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1 Introduction

To understand and describe a phenomenon in physics or meghiris necessary to determine
which effect and physical quantities are important in ther@imenon. Investigation of mechani-
cal or physical phenomena are intended to lead to some @elimitor equation relating physical
guantities. Both theoretical and experimental approathesgiven problem may be used. Fre-
quently the theoretical approach leads to some equatioochwsitoo difficult to solve by mathe-
matical means. Other phenomena may be awkward to investggierimentally. When observa-
tion and measurement are used to determine the unknownakfshniques must be employed
to ensure that any experiment is a faithful reproductionhef true phenomenon. Dimensional
analysis gives information about the general form of a i@habetween some unknown and other
variables in a physical problem.

2 Dimensional quantities

A dimension is a measure of physical quantity( without numerical valuaile unit is a way

to assign a number to thdtmension. For example , length is a dimension that is measured in
units such as micronsun), centimetersdm), metersin), kilometerskm) etc. Also, mass is a
dimension that is measured in units such as gram (g), Kilogka) and and time t is a dimension
that is measured in seconds (s), hours (hr), years. In fluidmycs it is usual to regard the three
dimensions:mass(M), length (L),andtime (T) as fundamental dimension which can be used to
express dimension of another mechanical quantities, tecity V] = L/T, acceleratiorja) =
L/T?, force [F] = ML/t?, pressurgp|] = [F]/[L?] = M/LT?, density[p] = M/L?, where square
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brackets indicate "dimension of”. The dimension of the &eotguantities in fluid dynamics, e.g
the coefficient of viscosityr, must bederivedfrom the definition:

Shear stress 7 = uw
so that
M 1
e~ My
and hence
=2
M=
It follows that )
_|H LY
vi= [p] T

Dimension of further quantities arising in fluid dynamics1dse evaluated in a similar manner. It
is not hard to note that dimension of all the quantities dised so far are in the form ofonomial
powers

M1 92T 3,
This property is true for all physical quantities.
One can regard that all physical quantitigs B,C, ... X) belong to thedimensional spacefll.
Following axioms for thé?i space are fulfilled:

1. AB=BA
. (AB)C = A(BC)

. the solutionX of AX = B exits for any paitA, B of elements of1

2
3
4. AOHB = AOAP
5. (AB)? = A9BC
6

. (AT)B = poB
7. Al=A

It is also assumed that positive numbesslg,c... ) also belong td1 and that their powea® are
calculated as usually. Thus the positive numbers can bedmes as subspada® of N (satisfy-
ing the same axioms &3).

We can say that any elementf@fwhich does not belong ta°, i.e which is not a number, will be
called adimensional quantity. Above axioms for thelimensional spaceare fully analogical to
the axioms of linear (vector) space where multiplicatiorel@ments of dimensional spaéé is
replaces by the suy+ B and power risingA® by aA.

The algebraic dimension (rank) of dimensional spdces 3. It stems from the fact that we used
three fundamental measure units: kilogram, meter and sisodtLT). This fundamental dimen-
sions MLT) we can consider as fundamental or elementary basid fepace. By analogy to the
linear vector space where elementary basisare (1,0,0), & = (0,2,0), e3=(0,0,3).



Definition 1. The elements AA,, Az of I will be called dimensionally independent when the
equality
ATPATZASS = a 1)

where ais a real number, hold if and only if when = a, = a3 =0 (and a= 1)

On the basis of this definition we can formulate simply criterfor the set of variables which
are dimensionallyndependent All quantitiesA;, due to fact that they are belong to dimensional
spacdl, can be expressed by elements of fundamental basis:

A = giMPi PiTBia 2
In the term of fundamental basis, equation (1) can be reaste
(MﬁllLBHTﬁB) o (MBnLBzzTst) o (M Bulﬁszﬂss) * _ MoLOTO 3)
Comparing the exponents with the same basis we obtain

B1101+Bo102+ B3a3 =0
B1,01+ B2+ B30z =0
B1301+ Bo302+ Bazaz =0

or in more compact form as

Bi1 Bz Ba| |01 0
Biz B Bai| |02 = |0 (4)
Bis Bz Basl |03 0

From algebra we know that the system (4) has a unique, inalsis zero solutioor; = 0, when
determinant of the algebraic linear system (4) is not eqeia z

Bi1 Ba Bam
det|B1p Bz Pai| #0 ®)
Biz Bz Bas

So the equation (5) determines the criterion for the dinrssof quantities\;, Ay, Az to be the
dimensionally independent.

Example 1. Let as check if the quantities: velocity v, dengifyand diameter D are dimensionally
independent. At first we must build up the following matrix

| v p D]
MO 1 0
L1 3 1
T|1 0 o




where we have written the variablesp;,D on the top and in vertical column underneath the ex-
ponents one needs to express them in elementary basis Mlrexdplelv] = MOLT 1. Above
array is called adimensional matrix. It is not difficult to calculate that determinant is diffete
from zero (defB;;| = —1), and we can conclude that the variablegp,D) are dimensionally
independent.

Any three dimensionally independdm;, A2, Az) variables one can regards aslia
mensional basis

3 Buckingham’sN—-theorem
The Pi—theorem is based on the ruledvhensional homogeneity.

If an equation truly express a proper relationship betwesrables in physical pro-
cess, it will be dimensionally homogeneous; i. e each ofdtiitave terms will have
the same dimensions.

Consider the relation which express the displacement lixigatbody
1.5
S:So+Vot+§gt (6)

Each term in this equation is a displacement, or length, asddimension [L]. The equation is
dimensionally homogeneous. Consider Bernoulli's equdiio incompressible flow

2
p Vv

— + — +2z=const 7
oo 29 (7)

Each term, including the constant, has dimension of lengthThe equation is dimensionally
homogeneous and gives proper results for any consisteat gaits.

One can deduced from the physical property that the ratiavofdistinct values of the same
derived quantity is independent of scale used.

The Buckingam’s Pi theorem give us a way of the building tHatien between the dimensional
variables.

Theorem 1. Let us assume that in physical experiment one hasfyxy,x2,Xs,...,%,) and let
assume that the first three variables are dimensionally pedéeent, then the function may be
reorganized into form:

Y= (M, T, .., Th_3)X] X5 2X5° (8)
where
X4 X5 Xn
m=———— mH=——— .. Tho3 = (9)
B ’ B ’ - . .
Xlllxglzxgla Xf21X222X323 )ff(n 3)1)£(n 3)2)£(n 3)3



Remark 1. It should be clear from the presentation above that due to tfzat we assume that
(x1,X%2,X3) are dimensionally independent we can used these varialdebeadimensional ba-
sis. The rest of the variablesy, xs, ... Xn) € 1 one can express with the help of this basis. The
¢ (m, T, ..., T,_3) is non-dimensional and belongs to subspat® It is worth to notice that
number of independent variable gnwas reduced by 3 (it is by the rank of algebraic dimension of
dimensional spacél). The dimension of monomi{ad‘flxgzxgﬂ in front of ¢ gives the dimension
of [y] variable.

When one divided the equation (8) by sidexﬁ’f/xg’zxg’3 its results in

Wilzxga:n:d)(nl,nz,...,nng) (20)
The relation (10) is fundamental in the planning of the ptgisexperiment. The pi theorem is a
formal method of forming dimensionless groums We must remember thdimensional analy-
sisgives us only information about the general form of a refabietween some unknown and other
variables in physical problem. It does not determine thetfam of his relation, which must be
found either by solving mathematical equations governirgaroblem or by measurements of the
unknown.

Example 2. Under laminar conditions, the volume flow q through a tubénwiaidius R and length
I is a function of viscosity:, pressure drop per unit lengthp/I

q= f(AI—p,u,R)- (11)

Using thel—-theorem, rewrite this relation in dimensionless form. Hdees the volume flow
change if the radius of the pipe is tripled?

Solution. Due to fact that number of the variables on right side of (¥lthree then the amount of
non—dimensional variableg will be n— 3 =3 — 3= 0. The relation takes a form

Ap\*
q:C(I—p> u9z R9s (12)
where c is a real number. We have to check if the variab‘i‘p?su, R) are dimensionally indepen-
dent. We must build the dimensional matrix:

| [apt u R]
M 1 1 0
L -2 101
T -2 -1 0

Determinant of the dimensional matrix is not equal zero ¢isa -1), so(Al—p, U, R) are dimension-
ally independent and one can use them as a basis. To find the oBihe exponentsr(,i = 1,2,3)
we express each variables in equation (12) by elementargriimnal basigMLT). Namely
[q] = MO L3 T~ and equation (12) can be rewrite as follows:

MO L3 Tt = (MIL=2T-2)" (MIL7IT— )% (MOLITO)™ (13)
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Equality of the nominal with the same ba$MLT) require the equality of the exponents. One
obtained system of algebraic equation:

0 = ar+as (14)
3 = —2a01—0ax+a0s (15)
-1 = —-2a1—a0a; (16)

Solutions are:a1 = 1,a, = —1, a3 = 4. Equation(12) takes the form:

a=c(P) L R (17)
U
It is Hagen-Poiseuille’s low which we knew from lectumeb. The constant c is equal-e 717/8. To
determine this constant from experiment we need only thensasurement of g for given radius
R, drop off pressurép/l and viscosityu. When the radius of the pipe is tripled the flow rate
increase81times

Example 3. Consider the case of drag on a sphere of diameter d moving peadsU trough a
fluid of densityp and viscosityu. The drag force can be written as

D= f(d,U,p,u) (18)

If we do not use dimensional analysis, we would have to cdaratuexperiment to determine force
D vs. d, keeping \p and i fixed. we would then have to conduct an experiment to deterBin
as a function of U, keeping gl,and u fixed and so on.

At first we will create the dimensional matrix

[ ld U p 4]
MO 0 1 1
L1 1 -3
Tlo 1 0 4

Now the number of variables is grater than algebraic dimensdf 1 space. In such a case
we should choose from the dimensional matrix the submaitix renk 3. One can check that
now we can choose three set of independent varig@le), p}, {d,U,u} and{U,p, u} that can

be used as a dimensional basis. All of these basis are valichebsional analysis do not say
which one is the best. Choosing one specific set of independeables as the dimensional basis
depend on the intuition of researcher or the historical itexh. Sometimes some of them are more
comfortable in study than the others. Further, in this exEmpwas taken the sdtd,U,p}. By
virtu of N—-theorem relation (18) take form:

D = ¢ (m)d:U“2p% (19)

Expressing the dimensional variable by the elementary wkinaal basis (fundamental units)
{MLT}, [D] = MIL1T 2 one obtain

MILIT=2 = (MOLYTO) ™ (MOLIT—1) %% (MIL=3T0) ™ (20)
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lead to the system of the equation

1 = a3 (22)
1 = oa1+a,—303 (22)
o (23)

Solution to above system of algebraic equationds = 2,0, =2,a3=1
Thermvariable has form:
N
dfu szﬁs
Applying the methodology like in equation (20) yieftis= 1,8, = 1,35 = 1. The relation (19)
takes the form:
D = ¢(1—)dU% (24)
dUp
Theﬁ = A we can regarded that th¢ depend on Reynolds number R&24. Now the (24)
may be rewrite as follow
D
m =¢(Re (25)
In practice, the left side of Eq. (25) is called as drag coidficand is defined as

o D
T 1au2p

where A means a frontal area. For a sphere=Ad®>. A dimensional analysis of equation (18)
reduced independent variables to one in (24), and conselyuansingle experimental curve
cx = ¢(Re (see fig. 1). Not only the presentation of data is united antbbfied, the cost of
experimentation is drastically reduced. It is clear that meed not vary the the fluid viscosity or
density at all; we could obtain all the data of Figure 1 in ons@tunnel experiment in which
we determine the force D for various values of U. Howevergifwant to find the drag force for
a fluid of different density or viscosity, we can still useuf@1l. Note that the Reynolds number
in Eg. (25) is written as the independent variable becausaiit be externally controlled in an
experiment and the drag coefficient is written as a dependkdble.

Example 4. In the flow of fluid trough a long cylindrical pipe, the presswirop per unit length
of pipeAp/I is completely determined by the mean fluid velocity U, diamef the pipe D the
fluid densityp, fluid viscosityu and absolute roughness of the pipeUse dimensional analysis
to determine the general form of the equation

Ap

T =fD.U.p.pe) (26)

From 1 theorem we expect that amount of non-dimensienabariable willbe n—-3=5-3=2.
We start from dimensional matrix trying to find out the dimenal basis.

[ [dU b i e
MO O 1 1 O
L1 1 -3 -1 1
TJO -1 0 -1 O
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Figure 1: Drag coefficient for the a sphere as function of R&gnumber. The characteristic
(frontal) area is taken as= md? /4. The reason for the sudden dropQgf,called as drag crasis, at
Re~ 3-1CP is the transition of the laminar boundary layer to a turbutere. Curve (1)— Stokes’s
theory, curve(2)—-Oseen’s theory

We can find a 4 sub matrixes with rank 8D,U,p}, {D,p,u}, {U,p,u}, {U,p,&}. In further
calculation we choosé¢d,U, p}. By virtu ofl theorem the relation of (26) can can write
2P _ ¢ (m, DU mps, (27)
H £

where  m = DFulPpP 2 DBaUBxnphn

(28)

From the previous example we known timat= %3, Re= U“ﬂ. Itis easy the check that, = §.

To determine thex; we applied the procedure as in previous examgplgs/l] = ML=2T—2 =
(MOLLTO) ™ (MOLIT 1) 2 (MIL-3T?) ", Comparing the powers of monomial with the same
base we obtain the system of equation

1 = as (29)
-2 = Qa1+0ay,—303 (30)

Solution of the above systemds = —1,a, = 2,a3 = 1. The relation (27) take the form

%P ¢ (Re £)D %2 (32)

8



It is a famous Darcy-Weisbach equation. Let as recall thatdpaWeisbach equation has form

P9

| v

fBZg

(33)

When we compare (33) with (32) that this formula are the sapri@ the number 2, £ ¢(Re §.

The dimensional analysis is unable to be so accurate. OnaBggay attention to the huge
simplification of the problem. We reduced the number of thependent variable from 5 in (26) to
two, and eventually to the family of curvésRe)|,), that are parameterized bglative roughness

€= § (seefig.2)
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Figure 2. Nikuradse’s sand-roughened-pipe tests. Nilagragded three sizes of pipes and glued
sand grainsg = diameter of the sand grains) of practically constant siz#héointerior walls so
that he had the same valuesegD for different pipes.



4 Problems

1. Derive an expression for the period of pendulum T=f(m,L,ghe parameter are the length of the
pendulum L, mass of the babh and gravityg

2. A weir is an obstruction in channel flow that can be calibrdatecheasure flow rate. The value flay
varies with gravity g, upstream water heidgthiabove the weir and density of waterq= f(p,g,h). Find

a unique functional relationship.

3. The torqueM on an axial-flow turbine is a function of fluid densjy rotor diameteD, angular rotation
rate Q and fluid flowq. Find the functional relationship using thktheoremM = f(p,D,Q,q). Ifitis
known that M is proportional tq for a particular turbine, hao would M vary wit® andD for the turbine?
4. For the wall layer, Prandtl deduced in 1930 that veloudiily boundary layer must be independent of the
shear layer thickness and depends on viscqsitshare stress on the wall,, densityp and distance form
the wally: u= f(u, 1,p,y). Find functional relationship using theorem.

5. Karman in 1933 deduced thain the outer layer is independent of molecular viscosity,itsudeviation
from the stream velocity) must depends on layer thickneds share stress on the walj,, densityp,

and distance from the wa§lAu =U —u = g(d,1,p,y). Derive the functional relationship in the form
Y-t — G(%), where the quantity is termed the fiction velocity* = (T—ng)l/z

6. On a fluid rotated as a solid about a vertical axis with angea#ocity w, pressurep in radial direction
depends upon speed radiusr, and fluid density. Obtain the form of equation fdkp, Ap = f(w,r,p)

7. The size of droplets produced by a liquid spray nozzle isigind to depend upon the nozzle diameter
Dm jet velocity U, and properties of the liquply, ando: d = f(D,U,p, u,0). Rewrite this relation in
dimensionless form.

8. Derive the expression for the drag on a submerged torpedopditameters are the size of the torpedo L,
the velocity of the torpedo V,the viscosity of the waterand the density of the water Fp = f(L,V,p, ).
During this course | will be used the following books:
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