

Computational Science:
Computational Methods in Engineering

Linear Regression

https://empossible.net/academics/emp4301 5301/

- 4

Outline

- Linear regression algebraic approach
- Linear regression matrix approach
- Visualizing least squares
- Implementing linear regression
- MATLAB Implementation https://empossible.net/academics/emp4301 5301/

ົກ EMPossible

4,8,

Goal of Linear Regression

The goal of linear regression is to fit a straight line to a set of measured data that has noise.

NEMPossible

Linear Regression (Algebraic Approach)

https://empossible.net/academics/emp4301 5301/

Statement of Problem

Given a set of measured data points: (x_1,y_1) , (x_2,y_2) , ..., (x_M,y_M) , the equation of the line is written for each point.

$$y_1 = a_0 + a_1 x_1 + e_1$$

 $y_2 = a_0 + a_1 x_2 + e_2$
 \vdots

To be completely correct, an error term e is introduced called the *residual*.

$$y_M = a_0 + a_1 x_M + e_M$$

It is desired to determine values of a_0 and a_1 such that the residual terms e_m are as small as possible.

Criteria for "Best Fit"

A single quantity is needed that measures how "good" the line fits the set of data.

Guess #1 – Sum of Residuals

$$E = \sum_{m=1}^{M} e_m$$

This does not work because negative and positive residuals can cancel and mislead the overall criteria to think there is no error.

Guess #2 – Sum of Magnitude of Residuals

$$E = \sum_{m=1}^{M} \left| e_m \right|$$

This does not work because it does not lead to a unique best fit.

Guess #3 – Sum of Squares of Residuals

$$E = \sum_{m=1}^{M} e_m^2$$

This works and leads to a unique solution.

1 EMPossible

Equation for Criterion

The line equation for the *m*th sample is

$$y_m = a_0 + a_1 x_m + e_m$$

Solving this for the residual e_m gives

$$e_{m} = y_{m} - (a_{0} + a_{1}x_{m})$$
This is the fit value of y at point x_{m} .

From this, the error criterion is written as

This is the measured value of y.

$$E = \sum_{m=1}^{M} e_{m}^{2} = \sum_{m=1}^{M} (y_{\text{measured},m} - y_{\text{line},m})^{2} = \sum_{m=1}^{M} (y_{m} - a_{0} - a_{1}x_{m})^{2}$$

NEMPossible

Least-Squares Fit

It is desired to minimize the error criterion E.

Minimums can be identified where the first-order derivative is zero.

$$\frac{\partial E}{\partial a_0} = 0$$
 and $\frac{\partial E}{\partial a_1} = 0$

Values of a_0 and a_1 are sought that satisfy these equations.

This approach is solving the problem by least-squares (i.e. minimizing the squares of the residuals).

1 EMPossible

Derivation of Least-Squares Fit

Step 1 – Differentiate E with respect to each of the unknowns.

$$\frac{\partial E}{\partial a_0} = \frac{\partial}{\partial a_0} \sum_{m=1}^{M} (y_m - a_0 - a_1 x_m)^2 \qquad \frac{\partial E}{\partial a_1} = \frac{\partial}{\partial a_1} \sum_{m=1}^{M} (y_m - a_0 - a_1 x_m)^2
= \sum_{m=1}^{M} \frac{\partial}{\partial a_0} (y_m - a_0 - a_1 x_m)^2 \qquad = \sum_{m=1}^{M} \frac{\partial}{\partial a_1} (y_m - a_0 - a_1 x_m)^2
= \sum_{m=1}^{M} 2(y_m - a_0 - a_1 x_m)(-1) \qquad = \sum_{m=1}^{M} 2(y_m - a_0 - a_1 x_m)(-1)
= -2 \sum_{m=1}^{M} (y_m - a_0 - a_1 x_m) \qquad = -2 \sum_{m=1}^{M} (y_m - a_0 - a_1 x_m) x_m$$

$$\frac{\partial E}{\partial a_0} = \frac{\partial}{\partial a_0} \sum_{m=1}^{M} (y_m - a_0 - a_1 x_m)^2 \qquad \frac{\partial E}{\partial a_1} = \frac{\partial}{\partial a_1} \sum_{m=1}^{M} (y_m - a_0 - a_1 x_m)^2
= \sum_{m=1}^{M} \frac{\partial}{\partial a_0} (y_m - a_0 - a_1 x_m)^2 \qquad = \sum_{m=1}^{M} \frac{\partial}{\partial a_1} (y_m - a_0 - a_1 x_m)^2
= \sum_{m=1}^{M} 2(y_m - a_0 - a_1 x_m)(-1) \qquad = \sum_{m=1}^{M} 2(y_m - a_0 - a_1 x_m)(-x_m)
= -2 \sum_{m=1}^{M} (y_m - a_0 - a_1 x_m) \qquad = -2 \sum_{m=1}^{M} (y_m - a_0 - a_1 x_m) x_m$$

၍ EMPossible

Derivation of Least-Squares Fit

Step 2 – Set the derivatives to zero to locate the minimum of E.

$$0 = \frac{\partial E}{\partial a_0}$$

$$= -2\sum_{m=1}^{M} (y_m - a_0 - a_1 x_m)$$

$$= \sum_{m=1}^{M} y_m - \sum_{m=1}^{M} a_0 - \sum_{m=1}^{M} a_1 x_m$$

$$= \sum_{m=1}^{M} y_m - M a_0 - \sum_{m=1}^{M} a_1 x_m$$

$$0 = \frac{\partial E}{\partial a_1}$$

$$= -2\sum_{m=1}^{M} (y_m - a_0 - a_1 x_m) x_m$$

$$= \sum_{m=1}^{M} (y_m - a_0 - a_1 x_m) x_m$$

$$= \sum_{m=1}^{M} y_m x_m - a_0 \sum_{m=1}^{M} x_m - \sum_{m=1}^{M} a_1 x_m^2$$

ົກ EMPossible

Derivation of Least-Squares Fit

Step 3 – Write these as two simultaneous equations. These are called the *normal* equations.

$$0 = \frac{\partial E}{\partial a_0}$$

$$= -2\sum_{m=1}^{M} (y_m - a_0 - a_1 x_m)$$

$$= \sum_{m=1}^{M} y_m - \sum_{m=1}^{M} a_0 - \sum_{m=1}^{M} a_1 x_m$$

$$= \sum_{m=1}^{M} y_m - M a_0 - a_1 \sum_{m=1}^{M} x_m$$

$$\downarrow$$

$$M a_0 + a_1 \sum_{m=1}^{M} x_m = \sum_{m=1}^{M} y_m$$

$$0 = \frac{\partial E}{\partial a_1}$$

$$= -2\sum_{m=1}^{M} (y_m - a_0 - a_1 x_m) x_m$$

$$= \sum_{m=1}^{M} (y_m - a_0 - a_1 x_m) x_m$$

$$= \sum_{m=1}^{M} y_m x_m - a_0 \sum_{m=1}^{M} x_m - \sum_{m=1}^{M} a_1 x_m^2$$

$$\downarrow$$

$$a_0 \sum_{m=1}^{M} x_m + a_1 \sum_{m=1}^{M} x_m^2 = \sum_{m=1}^{M} y_m x_m$$

ຳ) EMPossible

Derivation of Least-Squares Fit

Step 4 – The normal equations are solved simultaneously and the solution is

$$a_0 = y_{\text{avg}} - a_1 x_{\text{avg}}$$

$$a_1 = \frac{M \sum_{m=1}^{M} x_m y_m - \sum_{m=1}^{M} x_m \sum_{m=1}^{M} y_m}{M \sum_{m=1}^{M} x_m^2 - \left(\sum_{m=1}^{M} x_m\right)^2}$$

$$x_{\text{avg}} = \frac{1}{M} \sum_{m=1}^{M} x_m$$

$$y_{\text{avg}} = \frac{1}{M} \sum_{m=1}^{M} y_m$$
There has to be an easier way!

႟EMPossible

Linear Regression (Matrix Approach)

https://empossible.net/academics/emp4301 5301/

Statement of Problem

It is desired to fit a set of M measured data points to a curve containing N+1 terms:

$$f = a_0 z_0 + a_1 z_1 + a_2 z_2 + \dots + a_N z_N$$

 $f \equiv$ measured value

 $z_n \equiv \text{parameters from which } f \text{ is evaluated}$

 $a_n \equiv \text{coefficients for the curve fit}$

MPossible

4⁴√

Formulation of Matrix Equation

Start by writing the function f for each of the M measurements. The residual terms are also incorporated.

$$\begin{split} f_1 &= a_0 z_{0,1} + a_1 z_{1,1} + \dots + a_N z_{N,1} + \textcolor{red}{e_1} \\ f_2 &= a_0 z_{0,2} + a_1 z_{1,2} + \dots + a_N z_{N,2} + \textcolor{red}{e_2} \\ &\vdots \\ f_M &= a_0 z_{0,M} + a_1 z_{1,M} + \dots + a_N z_{N,M} + \textcolor{red}{e_M} \end{split}$$

This large set of equations is put into matrix form.

NEMPossible

Formulation of Solution by Least-Squares (1 of 4)

Step 1 – Solve matrix equation for e.

$$f = Za + e \rightarrow e = f - Za$$

Step 2 – Calculate the error criterion
$$E$$
 from \mathbf{e} .
$$E = \sum_{m=1}^{M} e_m^2 = \begin{bmatrix} e_1 & e_2 & e_3 & \cdots & e_{M-1} & e_M \end{bmatrix} \begin{bmatrix} e_1 \\ e_2 \\ e_3 \\ \vdots \\ e_{M-1} \\ e_M \end{bmatrix} = \mathbf{e}^T \mathbf{e}$$

Step 3 – Substitute the equation for e from Step 1 into the equation for E from Step 2.

$$E = \mathbf{e}^T \mathbf{e} = (\mathbf{f} - \mathbf{Z}\mathbf{a})^T (\mathbf{f} - \mathbf{Z}\mathbf{a})$$

1 EMPossible

Formulation of Solution by Least-Squares (2 of 4)

Step 4 – The new matrix equation is algebraically manipulated as follows in order to make it easier to find its first-order derivative.

$$E = (\mathbf{f} - \mathbf{Z}\mathbf{a})^{T} (\mathbf{f} - \mathbf{Z}\mathbf{a})$$
 original equation
$$= (\mathbf{f}^{T} - \mathbf{a}^{T} \mathbf{Z}^{T}) (\mathbf{f} - \mathbf{Z}\mathbf{a})$$
 distribute the transpose
$$= \mathbf{f}^{T} \mathbf{f} - \mathbf{f}^{T} \mathbf{Z}\mathbf{a} - \mathbf{a}^{T} \mathbf{Z}^{T} \mathbf{f} + \mathbf{a}^{T} \mathbf{Z}^{T} \mathbf{Z}\mathbf{a}$$
 expand equation
$$= \mathbf{f}^{T} \mathbf{f} - 2\mathbf{a}^{T} \mathbf{Z}^{T} \mathbf{f} + \mathbf{a}^{T} \mathbf{Z}^{T} \mathbf{Z}\mathbf{a}$$
 combine terms

Formulation of Solution by Least-Squares (3 of 4)

Step 5 – Differentiate E with respect to \mathbf{a} .

It is desired to determine a that minimizes *E*. This can be accomplished using the first-derivative rule.

$$E = \mathbf{f}^{T} \mathbf{f} - 2\mathbf{a}^{T} \mathbf{Z}^{T} \mathbf{f} + \mathbf{a}^{T} \mathbf{Z}^{T} \mathbf{Z} \mathbf{a}$$

$$\frac{\partial E}{\partial \mathbf{a}} = \frac{\partial}{\partial \mathbf{a}} \left(\mathbf{f}^{T} \mathbf{f} - 2\mathbf{a}^{T} \mathbf{Z}^{T} \mathbf{f} + \mathbf{a}^{T} \mathbf{Z}^{T} \mathbf{Z} \mathbf{a} \right) \qquad \text{substitute in expression for } E$$

$$= \frac{\partial}{\partial \mathbf{a}} \mathbf{f}^{T} \mathbf{f} - 2\frac{\partial}{\partial \mathbf{a}} \mathbf{a}^{T} \mathbf{Z}^{T} \mathbf{f} + \frac{\partial}{\partial \mathbf{a}} \mathbf{a}^{T} \mathbf{Z}^{T} \mathbf{Z} \mathbf{a} \qquad \mathbf{f} \text{ is not a function of } \mathbf{a}$$

$$= -2\mathbf{Z}^{T} \mathbf{f} + 2\mathbf{Z}^{T} \mathbf{Z} \mathbf{a} \qquad \text{finish differentiation}$$

Formulation of Solution by Least-Squares (4 of 4)

Step 6 – Find the value of a that makes the derivative equal to zero.

$$\frac{\partial E}{\partial \mathbf{a}} = -2\mathbf{Z}^T \mathbf{f} + 2\mathbf{Z}^T \mathbf{Z} \mathbf{a} = 0$$

$$-2\mathbf{Z}^T \mathbf{f} + 2\mathbf{Z}^T \mathbf{Z} \mathbf{a} = 0$$

$$2\mathbf{Z}^T \mathbf{Z} \mathbf{a} = 2\mathbf{Z}^T \mathbf{f}$$

$$\mathbf{Z}^T \mathbf{Z} \mathbf{a} = \mathbf{Z}^T \mathbf{f}$$

$$\mathbf{Z}^T \mathbf{Z} \mathbf{a} = \mathbf{Z}^T \mathbf{f}$$

$$\mathbf{A} = (\mathbf{Z}^T \mathbf{Z})^{-1} \mathbf{Z}^T \mathbf{f}$$
Observe that this is the original equation $\mathbf{Z} \mathbf{a} = \mathbf{f}$ premultiplied by \mathbf{Z}^T .

NEMPossible

DO NOT SIMPLIFY FURTHER!

If the least-squares equation was simplified further, it would give

$$\mathbf{a} = \left(\mathbf{Z}^{T} \mathbf{Z}\right)^{-1} \mathbf{Z}^{T} \mathbf{f}$$

$$= \mathbf{Z}^{-1} \left(\mathbf{Z}^{T}\right)^{-1} \mathbf{Z}^{T} \mathbf{f}$$

$$= \mathbf{Z}^{-1} \mathbf{f}$$

This is just the original equation again ($\mathbf{f}=\mathbf{Z}\mathbf{a}$) without the least-squares approach incorporated.

1 EMPossible

10

Visualizing Least-Squares

https://empossible.net/academics/emp4301 5301/

Visualizing Least-Squares (1 of 3)

Initially, a matrix equation was given that had more equations than unknowns.

MPossible

Visualizing Least-Squares (3 of 3)

The matrix equation reduced to the same number of equations as unknowns, which is solvable by many standard algorithms.

MPossible

Implementing Linear Regression

https://empossible.net/academics/emp4301 5301/

Least-Squares Algorithm

Step 1 – Construct matrices. \mathbf{Z} is essentially just a matrix of the coordinates of the data points. \mathbf{f} is a column vector of the measurements.

$$\mathbf{f} = \begin{bmatrix} f_1 \\ f_2 \\ f_3 \\ \vdots \\ f_{M-1} \\ f_M \end{bmatrix} \quad \mathbf{Z} = \begin{bmatrix} z_{0,1} & z_{1,1} & \cdots & z_{N,1} \\ z_{0,2} & z_{1,2} & \cdots & z_{N,2} \\ z_{0,3} & z_{1,3} & \cdots & z_{N,3} \\ \vdots & \vdots & & \vdots \\ z_{0,M-1} & z_{1,M-1} & & z_{N,M-1} \\ z_{0,M} & z_{1,M} & & z_{N,M} \end{bmatrix}$$

Step 2 – Solve for the unknown coefficients a.

$$\mathbf{a} = \left(\mathbf{Z}^T \mathbf{Z}\right)^{-1} \mathbf{Z}^T \mathbf{f}$$

Step 3 – Extract the coefficients from a.

$$\mathbf{a} = \begin{bmatrix} a_0 \\ a_1 \\ \vdots \\ a_N \end{bmatrix}$$

ጎ EMPossible

Least-Squares for Solving $\mathbf{A}\mathbf{x} = \mathbf{b}$

Suppose it is desired to solve Ax = b, but there exists more equations than there are unknowns.

This must be solved as a "best fit" because a perfect fit is impossible in the presence of noise.

Least-squares is implemented simply by premultiplying the matrix equation by A^T .

$$Ax = b \rightarrow A'x = b'$$

$$A' = A^{T}A$$

$$b' = A^{T}b$$

Fit a line to the following set of points.

NEMPossible

