
Lecture Note #1
EECS 571

 Principles of Real-Time and
Embedded Systems

Kang G. Shin
EECS Department

University of Michigan

General Course Information

  Instructor: Kang G. Shin, 4605 CSE, 763-0391;
kgshin@umich.edu

  # of credit hours: 4
  Class meeting time and room:

  Regular classes: MW 10:30am – noon @1012 EECS
  Makeup/discussion (as needed): F 10:30 – 11:30am @1012 EECS

  Office hours: MW 9:30 – 10:30am, or by appointment but email is
the best way to get hold of me.

  Course homepage: http://www.eecs.umich.edu/courses/eecs571

Important Dates and Class Email

  Important Dates
 Start of class: Sep. 8 (Wed)
 Study break: Oct. 18-19 (Mon-Tue)
 One-page project proposal due: Oct. 13 (Wed)
  Thanksgiving break: 5pm Nov. 24 (Wed)–8am Nov. 29 (Mon)
 Comprehensive exam: Dec. 1, Wed (tentative)
  Last day of class: Dec. 13 (Mon)
  Term project presentations: 6pm-midnight 12/13, 3725 CSE
  Term project report due: electronically by 4pm 12/17 (Fri)

 Email group: Subscribe to the mail list by sending email
to eecs571-request@eecs with “subscribe” in the Subject
field. You may use this email group (eecs571@eecs) only
for the class.

Course Materials

  Copies of ``Real-Time Systems,'' Krishna and Shin, McGraw-Hill,
1997 will be made available at Dollar Bill. Errata is maintained
on the course URL
http://www.eecs.umich.edu/courses/eecs571/book_correction.pdf and
typos and other errors should be reported to me or
rtbook@tikva.ecs.umass.edu.

  Reference: ``Designing Embedded Processors,” edited by J.
Henkel and S. Parameswaran, Springer, 2007.

  Four key sources of reading are:
  IEEE Real-Time Systems Symposium (RTSS) (1980 –)
  IEEE Real-Time Technology and Applications Symposium (RTAS)

(1995 –)
  International Journal of Time-Critical Computing (1989 –)
  ACM Transactions on Embedded Sysems (2002–)

  University Digital Library (http://www.ieeexplore.org and
http://www.acm.org)

Pre-requisites and Grading Policy

 Pre-requisites: EECS 482 or EECS 470, or basic
knowledge in system software and computer
architecture is required, or instructor's approval.

 Grading Weights
 Bi-weekly homeworks: 15%
 Comprehensive midterm on Dec. 3, 2010: 25%
  Term project: 55% (presentation 30% and report 25%)
 Class participation: 5%

 Collaboration and Regrading Policies: see the
handout or course homepage.

  Important Information on HWs and Term Projects: see
the handout or course homepage.

General Concepts of Real-Time Embedded Systems

  What's a real-time system and what’s not?
  What’s an embedded system?
  Types of real-time systems

  Hard real-time systems: definition and examples
  Soft real-time systems: definition and examples

  What's a deadline and where is it coming from?
  Law of physics
  Artifcially imposed.

  A task/message/packet may be critical or non-critical,
depending on its function and system state.

  Based on invocation/triggering behavior, a task/message/
packet is periodic, aperiodic, or sporadic.

  How do we derive message/packet deadlines?

A Typical Real-Time Embedded System

Controlled
Process

Execution Unit
 Processors, Networks

OS, App SW

Store of
Jobs

Real-time
Clock

Trigger
Generator

Human
Operators

Displays

Actuators

Sensors

Environment

Real-time Embedded Systems

 Embedded system
 The software and hardware component that is an

essential part of, and inside another system
 Real-time system

 needs timely
 computation

 deadlines, jitters,
 periodicity

 temporal dependency Plant sensor actuator

Control-raw
computation

A/D

A/D
D/A Reference

input

Controller

Real-time Embedded Systems

 Conventional Dedicated Systems
 Unique solution (HW/SW/tool) for each application
 System + domain knowledge

Hardware
(processor, memory,

I/O, bus, etc.)

Software (OS,
libraries, application,

GUI, etc.)

Design process
(specification,
development,
testing, etc.)

Tool chain
(analysis, compiler,

debugging, integration,
etc.)

Embedded Systems

  are everywhere
 How many embedded processors in your home?

 What are they?
40-50 estimated in 1999.

Hardware (chips) + Software (program)

 CPU processor (ARM, PowerPC, Xscale/SA, 68K)
 Memory (256MB or more)
 Input/output interfaces (parallel and serial ports)

Requirements for RTES

 Environmental – size, power (heat), weight, and
radiation-hardened

 Performance –responsive, predictable (fast?)
 Economics – low cost and time-to-market
 Consequence – safety, faulty-tolerance, security
 Standards –http://www.opengroup.org/rtforum/oct2001/

minutes.html
 DO 178b (avionics)
  FDA 247 (medical devices)
 ANS 7.4.3.2 (nuclear power plants)
 Mil-Std 882d (weapon systems)

 Smaller, cheaper, better, and faster

SW Development for RTES

  To write the control software for
a smart washer
  initialize
  read keypad or control knob
  read sensors
  take an action

 Current system state
  state transition diagram
  external triggers via

polling or ISR
  If there are multiple triggers and

external conditions – single or
multiple control loops

initialization

external trigger?

Take actions

Change system state

ISR: to set/clear
events

Read sensors

Periodic Tasks

  Invoke computation periodically
  Adjust pressure valves at a 20 Hz rate

 wait for the interrupt
event

Task initialization
(set up periodic
 timer interrupts)

computation

 start_time=time()

Task initialization

computation

Sleep(period -
(time() -start_time))

SW Development for RTES

 Never-ending in a single control loop
 Single execution thread and one address space
 Event- and/or time-driven state transitions
 Small memory footprint (?)

 What are missing in the previous example?
  no concurrency (real-world events occur near

simultaneously)
  no explicit timing control (add a timer)
  difficult to develop and maintain large embedded systems –

verifiable, reusable, and maintainable

SW Development for RTES, cont’d

 Multi-tasking for concurrent events
 Machine dependency and portability
 Software abstraction, modular design

  information hiding, OO, separate compilation, reusable
  a sorting procedure – function, input, output specification

 Control timing
 Resource constraints and sharing

 CPU time, stack, memory, and bandwidth
 Scheduling

  Tasks, messages, and I/O

Timing Constraints and Characteristics

 Predicting and controlling timing and events
  Timing relationship: (can you guarantee it?)

  predictable actions in response to external stimuli
  deadline (absolute or relative), and jitter

  Instruments play in a band
 miss a note or timing

 Difficult to control timing
  all players of an interactive game in Internet see the actions

at the same time
 Sequence, order, and race condition

Timing Constraints and Multi-threading

  Given input x1 at time t1, produce output y1 at time t2

  Non-deterministic operation, time-dependent behavior, and
race condition
  difficult to model, analyze, test, and re-produce.

  Easy to identify the faults and fix them once the failing
sequences are reproduced (or observed), but
  The failures are rooted in the interaction of multiple concurrent

operations/threads and are based on timing dependencies

Embedded System Development

 Need a real-time (embedded) operating system?
 Need a development and test environment?

 Use the host to edit, compile, and build application programs,
and configure the target

 At the target embedded system, use tools to load, execute,
debug, and monitor (performance and timing)

Ethernet

Simulated signal source

(Workstation, embedded
system development tools)

(workstation, interface cards),
& test harness

Development workstation Embedded systems

Real-time Operating System (RTOS)

  Functions:
  task management,

  scheduling, dispatcher
  communication (pipe, queue)
  synchronization (semaphore, event)

  memory management
  time management
  device driver
  interrupt service

Interrupt
dispatch

Interrupt
service

Time service &
events

Services (create thread,
sleep, notify, send,…)

Scheduling
&

dispatcher

System calls
(trap)

External
interrupt

Timer
interrupt

kernel

Task
execution

Development Environment
  Use the host to

  edit, compile, build application programs, and configure the target
  At the target embedded system, use tools to

  load, execute, debug, and monitor (performance and timing)
  The target server manages the interactions with the target

  communication channel
  symbol table for the target

target server

Debug agent

vxWorks

network-independent
communication

WindSh (shell)

WindView
(timing monitor)

CrssWind
(debugger)

Registry
Daemon

License
management

Custom-built
tool

WTX
protocol

Trends in Embedded Systems

  Data from Japan ITRON survey for new embedded systems

Trends in Embedded Systems

Difficulties with RTOS

Major Topics of RT ES

  Performance measures & task execution time estimation
  Task assignment & scheduling
  Real-time OS and other system software
  Power management for CPU, memory and disk
  Time-sensitive wired and wireless networking
  Security and privacy of embedded systems and devices
  Model-based integration of embedded real-time software
  Formal methods
  Fault-tolerance of embedded real-time systems
  Clock synchronization
  Applications: multimedia, VoIP/VoWLAN, VoD, info and

home appliances, medical devices, sensors & actuators,
virtual reality, automotive electronics (powertrain controls
and infotainment systems, ITS), automated manufacturing, I
large embedded systems (ships, planes),…

