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PHY294H 
l  Professor: Joey Huston  
l  email:huston@msu.edu 
l  office: BPS3230 
l  Homework will be with Mastering Physics (and an average of 1 hand-

written problem per week) 
◆  Help-room hours: 12:40-2:40 Monday (note change); 

3:00-4:00 PM Friday 
◆  hand-in problem for Wed Mar. 23: 34.60 

l  Quizzes by iclicker (sometimes hand-written) 
l  Final exam Thursday May 5 10:00 AM – 12:00 PM 1420 BPS 
l  Course website: www.pa.msu.edu/~huston/phy294h/index.html 

◆  lectures will be posted frequently, mostly every day if I can 
remember to do so 



!
!

Another example 
l  The magnetic field is 

increasing at the rate of 0.10 
T/s 

l  What is the acceleration of a 
proton at the points indicated?  

l  The proton will be accelerated 
because an electric field will 
be produced by the changing 
magnetic field 

 

E
curve
∫ ds = EL = 2πrE

ΦB = AB = πr
2B

E
curve
∫ ds = 2πrE = − dΦB

dt
= πr2 dB

dt

E = r
2
dB
dt

.	
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Faraday’s law revisited 
l  Consider a conducting loop 

moving through a region of 
magnetic field 

l  There is a force on the charges in 
the leading edge of the loop 

l  But in a frame attached to the 
loop, the loop is stationary and 
instead the magnetic field is 
moving to the left 

l  The observer on the loop sees 
both a magnetic field and an 
electric field 
◆  E’=vXB 

l  Both observers see the same 
force acting on the charges, but 
the observer in S attributes it to 
the magnetic field and the 
observer in S’ attributes it to the 
electric field 

l  Only in S’ is there a changing 
magnetic field, so only in S’ is 
there an induced electric field 
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Maxwell’s equations 
l  Maxwell was the first to 

assemble the 4 
equations that describe 
electromagnetism 

l  He presented his paper 
“On Faraday’s Lines of 
Force” when he was 24 
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surface
∫ dA =

Qin
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∫ ds = µo Ithrough + εo

dΦE

dt
%
&'

(
)*

.	


.	


.	


.	




!
!

Maxwell’s laws (integral form) 

 

E
surface
∫ dA =

Qin

εo

B
surface
∫ dA = 0

E
curve
∫ ds = −

dΦB
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B
curve
∫ ds = µo Ithrough + εo

dΦE
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l  Gauss’ law for electric fields: 
charged particles create  an 
electric field 

l  Gauss’ law for magnetic 
fields: there are no magnetic 
monopoles 

l  Faraday’s law: an electric 
field can also be created by a 
changing magnetic field 

l  Ampere-Maxwell law: a 
magnetic field can be created 
either by an electric current or 
by a changing electric field 

.	
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Maxwell’s laws (differential form) 
l  Gauss’ law for electric fields: 

charged particles create  an 
electric field 

l  Gauss’ law for magnetic 
fields: there are no magnetic 
monopoles 

l  Faraday’s law: an electric 
field can also be created by a 
changing magnetic field 

l  Ampere-Maxwell law: a 
magnetic field can be created 
either by an electric current or 
by a changing electric field 

Of course, Maxwell never wrote them down in this compact	

form. His original paper had 20 equations, not 4. Didn’t use	

curls or divergences. 	
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That was left to Oliver Heaviside 
l  Oliver Heaviside 18 May 1850 – 

3 February 1925) was a self-
taught English electrical engineer, 
mathematician, and physicist who 
adapted complex numbers to the 
study of electrical circuits, 
invented mathematical 
techniques for the solution of 
differential equations (equivalent 
to Laplace transforms), 
reformulated Maxwell's field 
equations in terms of electric and 
magnetic forces and energy flux, 
and independently co-formulated 
vector analysis. Although at odds 
with the scientific establishment 
for most of his life, Heaviside 
changed the face of 
telecommunications, 
mathematics, and science for 
years to come. 

Fun facts: In later life, he started painting	

his fingernails pink and had granite 
blocks moved into his house for use as 	

furniture. 	
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Heaviside layer 
l  The Kennelly–

Heaviside layer, is a 
layer of ionised gas 
occurring between 
roughly 90-150 km above 
the ground, one of 
several layers in the 
Earth’s ionosphere. It 
reflects radio waves, and 
because of this reflection 
radio waves can be 
propagated beyond the 
horizon. 
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T-shirt form 
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Some perspective 
§ There are a total of 11 fundamental equations describing classical physics:	

§ Newton’s first law	

§ Newton’s second law	

§ Newton’s third law	

§ Newton’s law of gravity	

§ Gauss’s law	


§ Gauss’s law for magnetism	

§ Faraday’s law	

§ Ampère-Maxwell law	

§ Lorentz force law	

§ First law of thermodynamics	

§ Second law of thermodynamics	
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Electromagnetic waves 
l  We’ll be working with Maxwell’s 

equations in free space, i.e. no 
charges or currents 

l  Assume that the electromagnetic 
wave has the form shown on the 
right 
◆  a plane wave in the y-z plane 

propagating in the x direction 

 

E
surface
∫ dA = 0

B
surface
∫ dA = 0
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curve
∫ ds = −

dΦB

dt

B
curve
∫ ds = µoεo

dΦE

dt
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Gauss’ laws 

l This EM wave 
satisfies Gauss’ laws 
for both the electric 
and magnetic fields 

Ex = 0;Ey = Eo sin(2π (
x
λ
− ft));Ez = 0

Bx = 0;By = 0;Bz = Bo sin(2π (
x
λ
− ft))
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Faraday’s law 

l  Apply Faraday’s law to a 
rectangle in the xy plane 

l  Integrate E.ds around the 
loop in the CCW 
direction 

l  I can write this as 

dΦB

dt
=
d
dt

BzhΔx( ) = ∂Bz
∂t

hΔx

 
E

rectangle
∫ ds = −Ey (x)h + Ey (x + Δx)h = [Ey (x + Δx) − Ey (x)]h

 
E

rectangle
∫ ds =

∂Ey

∂x
hΔx = −

dΦB

dt
= −

∂Bz
∂t

hΔx

∂Ey

∂x
= −

∂Bz
∂t

.	


.	


E
curve
!∫ ds = − dΦB

dt
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Ampere-Maxwell law 
l  Now let’s apply the Ampere-

Maxwell law to a rectangle in 
the xz plane 

l  Integrate B.ds in the CCW 
direction 

l  I can write this as 

dΦE

dt
=
d
dt

EylΔx( ) = ∂Ey

∂t
lΔx

 
B

rectangle
∫ ds = Bz (x)l − Bz (x + Δx)l = − Bz (x + Δx) − Bz (x)]l$% &'

 
B

rectangle
∫ ds = −

∂Bz
∂x

lΔx = εoµo
dΦE

dt
= εoµo

∂Ey

∂t
lΔx

∂Bz
∂x

= −εoµo

∂Ey

∂t

.	


.	


B
curve
!∫ ds = µoεo

dΦE

dt
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Wave equations 
l  Let’s play around with these 

equations 

l  Take extra derivative 

∂Bz
∂x

= −εoµo

∂Ey

∂t
∂Ey

∂x
= −

∂Bz
∂t

∂2Bz
∂t∂x

= −εoµo

∂2Ey

∂t 2
∂2Bz
∂t∂x

= −
∂2Ey

∂x2

∂2Ey

∂x2
= εoµo

∂2Ey

∂t 2

∂2Ey

∂x2
=
1
c2
∂2Ey

∂t 2
∂2Bz
∂x2

=
1
c2
∂2Bz
∂t 2

wave equations for E and B fields	
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Solutions  
l Wave equations 

l solutions 

∂2Bz
∂x2

=
1
c2
∂2Bz
∂t 2

∂2Ey

∂x2
=
1
c2
∂2Ey

∂t 2

Ex = 0;Ey = Eo sin(2π (
x
λ
− ft));Ez = 0

Bx = 0;By = 0;Bz = Bo sin(2π (
x
λ
− ft))
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E and B fields 

Ex = 0;Ey = Eo sin(2π (
x
λ
− ft));Ez = 0

Bx = 0;By = 0;Bz = Bo sin(2π (
x
λ
− ft))

∂Ey

∂x
= −

∂Bz
∂t

2πEo

λ
cos(2π ( x

λ
− ft)) = −2π fBo cos(2π (

x
λ
− ft))

Eo = λ fBo = cBo
The electric and magnetic fields in an EM wave must satisfy this 	

relationship at all times. 	
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EM waves 
l  Properties of an EM wave 

◆  the electric and magnetic 
fields are perpendicular to the 
direction of propagation 

◆  the electric and magnetic 
fields are perpendicular to 
each other such that EXB is 
in the direction of propagation 

◆  the electric and magnetic 
fields are in phase 

◆  the EM wave travels at c 
◆  E=cB at any point on the 

wave 
l  Define the Poynting vector S 

◆  the Poynting vector points in 
the direction that the wave is 
travelling 

◆  the magnitude of S measures 
the rate of energy transfer per 
unit area of the wave 
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EM waves 
l  Poynting vector 

l  Define the wave’s intensity 

l  Energy in electric and 
magnetic fields 

I =
P
A
= Savg =

1
2cµo

Eo
2 =

cεo
2
Eo

2

S ≡
1
µo

EXB

| S |= EB
µo

=
E2

cµo

=
cB2

µo

uB =
B2

2µo

uE =
1
2
εoE

2 =
1
2
εoc

2B2 =
εoB

2

2µoεo
=
B2

2µo (same energy density in E and B fields)	



