individual COM.
• Preprocess computation.

• Problem: Inverse is expensive.

• Solution: 
• Invert once for object coordinate system !"&#$.
• Apply orientation change ':  !"#$='(!"&#$'.

• Mind if to use ' or '( according to context!

Practical Considerations
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• Most common (general position):
• Point-face (PF).
• Edge-edge (EE).

• Normals:
• The face in PF.
• Normal to both edges in EE.

• Note: other cases more difficult.

Types of contact
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• Computing the exact time (somewhere between !
and ! + ∆!) of collision is not always feasible

• We can approximate it by bisection.
• Repeatedly bisecting the time interval and testing, 

finding a arbitrary short interval [!%, !'] for which:
• The objects do not collide at !%.
• The objects collide at !'.

• Computationally expensive!
• Usually in games, the frame rate ∆! is small enough to 

not bother.
• Correction method: interpenetration resolution.

Time of Collision
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• Collision happens between ! and ! + ∆!.
• We run a position update on ! + ∆!.
• Objects are now interpenetrating!
• Collision detection algorithms usually provide:

• Closest point on one of the objects.
• Contact normal (vector to point).
• Interpenetration depth.

Interpenetration
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• Linear Projection
• Simply “move back”

• Disadvantage: not realistic for rotations.
• Also “twitched” movement
• Adding non-existing friction.

• If one object is fixed, move only the other.
• If both mobile: by inverse mass weighting.

Resolving interpenetration

Penetration Linear Projection
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• Non-linear Projection
• Creating both linear and angular movement until 

penetration is resolved in the normal direction.
• But how much of both?
• Why no just “rollback time”?

Resolving Interpenetration

Penetration
Realistic (rotation 
and linear 
movement)



38

• Compromise: move back on a linear path, and 
rotate in the process.
• Until penetration is resolved.

• Problem: excessive rotation

Nonlinear Projection

Angular motion 
cannot separation 
objects

Centre
●

●

●

●
Rotation will 
cause opposite 
corner to 
interpenetrate
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• Order is important!
• Approximation:
• Iterate until resolved.
• Always resolve worst.
• Problem: depths keep 

changing!
• Update who’s worst by applying 

the velocities from the previous 
iteration.

Problem: multiple contacts
Iteration 1: Resolve 
Left

Iteration 2: Resolve 
Right

Iteration 3: Resolve 
Left

Iteration 4: Resolve 
Right
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• Similar process:
• Resolve the worst collision

• Fastest closing velocity.
• Use resulting separating velocities as closing velocities 

for the next worst collision.

Multiple Collisions
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• The full algorithm:
• Run collision detection to find contact point(s) and 

contact normal.
• Resolve interpenetration.
• Use coefficients of restitution and conservation of 

momentum to determine the impulses to apply.
• Calculate linear and angular velocities at these contact 

points.
• Solve for velocities using the impulses.

• Part of the greater rigid-body engine loop.

Collision resolution
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• Our resolution system is theoretically complete.

• Some special cases can be handled more 
efficiently.

• We can have resting contacts between objects
• For example, a box colliding with on the floor.
• the floor theoretically moves down, but is assumed 

stationary, because of theoretically very large mass.

Resting contact
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• In a typical framework, a box sitting on the floor 
may ‘jitter’ around the surface.

Resting contact
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• A resting contact ó relative velocity of the two 
objects along the normal is 0 (or <tolerance).

• A solution: to ‘artificially’ reduce !" when we are in 
that case.
• Either: Linearly dependent on the relative velocity,
• Or:  directly set to !" = 0.

• after resolution the two objects have 0 relative velocity 
ó the box sticks to the unmoving floor.

Resting contact
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• In practice, there is friction between two objects 
when in contact.
• Static friction: relatively stationary.
• Kinetic friction: moving relatively to each other.
• Rolling friction: is usually ignored in game physics.

• We can add the friction force in our previous 
equations using impulses.

Friction
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• The friction acts in the tangential plane of the 
collision normal and resists the movement

"⃗ = $%× '⃗( − '⃗* ×$%

Friction

%

'((")

'*(")

'( − '*

"



48

• The velocity equations become:

"⃗#$ = "⃗#& +
(#(*+ + ,-/̂)

1#

"⃗2$ = "⃗2& −
(2(*+ + ,-/̂)

12

4#$ = 4#& + 5#&6(7⃗#× ((*+ + ,-/̂) )

42$ = 42& − 52&6(7⃗× (( *+ + ,-/̂) )

Kinetic Friction

Note normalization of /̂!
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• For small relative velocity, static friction is used.

• The friction impulses need to be adjusted.
• When will objects break off?

Static Friction


