
Lecture IV: Collisions

2

• Rigid bodies moving in space as forces are applied
to them.
• Gravity, drag, rotation, etc.

• Reaction forces occur when a rigid body comes in
contact with another body.

• Handling the event correctly is then two problems:
• Collision detection
• Collision resolution

The Story so Far

3

• We need the actual geometry of the object
• A point (e.g. COM) is not enough anymore.
• We must know where the objects are in contact to apply

the reaction force at that position.

Collisions & Geometry

CryEngine 3
(BeamNG)

4

• To save time and computation, collision detection
is done top-down, to rule out non-collisions fast:
• Broad phase

• Disregard pairs of objects that cannot collide.
ØModel and space partitioning.

• Mid phase
• Determine potentially-colliding primitives.
Ømovement bounds.

• Narrow phase
• determine exact contact between two shapes.
• Convex object intersection (GJK algorithm)
ØTriangle-triangle intersections.

Collision Detection Algorithms

5

• Looking at uncorrelated sequences of positions is
not enough.

• Our objects are in motion and we need to know
when and where they collide.

The Time Issue

At !

At ! + ∆!

6

• Collision in-between steps can lead to
tunneling.
• Objects pass through each other

• Colliding neither at ! nor at ! + ∆!!
• …but somewhere in between.

• Leads to false negatives.
• Tunneling is a serious issue in

gameplay.
• Players getting to places they should not.
• Projectiles passing through characters and

walls.
• Impossibility for the player to trigger actions

on contact events.

Tunneling

7

Tunneling

8

• Small objects tunnel more easily.

• … And fast moving objects.

Tunneling

9

• Possible solutions
• Minimum size requirement?

• Fast object still tunnel…

• Maximum speed limit?
• Small and fast objects not allowed (e.g. bullets...)

• Smaller time step?
• Essentially the same as speed limit!

• Another approach is needed!

Tunneling

10

• Bounds enclosing the
motion of the shape.

• In the time interval ∆",
the linear motion of
the shape is enclosed.

• Convex bounds are
used è movement
bounds are also
primitive shapes.

Movement Bounds

Sphere AABB

OBB

11

• Movement bounds do not collide è there is no
collision.

• Movement bounds collide è possible collision.

Movement Bounds

12

• Primitive-based
movement bounds do
not have a really good
fit.

• We use swept bounds.
• More accurate & more

costly.

• Union of all surfaces
(volumes) of a
transforming shape
• We use the affine

transformation from ! to t
+ ∆!.

Swept Bounds

13

• Collision detection (supposedly) reported a
collision.

• We want to solve it
• Bounce back the colliding objects?
• Sticking together?
• Breaking apart?

• In which direction and with what magnitude?
• Momentum, velocity, forces…

What’s Next?

[Barbič and James 2010]

14

• Contact point.
• point of impact.
• Might be more than one!

• Contact normal.
• To both surfaces.
• Not always well defined (abstractly).
• Normal to collision plane.

• Contact arms.
• From COM to point.

• Line of impact: between COMs

Collision Kinematics

16

• We estimated time of collision, contact points and
contact normal.

• We still have to correct the position and orientation
of the colliding objects

Collision Resolution

17

• Inelastic collisions
• energy is not preserved.

• Objects stop in place, stick together, etc.

• are easy to implement
• Backing out or stopping process.

• Elastic collisions
• Energy is fully preserved.

• e.g. (ideal) billiard balls.

• More difficult to calculate.
• Magnitude of resulting velocities

Types of Collisions

http://physics.about.com/od/energyworkpower/f/InelasticCollision.htm

http://philschatz.com/physics-book/contents/m42183.html

18

• Setting:
• Objects ! & ".
• Masses #$ & #%.
• Initial velocities &$' & &%'.
• Unit collision normal (), and contact point *.

• &⃗$' − &⃗%': closing velocity.
• &⃗$- − &⃗%-: separating velocity.

Linear velocity

)

&$' &%'
&%-

&$-

*

19

• We can solve the collision by using an impulse-
based technique.
• At collision time we apply an impulse on each object at
! in the direction "# (−"# for the other object).

• ‘Pushing’ the two objects apart.
• The impulse magnitude: %. (impulse: % "#)
• Velocity is then changed accordingly from &' to &(.

Instant impulses

#

&)' &*'
&*(

&)(

+,-./01)→*+,-./01*→) !

20

• A change in the momentum, or a force delivered in
an instant:

"⃗Δ$ = Δ& = ' (⃗ ($ + Δ$ − (⃗($))
-⃗Δ$ = Δ. = / 0 ($ + Δ$ − 0($))

• Each type of momentum is always conserved:

'1(⃗1($ + ∆$) + '3(⃗3($ + ∆$) = '1(⃗1($) + '3(⃗3($)
/101($ + ∆$) + /303($ + ∆$) = /101($) + /303($)
• In the same coordinate system to the same fixed point!

Reminder: Impulses

21

• By the impulse we get:
!"$⃗"% + ' () = !"$⃗"+
!,$⃗,% − ' () = !,$⃗,+

• And explicitly for the velocities:

$⃗"+ = $⃗"% +
'
!"

()

$⃗,+ = $⃗,% −
'
!,

()
• 2 equations in 3 variables è missing 1 degree of

of freedom!

Linear velocity

22

• The coefficient of restitution !" models elasticity.
• The ratio of speeds after and before collision along

the collision normal

!" = − &⃗'(− &⃗)(* +,
&⃗'- − &⃗)- * +,

• !" = 1: ideal elastic collision (/0 is conserved)
• !" < 1: inelastic collision (loss of velocity).
• !" = 0: the objects stick together.

Coefficient of Restitution

23

• As the velocities before and after collision relate by
the coefficient of restitution:

!" = − &⃗'(− &⃗)(* +,
&⃗'- − &⃗)- * +,

• …we calculate:

. = −(1 + !") &⃗'- − &⃗)- * +,
1
3'

+ 1
3)

Velocity Correction

Joint masses

&⃗'(= &⃗'- +
.
3'

+,

&⃗)(= &⃗)- −
.
3)

+,

24

• We can finally calculate the outgoing velocities:

"⃗#$ = "⃗#& +
(
)#

*+

"⃗,$ = "⃗,& −
(
),

*+

• Larger mass difference ó less velocity change.

Velocity Correction

25

• Point of contact not on line of impact è normal off
the center of rotation è the collision also produces
a rotation of the two objects.

Angular Velocity

!
"

#$(&) #((&)

)$(&)
)((&)

26

• Handling rotational collision similarly to linear
collision.

• Impulse factor ! is adapted accordingly.
• Rotational velocity contributes to the total closing

velocity:

#̅$% = #⃗$% +)$%×+⃗$
#̅,% = #,% +),%×+⃗,

•): angular velocities
• +⃗: collision arm = (point of contact) – (center of rotation).

Angular velocity

27

• The coefficient of restitution equation works with
the total closing velocity:

!" = − &̅'(− &̅)(* +,
&̅'- − &̅)- * +,

• The resulting impulse . will create both angular
and linear velocities.

Angular velocity

28

• By the impulse we get:

!"#"$ + '⃗"×) *+ = !"#"-
!.#.$ − '⃗.×() *+) = !.#.-

• 2 more equations and 2 more variables (#"- and
#.-).

• Inertia tensors: in world coordinates, around each
center of rotation.

• And we get:

#"- = #"$ + 2"$3('⃗"×) *+)
#.- = #.$ − 2.$3('⃗.×) *+)

Angular velocity

29

• The updated factor !:

! = −(1 + '() +̅,- − +̅.- / 01
1
2,

+ 1
2.

+ 4⃗,×01 67,-8 4⃗,×01 + 4⃗.×01 67.-8 4⃗.×01

Angular velocity

Augmented mass and inertia

30

• With this updated factor !, we calculate the
separating angular velocities

"#$ = "#& + (#&)(,⃗#× ! ./)
"1$ = "1& − (1&)(,⃗1× ! ./)

• This factor is also used to calculate the separating
linear velocities (same as linear resolution):

3⃗#$ = 3⃗#& +
!
4#

./

3⃗1$ = 3⃗1& −
!
41

./

Angular velocity

31

• You need !"#$, !%#$ in the world coordinate system,
and around each individual COM.
• Changes with rotation!

• You usually have: !"& in the object coordinate
system around each individual COM.
• Preprocess computation.

• Problem: Inverse is expensive.

• Solution:
• Invert once for object coordinate system !"&#$.
• Apply orientation change ': !"#$='(!"&#$'.

• Mind if to use ' or '(according to context!

Practical Considerations

33

• Most common (general position):
• Point-face (PF).
• Edge-edge (EE).

• Normals:
• The face in PF.
• Normal to both edges in EE.

• Note: other cases more difficult.

Types of contact

34

• Computing the exact time (somewhere between !
and ! + ∆!) of collision is not always feasible

• We can approximate it by bisection.
• Repeatedly bisecting the time interval and testing,

finding a arbitrary short interval [!%, !'] for which:
• The objects do not collide at !%.
• The objects collide at !'.

• Computationally expensive!
• Usually in games, the frame rate ∆! is small enough to

not bother.
• Correction method: interpenetration resolution.

Time of Collision

35

• Collision happens between ! and ! + ∆!.
• We run a position update on ! + ∆!.
• Objects are now interpenetrating!
• Collision detection algorithms usually provide:

• Closest point on one of the objects.
• Contact normal (vector to point).
• Interpenetration depth.

Interpenetration

36

• Linear Projection
• Simply “move back”

• Disadvantage: not realistic for rotations.
• Also “twitched” movement
• Adding non-existing friction.

• If one object is fixed, move only the other.
• If both mobile: by inverse mass weighting.

Resolving interpenetration

Penetration Linear Projection

37

• Non-linear Projection
• Creating both linear and angular movement until

penetration is resolved in the normal direction.
• But how much of both?
• Why no just “rollback time”?

Resolving Interpenetration

Penetration
Realistic (rotation
and linear
movement)

38

• Compromise: move back on a linear path, and
rotate in the process.
• Until penetration is resolved.

• Problem: excessive rotation

Nonlinear Projection

Angular motion
cannot separation
objects

Centre
●

●

●

●
Rotation will
cause opposite
corner to
interpenetrate

39

• Order is important!
• Approximation:
• Iterate until resolved.
• Always resolve worst.
• Problem: depths keep

changing!
• Update who’s worst by applying

the velocities from the previous
iteration.

Problem: multiple contacts
Iteration 1: Resolve
Left

Iteration 2: Resolve
Right

Iteration 3: Resolve
Left

Iteration 4: Resolve
Right

40

• Similar process:
• Resolve the worst collision

• Fastest closing velocity.
• Use resulting separating velocities as closing velocities

for the next worst collision.

Multiple Collisions

42

• The full algorithm:
• Run collision detection to find contact point(s) and

contact normal.
• Resolve interpenetration.
• Use coefficients of restitution and conservation of

momentum to determine the impulses to apply.
• Calculate linear and angular velocities at these contact

points.
• Solve for velocities using the impulses.

• Part of the greater rigid-body engine loop.

Collision resolution

43

• Our resolution system is theoretically complete.

• Some special cases can be handled more
efficiently.

• We can have resting contacts between objects
• For example, a box colliding with on the floor.
• the floor theoretically moves down, but is assumed

stationary, because of theoretically very large mass.

Resting contact

44

• In a typical framework, a box sitting on the floor
may ‘jitter’ around the surface.

Resting contact

45

• A resting contact ó relative velocity of the two
objects along the normal is 0 (or <tolerance).

• A solution: to ‘artificially’ reduce !" when we are in
that case.
• Either: Linearly dependent on the relative velocity,
• Or: directly set to !" = 0.

• after resolution the two objects have 0 relative velocity
ó the box sticks to the unmoving floor.

Resting contact

46

• In practice, there is friction between two objects
when in contact.
• Static friction: relatively stationary.
• Kinetic friction: moving relatively to each other.
• Rolling friction: is usually ignored in game physics.

• We can add the friction force in our previous
equations using impulses.

Friction

47

• The friction acts in the tangential plane of the
collision normal and resists the movement

"⃗ = $%× '⃗(− '⃗* ×$%

Friction

%

'((")

'*(")

'(− '*

"

48

• The velocity equations become:

"⃗#$ = "⃗#& +
(#(*+ + ,-/̂)

1#

"⃗2$ = "⃗2& −
(2(*+ + ,-/̂)

12

4#$ = 4#& + 5#&6(7⃗#× ((*+ + ,-/̂))

42$ = 42& − 52&6(7⃗× ((*+ + ,-/̂))

Kinetic Friction

Note normalization of /̂!

49

• For small relative velocity, static friction is used.

• The friction impulses need to be adjusted.
• When will objects break off?

Static Friction

