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1 Introduction

To understand and describe a phenomenon in physics or mechanics, it is necessary to determine
which effect and physical quantities are important in the phenomenon. Investigation of mechani-
cal or physical phenomena are intended to lead to some definite law or equation relating physical
quantities. Both theoretical and experimental approachesto a given problem may be used. Fre-
quently the theoretical approach leads to some equation which is too difficult to solve by mathe-
matical means. Other phenomena may be awkward to investigate experimentally. When observa-
tion and measurement are used to determine the unknown, special techniques must be employed
to ensure that any experiment is a faithful reproduction of the true phenomenon. Dimensional
analysis gives information about the general form of a relation between some unknown and other
variables in a physical problem.

2 Dimensional quantities

A dimension is a measure of physical quantity( without numerical values), while unit is a way
to assign a number to thatdimension. For example , length is a dimension that is measured in
units such as microns (µm), centimeters (cm), meters(m), kilometers(km) etc. Also, mass is a
dimension that is measured in units such as gram (g), kilogram (kg) and and time t is a dimension
that is measured in seconds (s), hours (hr), years. In fluid dynamics it is usual to regard the three
dimensions:mass(M), length (L),andtime (T) as fundamental dimension which can be used to
express dimension of another mechanical quantities, like velocity [V] = L/T, acceleration[a] =
L/T2, force [F ] = ML/t2, pressure[p] = [F]/[L2] = M/LT2, density[ρ] = M/L2, where square
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brackets indicate ”dimension of”. The dimension of the another quantities in fluid dynamics, e.g
the coefficient of viscosityµ , must bederivedfrom the definition:

Shear stress= τ = µ
∂v
∂y

so that
M

LT2 = [µ ]
1
T

and hence

[µ ] =
M
LT

It follows that

[ν ] =

[

µ
ρ

]

=
L2

T

Dimension of further quantities arising in fluid dynamics can be evaluated in a similar manner. It
is not hard to note that dimension of all the quantities discussed so far are in the form ofmonomial
powers

Mα1Lα2Tα3.

This property is true for all physical quantities.
One can regard that all physical quantities(A,B,C, . . .X) belong to thedimensional spaceΠ.
Following axioms for thePi space are fulfilled:

1. AB= BA

2. (AB)C = A(BC)

3. the solutionX of AX = B exits for any pairA,B of elements ofΠ

4. Aα+β = AαAβ

5. (AB)α = AαBα

6. (Aα)β = Aαβ

7. A1 = A

It is also assumed that positive numbers (a,b,c. . . ) also belong toΠ and that their poweraα are
calculated as usually. Thus the positive numbers can be considered as subspaceΠ0 of Π (satisfy-
ing the same axioms asΠ).
We can say that any element ofΠ which does not belong toΠ0, i.e which is not a number, will be
called adimensional quantity. Above axioms for thedimensional spaceare fully analogical to
the axioms of linear (vector) space where multiplication ofelements of dimensional spaceAB is
replaces by the sumA+B and power risingAα by αA.
The algebraic dimension (rank) of dimensional spaceΠ is 3. It stems from the fact that we used
three fundamental measure units: kilogram, meter and seconds (MLT). This fundamental dimen-
sions (MLT) we can consider as fundamental or elementary basis forΠ space. By analogy to the
linear vector space where elementary basis aree1 = (1,0,0), e2 = (0,2,0), e3 = (0,0,3).
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Definition 1. The elements A1,A2,A3 of Π will be called dimensionally independent when the
equality

Aα1
1 Aα2

2 Aα3
3 = a (1)

where a is a real number, hold if and only if whenα1 = α2 = α3 = 0 (and a= 1)

On the basis of this definition we can formulate simply criterion for the set of variables which
are dimensionallyindependent. All quantitiesAi , due to fact that they are belong to dimensional
spaceΠ, can be expressed by elements of fundamental basis:

Ai = aiM
β i1Lβ i2Tβ i3 (2)

In the term of fundamental basis, equation (1) can be rewriteas:

(

Mβ11Lβ12Tβ13

)α1
(

Mβ21Lβ22Tβ 23

)α2
(

Mβ31Lβ32Tβ 33

)α3
= M0L0T0 (3)

Comparing the exponents with the same basis we obtain

β 11α1 + β 21α2 + β 31α3 = 0

β 12α1 + β 22α2 + β 32α3 = 0

β 13α1 + β 23α2 + β 33α3 = 0

or in more compact form as





β 11 β 21 β 31
β 12 β 22 β 31
β 13 β 32 β 33









α1

α2

α3



 =





0
0
0



 (4)

From algebra we know that the system (4) has a unique, in this case zero solutionα i = 0, when
determinant of the algebraic linear system (4) is not equal zero

det





β 11 β 21 β 31
β 12 β 22 β 31
β 13 β 32 β 33



 6= 0 (5)

So the equation (5) determines the criterion for the dimensions of quantitiesA1,A2,A3 to be the
dimensionally independent.

Example 1. Let as check if the quantities: velocity v , densityρ, and diameter D are dimensionally
independent. At first we must build up the following matrix

v ρ D

M 0 1 0
L 1 -3 1
T -1 0 0
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where we have written the variables v,ρ,D on the top and in vertical column underneath the ex-
ponents one needs to express them in elementary basis MLT . For example[v] = M0L1T−1. Above
array is called adimensional matrix. It is not difficult to calculate that determinant is different
from zero (det|β i j | = −1), and we can conclude that the variables(v,ρ ,D) are dimensionally
independent.

Any three dimensionally independent(A1,A2,A3) variables one can regards as adi-
mensional basis.

3 Buckingham’s Π–theorem

The Pi–theorem is based on the rule ofdimensional homogeneity.

If an equation truly express a proper relationship between variables in physical pro-
cess, it will be dimensionally homogeneous; i. e each of its additive terms will have
the same dimensions.

Consider the relation which express the displacement of falling body

S= S0 +V0t +
1
2

gt2 (6)

Each term in this equation is a displacement, or length, and has dimension [L]. The equation is
dimensionally homogeneous. Consider Bernoulli’s equation for incompressible flow

p
ρg

+
v2

2g
+z= const (7)

Each term, including the constant, has dimension of length [L]. The equation is dimensionally
homogeneous and gives proper results for any consistent setof units.
One can deduced from the physical property that the ratio of two distinct values of the same
derived quantity is independent of scale used.
The Buckingam’s Pi theorem give us a way of the building the relation between the dimensional
variables.

Theorem 1. Let us assume that in physical experiment one has y= f (x1,x2,x3, . . . ,xn) and let
assume that the first three variables are dimensionally independent, then the function may be
reorganized into form:

y = ϕ(π1,π2, . . . ,πn−3)x
α1
1 xα2

2 xα3
3 (8)

where

π1 =
x4

xβ 11
1 xβ 12

2 xβ 13
3

, π2 =
x5

xβ 21
1 xβ 22

2 xβ 23
3

, . . . πn−3 =
xn

x
β (n−3)1

1 x
β (n−3)2

2 x
β (n−3)3

3

(9)
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Remark 1. It should be clear from the presentation above that due to fact that we assume that
(x1,x2,x3) are dimensionally independent we can used these variables as the dimensional ba-
sis. The rest of the variables(x4,x5, . . .xn) ∈ Π one can express with the help of this basis. The
ϕ(π1,π2, . . . ,πn−3) is non-dimensional and belongs to subspaceΠ0. It is worth to notice that
number of independent variable inϕ was reduced by 3 (it is by the rank of algebraic dimension of
dimensional spaceΠ). The dimension of monomial[xα1

1 xα2
2 xα3

3 ] in front of ϕ gives the dimension
of [y] variable.

When one divided the equation (8) by side byxα1
1 xα2

2 xα3
3 its results in

y

xα1
1 xα2

2 xα3
3

= π = ϕ(π1,π2, . . . ,πn−3) (10)

The relation (10) is fundamental in the planning of the physical experiment. The pi theorem is a
formal method of forming dimensionless groupsπ i. We must remember thatdimensional analy-
sisgives us only information about the general form of a relation between some unknown and other
variables in physical problem. It does not determine the exact form of his relation, which must be
found either by solving mathematical equations governing the problem or by measurements of the
unknown.

Example 2. Under laminar conditions, the volume flow q through a tube with radius R and length
l is a function of viscosityµ , pressure drop per unit length∆p/l

q = f (
∆p
l

,µ ,R). (11)

Using theΠ–theorem, rewrite this relation in dimensionless form. Howdoes the volume flow
change if the radius of the pipe is tripled?
Solution. Due to fact that number of the variables on right side of (11) is three then the amount of
non–dimensional variablesπ will be n−3 = 3−3 = 0. The relation takes a form

q = c

(

∆p
l

)α1

µα2 Rα3 (12)

where c is a real number. We have to check if the variables(∆p
l ,µ ,R) are dimensionally indepen-

dent. We must build the dimensional matrix:

∆p/l µ R

M 1 1 0
L -2 -1 1
T -2 -1 0

Determinant of the dimensional matrix is not equal zero (is equal -1), so(∆p
l ,µ ,R) are dimension-

ally independent and one can use them as a basis. To find the value of the exponents (α i, i = 1,2,3)
we express each variables in equation (12) by elementary dimensional basis(MLT). Namely
[q] = M0 L3 T−1 and equation (12) can be rewrite as follows:

M0 L3 T−1 =
(

M1L−2T−2)α1
(

M1L−1T−1)α2
(

M0L1T0)α3 (13)
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Equality of the nominal with the same basis(MLT) require the equality of the exponents. One
obtained system of algebraic equation:

0 = α1 + α2 (14)

3 = −2α1−α2 + α3 (15)

−1 = −2α1−α2 (16)

Solutions are:α1 = 1,α2 = −1,α3 = 4. Equation(12) takes the form:

q = c(
∆p
l

)
1
µ

R4 (17)

It is Hagen-Poiseuille’s low which we knew from lecturen5. The constant c is equal c= π/8. To
determine this constant from experiment we need only the onemeasurement of q for given radius
R, drop off pressure∆p/l and viscosityµ . When the radius of the pipe is tripled the flow rate
increase81 times

Example 3. Consider the case of drag on a sphere of diameter d moving at a speed U trough a
fluid of densityρ and viscosityµ . The drag force can be written as

D = f (d,U,ρ ,µ) (18)

If we do not use dimensional analysis, we would have to conduct an experiment to determine force
D vs. d, keeping U,ρ and µ fixed. we would then have to conduct an experiment to determine D
as a function of U, keeping d,ρ ,andµ fixed and so on.
At first we will create the dimensional matrix

d U ρ µ
M 0 0 1 1
L 1 1 -3 -1
T 0 -1 0 -1

Now the number of variables is grater than algebraic dimension of Π space. In such a case
we should choose from the dimensional matrix the submatrix with rank 3. One can check that
now we can choose three set of independent variable{d,U,ρ}, {d,U,µ} and{U,ρ ,µ} that can
be used as a dimensional basis. All of these basis are valid. Dimensional analysis do not say
which one is the best. Choosing one specific set of independent variables as the dimensional basis
depend on the intuition of researcher or the historical tradition. Sometimes some of them are more
comfortable in study than the others. Further, in this example it was taken the set{d,U,ρ}. By
virtu of Π–theorem relation (18) take form:

D = ϕ(π)dα1Uα2ρα3 (19)

Expressing the dimensional variable by the elementary dimensional basis (fundamental units)
{MLT}, [D] = M1L1T−2 one obtain

M1L1T−2 =
(

M0L1T0)α1
(

M0L1T−1)α2
(

M1L−3T0)α3 (20)
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lead to the system of the equation

1 = α3 (21)

1 = α1 + α2−3α3 (22)

−2 = −α2 (23)

Solution to above system of algebraic equation is :α1 = 2,α2 = 2,α3 = 1
Theπ variable has form:

π =
µ

dβ1Uβ2ρβ3

Applying the methodology like in equation (20) yieldsβ 1 = 1,β 2 = 1,β 3 = 1. The relation (19)
takes the form:

D = ϕ(
µ

d U ρ
)d2U2ρ (24)

The µ
d U ρ = 1

Re we can regarded that theϕ depend on Reynolds number Re= Ud
ν . Now the (24)

may be rewrite as follow
D

d2U2ρ
= ϕ(Re) (25)

In practice, the left side of Eq. (25) is called as drag coefficient and is defined as

cx =
D

1
2AU2ρ

where A means a frontal area. For a sphere A= d2. A dimensional analysis of equation (18)
reduced independent variables to one in (24), and consequently a single experimental curve
cx = ϕ(Re) (see fig. 1 ). Not only the presentation of data is united and simplified, the cost of
experimentation is drastically reduced. It is clear that weneed not vary the the fluid viscosity or
density at all; we could obtain all the data of Figure 1 in one wind tunnel experiment in which
we determine the force D for various values of U. However, if we want to find the drag force for
a fluid of different density or viscosity, we can still use Figure 1. Note that the Reynolds number
in Eq. (25) is written as the independent variable because itcan be externally controlled in an
experiment and the drag coefficient is written as a dependentvariable.

Example 4. In the flow of fluid trough a long cylindrical pipe, the pressure drop per unit length
of pipe∆p/l is completely determined by the mean fluid velocity U, diameter of the pipe D the
fluid densityρ , fluid viscosityµ and absolute roughness of the pipeε . Use dimensional analysis
to determine the general form of the equation

∆p
l

= f (D,U,ρ ,µ ,ε) (26)

FromΠ theorem we expect that amount of non-dimensionalπ - variable will be n−3= 5−3= 2.
We start from dimensional matrix trying to find out the dimensional basis.

d U ρ µ ε
M 0 0 1 1 0
L 1 1 -3 -1 1
T 0 -1 0 -1 0
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Figure 1: Drag coefficient for the a sphere as function of Reynolds number. The characteristic
(frontal) area is taken asA= πd2/4. The reason for the sudden drop ofCD,called as drag crasis, at
Re∼ 3·105 is the transition of the laminar boundary layer to a turbulent one. Curve (1)– Stokes’s
theory, curve(2)–Oseen’s theory

We can find a 4 sub matrixes with rank 3:{D,U,ρ}, {D,ρ ,µ}, {U,ρ ,µ}, {U,ρ ,ε}. In further
calculation we choose{d,U,ρ}. By virtu ofΠ theorem the relation of (26) can can write

∆p
l

= ϕ(π1,π2)D
α1Uα1ρα3, (27)

where π1 =
µ

Dβ 11Uβ12ρβ13
π2 =

ε
Dβ21Uβ22ρβ23

(28)

From the previous example we known thatπ1 = 1
Re, Re= Udρ

µ . It is easy the check thatπ2 = ε
d .

To determine theα i we applied the procedure as in previous examples[∆p/l ] = M1L−2T−2 =
(

M0L1T0
)α1

(

M0L1T−1
)α2

(

M1L−3T0
)α3. Comparing the powers of monomial with the same

base we obtain the system of equation

1 = α3 (29)

−2 = α1 + α2−3α3 (30)

−2 = −α2 (31)

Solution of the above system isα1 = −1,α2 = 2,α3 = 1. The relation (27) take the form

∆p
l

= ϕ(Re,
ε
D

)D−1U2ρ2 (32)
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It is a famous Darcy-Weisbach equation. Let as recall that Darcy–Weisbach equation has form

hl =
∆p
ρg

= f
l
D

v2

2g
(33)

When we compare (33) with (32) that this formula are the same up to the number 2, f≡ ϕ(Re, ε
D .

The dimensional analysis is unable to be so accurate. Ones again pay attention to the huge
simplification of the problem. We reduced the number of the independent variable from 5 in (26) to
two, and eventually to the family of curvesϕ(Re)|ε ), that are parameterized byrelative roughness
ε = ε

D (see fig.2)

∆p
lD−1U2ρ2 = ϕ(Re,

ε
D

) (34)

Figure 2: Nikuradse’s sand-roughened-pipe tests. Nikuradse used three sizes of pipes and glued
sand grains (ε = diameter of the sand grains) of practically constant size tothe interior walls so
that he had the same values ofε/D for different pipes.
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4 Problems

1. Derive an expression for the period of pendulum T=f(m,L,g).The parameter are the length of the
pendulum L, mass of the bobmand gravityg
2. A weir is an obstruction in channel flow that can be calibratedto measure flow rate. The value flowq
varies with gravity g, upstream water heightH above the weir and density of waterρ; q = f (ρ ,g,h). Find
a unique functional relationship.
3. The torqueM on an axial-flow turbine is a function of fluid densityρ, rotor diameterD, angular rotation
rateΩ and fluid flowq. Find the functional relationship using theΠ theorem,M = f (ρ ,D,Ω,q). If it is
known that M is proportional toq for a particular turbine, hao would M vary withΩ andD for the turbine?
4. For the wall layer, Prandtl deduced in 1930 that velocityu in boundary layer must be independent of the
shear layer thickness and depends on viscosityµ , share stress on the wallτw, densityρ and distance form
the wally: u = f (µ ,τ,ρ ,y). Find functional relationship usingΠ theorem.
5. Karman in 1933 deduced thatu in the outer layer is independent of molecular viscosity, but its deviation
from the stream velocityU must depends on layer thicknessδ , share stress on the wallτw, densityρ ,
and distance from the wally;∆u = U − u = g(δ ,τ ,ρ ,y). Derive the functional relationship in the form
U−u

u∗ = G( y
δ ), where the quantityu∗ is termed the fiction velocityu∗ =

(

τw
ρ

)1/2

6 . On a fluid rotated as a solid about a vertical axis with angular velocity ω, pressurep in radial direction
depends upon speedω, radiusr, and fluid densityρ. Obtain the form of equation for∆p, ∆p = f (ω , r,ρ)
7 . The size of droplets produced by a liquid spray nozzle is thought to depend upon the nozzle diameter
Dm jet velocity U, and properties of the liquidρ ,µ, andσ : d = f (D,U,ρ ,µ ,σ). Rewrite this relation in
dimensionless form.
8. Derive the expression for the drag on a submerged torpedo. The parameters are the size of the torpedo L,
the velocity of the torpedo V,the viscosity of the waterµ , and the density of the waterρ : FD = f (L,V,ρ ,µ).
During this course I will be used the following books:
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