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• Basic analytical framework of modern economics:

− Economic environments: Number of agents, individuals’ characteristics (preference,

technology, endowment), information structures, institutional economic environments

− Behavioral assumption: Selfish and rational agents

− Economics institutional arrangements: Economic mechanism

− Equilibrium

− Evaluation: Welfare analysis (first-best, second-best)

• Mathematics as a tool for economists

− To describe model and assumptions clearly and precisely

− To make analysis rigorous

− To obtain results that may not be available through verbal arguments

− To reduce unnecessary debates
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Chapter 1

Consumer Theory

4 Building blocks: consumption set, feasible set (Budget set), preference relation, and

behavioral assumption

1.1 Consumption Set and Budget Constraint

Assume that there are L goods.

• Consumption set: set of all conceivable consumption bundles =: X ∋ x = (x1, · · · , xL)

− Usually X = RL
+ but more specific sometimes

cf) X = bundles that gives the consumer a subsistence existence

− We assume that X ⊆ RL
+ is closed and convex

• Budget constraint: set of all affordable bundles given prices p = (p1, · · · , pL) and income

m, which is given by

B(p, m) = {x ∈ X|p · x ≤ m}

cf) Budget constraint with 2 goods
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1.2 Preferences and Utility

• Preference: binary relation on X to compare or order the bundles

− x � y: ‘x is at least as good as y’ → weak preference

− x ≻ y iff x � y and y � x: ‘x is strictly preferred to y’ → strict preference

− x ∼ y iff x � y and y � x: ‘x is indifferent to y’ → indifference relation

• Subsets of X derived from the preference relation: for a given bundle y ∈ X,

− Upper contour set: P (y) = {x ∈ X|x � y}

− Strictly upper contour set: Ps(y) = {x ∈ X|x ≻ y}

− Lower contour and strictly lower contour sets, denoted L(y) and Ls(y)

− Indifference set (or curve): I(y) = {x ∈ X|x ∼ y}

• The preference relation � on X is called rational if it possesses the following properties:

− Complete: ∀x,y ∈ X, either x � y or y � x

− Transitive: ∀x,y, z ∈ X, if x � y and y � z, then x � z

• Other desirable properties

− Monotonicity: ∀x,y ∈ X, if x ≥ y, then x � y while if x ≫ y, then x ≻ y

− Strict monotonicity: ∀x,y ∈ X, if x ≥ y and x 6= y, then x ≻ y

− Continuity: ∀y ∈ X, P (y) and L(y) are closed or Ps(y) and Ls(y) are open

Example 1.2.1. (Lexicographic Preference) Assume L = 2. Define � as follows:

x � y iff either ‘x1 > y1’ or ‘x1 = y1 and x2 ≥ y2’ → Neither continuous nor even

upper semi-continuous (or the upper contour set is not closed)

− Non-satiation: ∀x ∈ X, ∃y ∈ X such that y ≻ x

− Local non-satiation: ∀x ∈ X and ∀ǫ > 0, ∃y ∈ X with |x − y| < ǫ such that y ≻ x

− Convexity: If x � y, then tx + (1 − t)y � y, ∀t ∈ [0, 1]

− Strict convexity: If x � y and x 6= y, then tx + (1 − t)y ≻ y, ∀t ∈ (0, 1)
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1.3 The Utility Function

Definition 1.3.1. A real-valued function u : X → R is called a utility function representing

the preference relation � iff ∀x,y ∈ X, u(x) ≥ u(y) ⇔ x � y.

Example 1.3.1. (Some Utility Functions)

(1) Cobb-Douglas: u(x) = xα1

1 x
α2

2 · · ·xαL

L with αℓ > 0, ∀ℓ → continuous, strictly mono-

tone, and strictly convex in RL
++

(2) Linear: u(x) =
∑L

ℓ=1 αℓxℓ → continuous, strictly monotone, and convex in RL
+

(3) Leontief: u(x) = min{α1x1, · · · , αLxL} → continuous, monotone, and convex in RL
+

Proposition 1.3.1. A preference relation � can be represented by a utility function only

if it is rational.

Proof. Straightforward.

The converse, however, does not hold. That is, a rational preference in itself does not

guarantee the existence of utility function representing it.

Theorem 1.3.1. (Existence of a Utility Function) Suppose that preference relation

� is complete, reflexive, transitive, continuous, and strictly monotonic. Then, there exists

a continuous utility function u : RL
+ → R which represents �.

Proof. Let e = (1, 1, · · · , 1) ∈ RL
+. Then, given any vector x ∈ RL

+, let u(x) be defined

such that x ∼ u(x)e. We first show that u(x) exists and is unique.

Existence: Let B = {t ∈ R|te � x} and W = {t ∈ R|x � te}. Neither B nor W is empty

while B ∩W = R+. Also, the continuity of � implies both sets are closed. Since the real

line is connected, there exists tx ∈ R such that txe ∼ x.

Uniqueness: If t1e ∼ x and t2e ∼ x, then t1e ∼ t2e by the transitivity of ∼. So, by strict

monotonicity, t1 = t2.
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Next, we show that u(·) represents �, which results from the following: ∀x1,x2 ∈ RL
+,

x1 � x2

⇔u(x1)e ∼ x1 � x2 ∼ u(x2)e

⇔u(x1)e � u(x2)e

⇔u(x1) ≥ u(x2).

Continuity of u(·): Consider {xm} with xm → x. Suppose to the contrary that u(xm) 9

u(x). Consider the case u′ := limk→∞ u(xm) > u(x). Then, by monotonicity, u′e ≻ u(x)e.

Let û := 1
2
[u′ +u(x)]. By monotonicity, ûe > u(x)e. Now, since u(xm) → u′ > û, ∃M such

that for all m > M , u(xm) > û. For all such m, xm ∼ u(xm)e ≻ ûe. By the continuity of

�, this would imply x � ûe, which in turn implies u(x)e ∼ x � ûe, a contradiction. The

other case u′ < u(x) can be dealt with similarly.

Example 1.3.2. (Non-representation of Lexicographic Preference by a Utility

Function) Lexicographic preference cannot be represented by any function whether contin-

uous or not.

The utility function is said to be unique up to the monotonic transformation in the

following sense.

Theorem 1.3.2. (Invariance of Utility Function to Positive Monotonic Trans-

forms) If u(x) represents some preference � and f : R → R is strictly increasing, then

v(x) = f(u(x)) represents the same preference.

Proof. This is because f(u(x)) ≥ f(u(y)) iff u(x) ≥ u(y).

The utility function inherits the properties of the preference relation that it represents.

Theorem 1.3.3. Let � be represented by u : RL
+ → R. Then,

1. u(x) is strictly increasing iff � is strictly monotonic.

2. u(x) is quasiconcave iff � is convex.

3. u(x) is strictly quasiconcave iff � is strictly convex.
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Remark 1.3.1. The strict quasiconcavity of u(x) can be checked by verifying if the principal

minors of bordered Hessian have determinants alternating in sign:
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∣
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∣
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∣

∣
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u2 u21 u22 u23

u3 u31 u32 u33
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∣
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∣

∣

∣
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< 0,

and so on, where uℓ = ∂u
∂xℓ

and uℓk = ∂2u
∂xℓ∂xk

.

• Marginal rate of substitution: given a bundle x = (x1, x2) ∈ R2
+,

MRS12 at x :=
∂u(x)/∂x1

∂u(x)/∂x2

− This measures the (absolute value of) slope of indifference curve at bundle y

− Invariance of MRS to monotone transforms: if v(x) = f(u(x)), then

∂v(x)/∂x1

∂v(x)/∂x2
=
f ′(u)∂u(x)/∂x1

f ′(u)∂u(x)/∂x2
=
∂u(x)/∂x1

∂u(x)/∂x2
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1.4 Utility Maximization and Optimal Choice

A fundamental hypothesis in the consumer theory is that a rational consumer will choose

a most preferred bundle from the set of affordable alternatives.

• Utility maximization problem: for p ≫ 0, and m > 0,

max
x∈R

L
+

u(x) s.t. x ∈ B(p, m) or p · x ≤ m.

− At least one solution exists since B(p, m) is compact and u(x) is continuous (by the

Weierstrass theorem).

− If u(x) is strictly quasiconcave, then the solution is unique.

− If u(x) is locally non-satiated, then the budget constraint is binding at the optimum.

• Marshallian demand correspondence or function:

x(p, m) = arg max
x∈R

L
+

u(x) s.t. p · x ≤ m

− x(tp, tm) = x(p, m): homogeneous of degree zero

− x(p, m) is continuous by the Berge’s Maximum Theorem.

• Lagrangian method and first-order condition:

L(x, λ) = u(x) + λ[m− p · x],

where λ ≥ 0 is Lagrangian multiplier associated with the budget constraint.

− If x∗ ∈ x(p, m), then there exists a Lagrange multiplier λ ≥ 0 such that for all

i = 1, · · · , L,
∂u(x∗)

∂xℓ

≤ λpℓ, with equality if x∗ℓ > 0.

− If x∗ ≫ 0, then it is called interior solution: for all ℓ and k,

∂u(x∗)

∂xℓ

= λpℓ,

so
∂u(x∗)/∂xℓ

∂u(x∗)/∂xk
=
pℓ

pk
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− This may not hold if the solution is not interior

MRS12(x
∗) >

p1

p2

− λ measures the change in utility from a marginal increase in m:

L
∑

ℓ=1

∂u(x(p, m))

∂xℓ

∂xℓ(p, m)

∂m
=

L
∑

ℓ=1

λpℓ
∂xℓ(p, m)

∂m
= λ,

→ λ: ‘shadow price’ of income.

Example 1.4.1. (Demand function for the Cobb-Douglas Utility Function) By

log transform f(u) = ln u, we have v(x) = f(u(x)) = α ln x1 + (1 − α) lnx2. Then, the

consumer solves

max
x1,x2

α ln x1 + (1 − α) ln x2 s.t. p1x1 + p2x2 = m,

which results in the following F.O.C.’s

α

x1
= λp1

1 − α

x2
= λp2.

So, at the optimum, p1x1 = α
1−α

p2x2, which can be substituted into the budget constraint

to yield

p1x1 =
α

1 − α
(m− p1x1).

Thus, we have x1(p, m) = αm
p1

and x2(p, m) = (1−α)m
p2

.

• Indirect utility function v : RL
+ × R+ → R is given by

v(p, m) = max
x∈RL

+

u(x) s.t. p · x ≤ m.
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− Hence, v(p, m) = u(x(p, m))

Proposition 1.4.1. (Properties of the Indirect Utility Function) If u(x) is con-

tinuous and locally non-satiated on RL
+ and (p, m) ≫ 0, then the indirect utility function

is

(1) Homogeneous of degree zero

(2) Nonincreasing in p and strictly increasing in m

(3) Quasiconvex in p and m.

(4) Continuous in p and m.

Proof. (1) Follows from v(tp, tm) = u(x(tp, tm)) = u(x(p, m)) = v(p, m).

(2) Note that B(p′, m) ⊆ B(p, m) for p′ ≥ p. Then,

v(p, m) = max
x∈B(p,m)

u(x) ≥ max
x∈B(p′,m)

u(x) = v(p′, m).

The strict monotonicity regarding m follows from a similar argument and the fact that

u(x) is locally non-satiated.

(3) Suppose that v(p, m) ≤ v̄ and v(p′, m′) ≤ v̄. Let (p′′, m′′) = (tp + (1 − t)p′, tm+ (1 −

t)m′). We need to show that v(p′′, m′′) ≤ v̄

Let us first show that B(p′′, m′′) ⊆ B(p, m)∪B(p′, m′). Suppose not. There must exist

an x such that (tp + (1 − t)p′) · x ≤ tm + (1 − t)m′ but p · x > m and p′ · x > m′. Two

inequalities imply

tp · x > tm

(1 − t)p′ · x > (1 − t)m′,

which sum to

(tp + (1 − t)p′) · x > tm+ (1 − t)m′,

a contradiction.

Now note that

v(p′′, m′′) = maxu(x) s.t. x ∈ B(p′′, m′′)

≤ maxu(x) s.t. x ∈ B(p, m) ∪ B(p′, m′)

≤ v̄.
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(4) Follows from the Berge’s Maximum Theorem.

1.5 Expenditure and Hicksian Demand Functions

In this section, we study the expenditure minimization problem: To minimize the expen-

diture needed to achieve a given level of utility.

• Expenditure minimization problem: Given a price vector p and utility level u ∈ R,

min
x∈R

+

L

p · x s.t. u(x) ≥ u

− The Hicksian demand is the solution of this problem and denoted as h(p, u).

− The expenditure function is defined as e(p, u) := p · h(p, u).

Proposition 1.5.1. (Properties of the Expenditure Function) If u(x) is continuous

and locally non-satiated on RL
+ and p ≫ 0, then e(p, u) is

(1) Homogeneous of degree 1 in p.

(2) Strictly increasing in u and nondecreasing in p.

(3) Continuous in p and u.

(4) Concave in p.

If, in addition, u(x) is strictly quasiconcave, we have

(5) Shephard’s lemma: hℓ(p, u) =
∂e(p, u)

∂pℓ
, ∀ℓ

Proof. We only prove (1), (4), and (5).

(1) We first prove that h(p, u) is homogeneous of degree zero in p, that is h(tp, u) = h(p, u):

h(p, u) = arg min
x∈R

L
+

p · x s.t. u(x) ≥ u

=arg min
x∈RL

+

tp · x s.t. u(x) ≥ u = h(tp, u).
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Thus,

e(tp, u) = tp · h(tp, u) = tp · h(p, u) = te(p, u).

(4) Fix utility level at u, and let p′′ = tp + (1 − t)p′ and x′′ = h(p′′, u). Then, we have

e(p′′, u) = p′′ · x′′

= tp · x′′ + (1 − t)p′ · x′′

≥ te(p, u) + (1 − t)e(p′, u),

where the last inequality follows since p · x′′ ≥ e(p, u) and p′ · x′′ ≥ e(p′, u).

(5) For any price vector p, consider p′ such that p′ℓ > pℓ and p′k = pk, ∀k 6= ℓ. We have the

following inequality:

e(p′, u) − p′ · h(p, u) ≤ 0 = e(p, u) − p · h(p, u)

or e(p′, u) − e(p, u) ≤ (p′ℓ − pℓ)hℓ(p, u).

Similarly, we have

e(p′, u) − e(p, u) ≥ (p′ℓ − pℓ)hℓ(p
′, u).

Combining two inequalities yields

hℓ(p, u) ≤
e(p′, u) − e(p, u)

p′ℓ − pℓ
≤ hℓ(p

′, u).

So, by the continuity of hℓ(p, u), limp′
ℓ
ցpℓ

e(p′,u)−e(p,u)
p′

ℓ
−pℓ

= hℓ(p, u). A parallel argument

shows limp′
ℓ
րpℓ

e(p′,u)−e(p,u)
p′

ℓ
−pℓ

= hℓ(p, u). Thus, we have ∂e(p,u)
∂pℓ

= hℓ(p, u).

Remark 1.5.1. The property (5) can also be derived using the envelope theorem: for some

λ ≥ 0,

e(p, u) = min
x∈R

L
+

L(x, λ) = min
x∈R

L
+

p · x + λ(u− u(x)).

Thus, by the envelope theorem,

∂e(p, u)

∂pℓ
=
∂L(x, u)

∂pℓ

∣

∣

∣

∣

x=h(p,u)

= hℓ(p, u).
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1.6 Some Important Identities

Indeed, the utility maximization and the expenditure minimization problems are closely re-

lated, which can be seen through the relationships between the value and solution functions

resulting from solving two problems.

Theorem 1.6.1. (Relationship between Indirect Utility and Expenditure Func-

tions) Suppose that the utility function is continuous and strictly increasing. Then, for all

p ≫ 0, m, and u,

(1) e(p, v(p, m)) ≡ m.

(2) v(p, e(p, u)) ≡ u.

Proof. Note that, by definition, we have (i) e(p, v(p, m)) ≤ m since m is large enough to

achieve v(p, m) and (ii) v(p, e(p, u)) ≥ u since e(p, u) achieves at least u.

(1) If e(p, v(p, m)) < m, then m is more than enough to achieve v(p, m) so extra money

could be used to buy some more bundle, which, by strict monotonicity, will result in a

higher utility, a contradiction.

(2) If v(p, e(p, u)) > u, then for small ǫ > 0, v(p, e(p, u) − ǫ) > u due to the continuity of

the indirect utility function (which is due to the continuity of utility function). But this

means that the money needed to achieve u is at most e(p, u) − ǫ, a contradiction.

This leads to the duality between Marshallian and Hicksian demand functions.

Theorem 1.6.2. (Duality between Marshallian and Hicksian Demand Functions)

Suppose that the utility function is continuous and strictly increasing. Then, for all p ≫ 0,

m, and u,

(1) x(p, m) ≡ h(p, v(p, m))

(2) h(p, u) ≡ x(p, e(p, u))

Proof. (1) Note that u(x(p, m)) = v(p, m) and, by the above theorem, e(p, v(p, m)) ≡

m = p · x(p, m). Thus, x(p, m) solves

min
x∈R

L
+

p · x s.t. u(x) ≥ v(p, m),
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which implies that x(p, m) ≡ h(p, v(p, m)).

(2) Note that e(p, m) = p · h(p, u) and, by the above theorem, v(p, e(p, u)) ≡ u =

u(h(p, u)). Thus, h(p, u) solves

max
x∈RL

+

u(x) s.t. p · x ≤ e(p, u),

which implies that h(p, u) ≡ x(p, e(p, u)).

One nice application of the above identities is the Roy’s identity.

Theorem 1.6.3. (Roy’s Identity) If x(p, m) is the Marshallian demand function, then

xℓ(p, m) = −

∂v(p,m)
∂pℓ

∂v(p,m)
∂m

,

provided that the RHS is well defined and pℓ > 0 and m > 0.

Proof. Remember the identity, u ≡ v(p, e(p, u)). Differentiate this with pℓ and evaluate it

at u = v(p, m) to get

0 ≡
∂v(p, m)

∂pℓ

+
∂v(p, m)

∂m

∂e(p, v(p, m))

∂pℓ

.

Thus, we have

xℓ(p, m) ≡ hℓ(p, v(p, m)) =
∂e(p, v(p, m))

∂pℓ

≡ −
∂v(p, m)/∂pℓ

∂v(p, m)/∂m
,

where the first identity is due to (1) of Theorem 1.6.2 while the first equality is due to the

Shepard’s Lemma.

There is another proof of Roy’s identity, which uses the envelope theorem applied to

the indirect utility function. Try it for yourself.

1.7 Properties of Demand Functions

Proposition 1.7.1. (Properties of Hicksian demand) The substitution matrix defined

as
(

∂hℓ

∂pk

)

ℓ,k
satisfies
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(1)

(

∂hℓ

∂pk

)

ℓ,k

=

(

∂2e

∂pℓ∂pk

)

ℓ,k

.

(2)

(

∂hℓ

∂pk

)

ℓ,k

is negative semidefinite.

(3)

(

∂hℓ

∂pk

)

ℓ,k

is symmetric.

(4)
L
∑

k=1

∂hℓ

∂pk

pk = 0, ∀ℓ.

Proof. (1) follows from

(

∂hℓ

∂pk

)

ℓ,k

=

(

∂

∂pk

(

∂e

∂pℓ

))

ℓ,k

=

(

∂2e

∂pℓ∂pk

)

ℓ,k

.

(2) and (3) follow from (1) and the fact that since e(p, u) is a twice continuously differen-

tiable concave function, its Hessian is symmetric and negative semidefinite.

(4) Note that hℓ(tp, u) = hℓ(p, u). Differentiating both sides with t yields the result.

From this , we have the following corollary

Corollary 1.7.1. (Nice Features of Hicksian Demand) For each good ℓ, it holds that

(1)
∂hℓ

∂pℓ
≤ 0: (compensated) own price effect is nonpositive.

(2)
∂hℓ

∂pk
=
∂hk

∂pℓ
for all k 6= ℓ: cross price effects are symmetric.

(3)
∂hℓ

∂pk
≥ 0 for some k 6= ℓ: each good has at least one substitute.

Theorem 1.7.1. (Slutsky Equation)

∂xℓ(p, m)

∂pk
=
∂hℓ(p, v(p, m))

∂pk
−
∂xℓ(p, m)

∂m
xk(p, m)

Proof. Let x∗ := x(p, m) and u∗ := u(x∗). By the above identity,

hℓ(p, u
∗) ≡ xℓ(p, e(p, u

∗)).
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Differentiating this with pk yields

∂hℓ(p, u
∗)

∂pk

=
∂xℓ(p, e(p, u

∗))

∂pk

+
∂xℓ(p, e(p, u

∗))

∂m

∂e(p, u∗)

∂pk

. (1.7.1)

Now, by the Shephard’s Lemma and the identity,

∂e(p, u∗)

∂pk

= hk(p, u
∗) = hk(p, v(p, m)) = xk(p, m).

Plugging this into (1.7.1) yields

∂hℓ(p, u
∗)

∂pk
=
∂xℓ(p, e(p, u

∗))

∂pk
+
∂xℓ(p, e(p, u

∗))

∂m
xk(p, m), (1.7.2)

which, by rearrangement, leads to the result.

• According to this theorem, a price change involves two effects:

−
∂hℓ(p, v(p, m))

∂pk
: substitution effect which measures the change in demand due to the

change in relative prices

−
∂xℓ(p, m)

∂m
xk(p, m): income effect which measures the change in demand due to the

change in the ‘purchasing’ power

Corollary 1.7.2. (Symmetric and Negative Semidefinite Slustky Matrix) The

Slutsky matrix defined as

S(p, m) :=

(

∂xℓ(p, m)

∂pk

+ xk(p, m)
∂xℓ(p, m)

∂m

)

ℓ,k

is symmetric and negative semidefinite.

Proof. From the equation (1.7.2) above, letting u∗ := v(p, m),

(

∂xℓ(p, m)

∂pk
+ xk(p, m)

∂xℓ(p, m)

∂m

)

ℓ,k

=

(

∂hℓ(p, u
∗)

∂pk

)

ℓ,k

,

which is symmetric and negative semidefinite by Proposition 1.7.1.
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1.8 Money Metric (Indirect) Utility Functions

From the expenditure function, we can construct some other functions which will prove

useful for the welfare analysis.

• The money metric utility function is defined by

m(p,x) := e(p, u(x)).

− This measures how much money the consumer would need to achieve the same utility

as he could with the bundle x.

− Note that m(p,x) is monotonic, homogeneous of degree one, and concave in p.

− For a fixed p, m(p,x) is a monotonic transform of the utility function and is therefore

itself a utility function.

• Money metric indirect utility function is defined by

µ(p;q, m) := e(p, v(q, m)),

− This measures the amount of money the consumer would need at price p to achieve

the same utility as he could under the prices q and income m.

− For a fixed p, µ(p;q, m) is a monotone transform of the indirect utility function.

− Both money metric and money metric indirect utility functions are not subject to the

monotone transform of the underlying utility function.
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Chapter 2

Topics in Consumer Theory

2.1 Integrability

• If a demand function x(p, m) ∈ C1 is generated by rational preference, then it satisfies

(P.1) Homogeneity: x(tp, tm) = x(p, m).

(P.2) Budget Balancedness (or Walras’ Law): p · x(p, m) = m.

(P.3) Symmetry: S(p, m) is symmetric.

(P.4) Negative Semidefinite: S(p, m) is negative semidefinite.

• Integrability problem: ‘does the inverse hold?’

− If we observe a demand function x(p, m) that satisfies properties (P.1)−(P.4) above,

then can we find preference that generated x(p, m)?

− The answer is ‘yes’ according to Antonelli (1886) and Hurwicz and Uzawa (1971).

• How then can we find such preference? → 2 steps

− Recover e(p, u) from x(p, m)

− Recover preferences from e(p, u)

The following proposition tells us how to recover preference from e(p, u).

17



Proposition 2.1.1. Given e(p, u), define

Vu := {x ∈ RL
+|p · x ≥ e(p, u), ∀p ≫ 0}.

Then, for each utility u ∈ R, Vu is an upper contour set in the sense that

e(p, u) = min
x∈RL

+

p · x s.t. x ∈ Vu.

Proof. From the definition of Vu, e(p, u) ≤ min{p · x : x ∈ Vu}. We need to prove that

e(p, u) ≥ min{p · x|x ∈ Vu}.

For any p and p′, the concavity of e(p, u) in p implies that

e(p′, u) ≤ e(p, u) + ∇pe(p, u) · (p
′ − p),

where ∇pe(p, u) := ( ∂e
∂p1
, · · · , ∂e

∂pL
). Since e(p, u) is homogeneous of degree one in p,

Euler’s formula tells us that e(p, u) = ∇pe(p, u) ·p. Thus, e(p′, u) ≤ ∇pe(p, u) ·p
′ for all

p′, which means that ∇pe(p, u) ∈ Vu. It follows that min{p ·x|x ∈ Vu} ≤ p ·∇pe(p, u) =

e(p, u).

When preference is convex When preference is not convex

• How to recover e(p, u) from x(p, m)

− For a fixed u0 and (p0, m0), by Shephard’s Lemma, we can consider the following

system of partial differential equations:

∂e(p, u0)

∂p1
= h1(p, u

0) = x1(p, e(p, u
0))

... (2.1.1)

∂e(p, u0)

∂pL

= hL(p, u0) = xL(p, e(p, u0)),

18



with initial condition, e(p0, u0) = m0.

− Frobenius’ theorem tells us that a solution exists iff the L×L derivative matrix of the

functions on the the right hand side is symmetric, that is

(

∂xℓ(p, e(p, u
0))

∂pk
+
∂xℓ(p, e(p, u

0))

∂m

∂e(p, u0)

∂pk

)

ℓ,k

is symmetric.

− Thus, the necessary and sufficient condition for the recovery of an underlying expen-

diture function is the symmetry and negative semidefiniteness of the Slutsky matrix.

Example 2.1.1. Suppose that L = 3 and a consumer’s demand is summarized by

xℓ(p, m) = αℓ
m

pℓ
, ℓ = 1, 2, 3.

One can easily check that this demand function satisfies the integrability condition (P.1)−(P.4).

Thus, we can be sure that there exists an underlying preference which generates this de-

mand. In order to recover the expenditure function, one can apply (2.1.1) to have

∂e(p, u)

∂pℓ
= αℓ

e(p, u)

pℓ
, ℓ = 1, 2, 3.

This can be rewritten as
∂ ln(e(p, u))

∂pℓ

=
αℓ

pℓ

, ℓ = 1, 2, 3,

which implies (how?) that for some function c(·),

ln(e(p, u)) = α1 ln(p1) + α2 ln(p2) + α3 ln(p3) + c(u).

Thus, we have

e(p, u) = exp[c(u)]pα1

1 p
α2

2 p
α3

3 .

But there is no problem (why?) with replacing exp[c(u)] with u to finally obtain

e(p, u) = upα1

1 p
α2

2 p
α3

3 .

Think for yourself about how to obtain the utility function from e(p, u).
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2.2 Welfare Evaluation of Price Changes

Let us assume that a change from (p0, m0) to (p1, m1) is proposed.

• An easy way to measure the welfare change involved in moving from (p0, m0) to (p1, m1)

is to calculate

v(p1, m1) − v(p0, m0).

− Subject to the monotone transformation

− Not good for the cost-benefit analysis

• Instead, we use

µ(q;p1, m1) − µ(q;p0, m0) = e(q, u1) − e(q, u0),

where u0 = v(p0, m0) and u1 = v(p1, m1).

− This measures the difference between the utilities v(p0, m0) and v(p1, m1) in monetary

terms using q as the base price.

− Equivalent Variation (EV): Setting q = p0,

EV := µ(p0;p1, m1) − µ(p0;p0, m0) = µ(p0;p1, m1) −m0,

which measures what income change at the current prices would be equivalent to the

proposed change in terms of its impact on utility.

− Compensating Variation (CV): Setting q = p1,

CV := µ(p1;p1, m1) − µ(p1;p0, u0) = m1 − µ(p1;p0, m0),

which measures what income change at the new prices would be necessary to compen-

sate the consumer for the proposed change.

• Suppose that p0
1 > p1

1 while p0
−1 = p1

−1 = p−1 and m0 = m1 = m. Then, EV and CV can

be alternatively expressed as

EV = e(p0, u1) − e(p1, u1) =

∫ p1
1

p0
1

h1(p1,p−1, u
1)dp1

CV = e(p0, u0) − e(p1, u0) =

∫ p1
1

p0
1

h1(p1,p−1, u
0)dp1.
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• Often, the change in consumer’s surplus due to the price change is defined as

CS :=

∫ p1
1

p0
1

x1(p1,p−1, m)dp1,

− This is the area to the left of the Marshallian demand curve between p0
1 and p1

1.

− If the good is normal, then we have EV > CS > CV .
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2.3 Revealed Preference

• Question: Can we derive the above predictions for a consumer’s market behavior by

imposing a few simple and sensible assumptions (or axioms) on the consumer’s observable

choices themselves, rather than on his unobservable preferences?

− ‘Yes’ if the consumer’s observable choices satisfy the certain axioms.

− The basic idea is simple: If the consumer buys one bundle instead of another affordable

bundle, then the first bundle is considered to be revealed preferred to the second.

• Let (p,x) denote a price-quantity data such that the bundle x is chosen under the price

p.

− Weak Axiom of Reveal Preference (WARP): The observations satisfy WARP if p ·x′ ≤

p · x and x 6= x′, then we must have p′ · x > p′ · x.

− Strong Axiom of Revealed Preference (SARP): The observations satisfy SARP if for

any list (p1,x1), · · · , (pn,xn), with the property that xm 6= xm+1 for all m ≤ n − 1,

and

pm · xm+1 ≤ pm · xm for all m ≤ n− 1,

then we must have pn · x1 > pn · xn.

− Generalized Axiom of Revealed Preference (GARP): The observations satisfy GARP if

for any list (p1,x1), · · · , (pn,xn), with the property that xm 6= xm+1 for all m ≤ n− 1,

and

pm · xm+1 ≤ pm · xm for all m ≤ n− 1,

we must have pn · x1 ≥ pn · xn.

− Clearly, SARP is stronger than WARP while it is only slightly stronger than GARP.

Whether these axioms are satisfied is closely related to whether there exists a utility function

(or preference) that generates (or rationalizes) the data.

Proposition 2.3.1. Let x(p, m) denote the choice made by the consumer who faces prices

p and income m. If x(p, m) satisfies WARP and budget balancedness, then it must have

homogeneity of degree zero and negative semidefinitenes of the Slutsky matrix.
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Proof. We only prove the negative semidefiniteness. Fix p ≫ 0, m > 0, and let x :=

x(p, m). Then, for any other price vector p′and x′ := x(p′,p′ · x), WARP implies that

p · x ≤ p · x′ (2.3.1)

with inequality being strict if x′ 6= x. By budget balancedness,

p′ · x = p′ · x′. (2.3.2)

Subtracting (2.3.1) from (2.3.2) yields1

(p′ − p) · x ≥ (p′ − p) · x′ = (p′ − p) · x(p′,p′ · x). (2.3.3)

Letting p′ = p + tz, where t > 0 and z ∈ RL is arbitrary, (2.3.3) becomes

z · x ≥ z · x(p + tz, (p + tz) · x). (2.3.4)

This means that for small t̄ > 0 so that p + tz ≫ 0, the function f : [0, t̄] → R defined by

f(t) := z · x(p + tz, (p + tz) · x)

is maximized at t = 0, which implies f ′(0) ≤ 0 or

f ′(0) =
∑

ℓ

∑

k

zℓ

[

∂xℓ(p, m)

∂pk
+ xk(p, m)

∂xℓ(p, m)

∂m

]

zk = z · S(p, m)z ≤ 0.

Thus, S(p, m) is negative semidefinite.

• If x(p, m) satisfies SARP, it must also have the symmetric Slutsky matrix → SARP is

essentially equivalent to the existence of a utility function that rationalizes the data.

• For a finite data set, GARP is equivalent to the existence of a locally nonsatiated,

continuous, increasing, and concave utility function that rationalizes the data.

1This is sometimes called ‘law of compensated demand’ since it implies

(p′ − p) · (x′ − x) ≤ 0,

which says that prices and compensated demands move in the opposite direction.
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2.4 Aggregate Demand

Suppose that there are I consumers with Marshallian demand functions xi(p, m) for con-

sumer i = 1, · · · , I. In general, given prices p ∈ RL
+ and wealths (m1, · · · , mI), aggregate

demand is written as

x(p, m1, · · · , mI) =
I
∑

i=1

xi(p, mi).

When would the aggregate demand be as if it were generated by a single representative

consumer?

• One such case is where the aggregate demand can be expressed as a function of prices

and aggregate wealth,
∑I

i=1m
i:

x(p, m1, · · · , mI) = X(p,
I
∑

i=1

mi).

− What is required here is that for all wealth levels (m1, · · · , mI) and its differential

change (dm1, · · · , dmI) satisfying
∑I

i=1 dm
i = 0,

I
∑

i=1

∂xi
ℓ(p, m

i)

∂mi
dmi = 0, for every ℓ.

− This will hold if
∂xi

ℓ(p, m
i)

∂mi
=
∂xj

ℓ(p, m
j)

∂mj
, for all i, j

that is, the wealth effect must be the same across consumers.

Proposition 2.4.1. (Gorman Form Indirect Utility Function) A representative con-

sumer in the above sense exists if and only if every consumer has the following form of

indirect utility function:

vi(p, mi) = ai(p) + b(p)mi.

Proof. We only prove the sufficiency while the proof of necessity can be found in Deaton

and Muellbauer (1980). By Roy’s identity, consumer i’s demand for good ℓ takes the form

xi
ℓ(p, m

i) = ai
ℓ(p) + bℓ(p)mi,
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where

ai
ℓ(p) = −

∂ai(p)
∂pℓ

b(p)
and bℓ(p) = −

∂b(p)
∂pℓ

b(p)
.

Thus, the aggregate demand for good ℓ takes the form

Xℓ(p,
I
∑

i=1

mi) = −

[

I
∑

i=1

ai
ℓ(p) + bℓ(p)

(

I
∑

i=1

mi

)]

. (2.4.1)

This can be generated by a representative consumer whose indirect utility function is given

by

V (p, m) =
I
∑

i=1

ai(p) + b(p)m.

To verify this, apply Roy’s identity to V (p, m) to obtain the demand demand function

given in (2.4.1).

Example 2.4.1. Two utility functions whose indirect utility function is of Gorman form:

(1) Homothetic utility function: ui(x) = g(h(x)), where g is a strictly increasing function

and h is a function which is homogeneous of degree 1 → vi(p, m) = b(p)m.

(2) Quasi-linear utility function: ui(x) = x1 +wi(x2, · · · , xL) → vi(p, m) = m+ ai(p).
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Chapter 3

Choice under Uncertainty

3.1 Expected Utility Theory

Let us imagine a decision maker who faces a choice among a number of risky alterna-

tives. Each risky alternative results in one of outcomes 1 to N , following some probability

distribution over those outcomes. We call a risky alternative a lottery.

• A simple lottery L is a list L = (p1, · · · , pN) with pn ≥ 0 for all n and
∑

n pn = 1, where

pn is the probability of outcome n occurring.

Example 3.1.1. If the set of outcomes is {$0, $10, $100}, then L = (0.2, 0.8, 0) means

that the decision maker can obtain $0, $10 and $100 with probabilities 0.2, 0.8, and 0,

respectively. Then, L can be expressed using the following diagram

0.2
$ 0

0.8
$ 10L

0

$ 100

L

− Let L denote the set of all simple lotteries.

Example 3.1.2. In case of three outcomes, L can be represented by the simplex
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J
J
J
J

1

2 3

�
�
��
·

L = (p1, p2, p3)

− A compound lottery is a lottery whose outcomes are again lotteries: GivenK simple lot-

teries Lk = (pk
1, · · · , p

k
N), k = 1, · · · , K, the compound lottery is a list (L1, · · · , LK ;α1, · · · , αK),

where αk is the probability of lottery k occurring and
∑

k αk = 1.

αK

LK

α1

L1

...

...

Lk

• Let � denote the decision maker’s preference relation on L. We assume that � is complete

and transitive. In addition, we make the following assumptions:

− Reduction of compound lotteries : For any L,L′ ∈ L,

(L,L′, α, 1 − α) ∼αL+ (1 − α)L′

= (αp1 + (1 − α)p′1, · · · , αpN + (1 − α)p′N).

Example 3.1.3.
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0.3

0.7

0.2 $ 0

L
0.8

$ 10

0

$ 100

0.9 $ 0

0
$ 10

0.1

$ 100

L′

∼

0.41 $ 0

0.56
$ 10αL+ (1 − α)L′

0.03

$ 100

− Continuity : For any three lotteries L,L′, L′′ ∈ L satisfying L ≻ L′ ≻ L′′, there exists

α ∈ (0, 1) such that

αL+ (1 − α)L′′ ∼ L′.

− Independence: For any L,L′, L′′ ∈ L and α ∈ (0, 1), we have

L � L′ if and only if αL+ (1 − α)L′′ � αL′ + (1 − α)L′′.

In words, if we mix each of two lotteries with a third one, then the order of two mixtures

does not depend on the third lottery.

Example 3.1.4. Suppose that α = 1
2
. Then, 1

2
L + 1

2
L′′ can be considered as the

compound lottery arising from a coin toss where L (L′′) obtains if heads (tails) comes

up. The independence axiom requires

Tails

L′′

Heads

L

�

Tails

L′′

Heads

L′

if and only if L � L′
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Example 3.1.5. In general, the independence axiom requires that the indifference

curves are straight and parallel on the simplex corresponding to L.

J
J

J
J

J
J

J
J

J
J

J
J

J

6PPPPq

Direction of
Increasing
Preference

q qq
?

1
2
L+ 1

2
L′

�
�

�
�

�
�

�
�

�
�

�
�

�

L L′

L L′
� �

Violations of Independence Axiom

�
�

�
�

�
�

�
�

�
�

�
�

� J
J

J
J

J
J

J
J

J
J

J
J

J

aaaaaaa

6

HHHHHHj

Direction of
Increasing
Preference

L′′
�

�

@
@R

�

�
�/

1
3
L+ 2

3
L′′ 1

3
L′ + 2

3
L′′

− Best and worst lotteries: There exist two lotteries L̄ and
¯
L such that for all L ∈ L,

L̄ � L �
¯
L.

• The utility function u : L → R has the expected utility form if for every L ∈ L,

U(L) = u1p1 + · · ·uNpN , (3.1.1)

where un is the utility assigned to the nth outcome.

− U : L → R is called a von Neumann-Morgenstern (v.N-M) expected utility function

while uk is often called Bernoulli utility function in case each outcome is a monetary

value.

Theorem 3.1.1. (Expected Utility Theorem) The above assumptions are necessary

and sufficient for the preference � on L to admit a utility representation of the expected

utility form.

Proof. The proof of the necessity is straightforward. Below, we prove the sufficiency part.

First, it follows from the independence that for any α, β ∈ [0, 1],

βL̄+ (1 − β)
¯
L ≻ αL̄+ (1 − α)

¯
L if and only if β > α. (3.1.2)

By the continuity, for any L ∈ L, there exists an αL ∈ [0, 1] such that αLL̄+(1−αL)
¯
L ∼ L.

Also, such αL is unique due to (3.1.2).
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Consider the function U : L → R that assigns αL to each L ∈ L. Then, U(·) represents

� since for any two lotteries L,L′ ∈ L, we have

L � L′ if and only if αLL̄+ (1 − αL)
¯
L � αL′L̄+ (1 − αL′)

¯
L,

which, by (3.1.2), implies that L � L′ if and only if αL ≥ αL′ .

Next, we show that U(·) is linear, that is for any L,L′ ∈ L and any β ∈ [0, 1],

U(βL+ (1 − β)L′) = βU(L) + (1 − β)U(L′). (3.1.3)

First, L ∼ U(L)L̄ + (1 − U(L))
¯
L and L′ ∼ U(L′)L̄ + (1 − U(L′))

¯
L. Then, applying the

independence axiom (twice), we obtain

βL+ (1 − β)L′

∼β[U(L)L̄+ (1 − U(L))
¯
L] + (1 − β)L′

∼β[U(L)L̄+ (1 − U(L))
¯
L] + (1 − β)[U(L′)L̄+ (1 − U(L′))

¯
L],

which, by the reduction of compound lottery, is equivalent to

[βU(L) + (1 − β)U(L′)]L̄+ [1 − βU(L) − (1 − β)U(L′)]
¯
L.

Thus, (3.1.3) follows from the definition of U(·).

Finally, it is straightforward to obtain (3.1.1) from (3.1.3).(How?)

The v.N-M utility function is not unique up to the monotone transformation but unique

up to the affine transformation:

Proposition 3.1.1. The v.N-M utility functions U and Ũ represent the same preference

if and only if Ũ(L) = βU(L) + γ for some scalars β > 0 and γ.

Proof. We only prove the necessity. Consider any lottery L ∈ L and define λL ∈ [0, 1] by

U(L) = λLU(L̄) + (1 − λL)U(
¯
L). (3.1.4)

Thus,

λL =
U(L) − U(

¯
L)

U(L̄) − U(
¯
L)
.
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Since λLU(L̄) + (1− λL)U(
¯
L) = U(λLL̄+ (1− λL)

¯
L), we must have L ∼ λLL̄+ (1− λL)

¯
L.

Since Ũ is also linear and represents the same preference, we have

Ũ(L) = Ũ(λLL̄+ (1 − λL)
¯
L)

= λLŨ(L̄) + (1 − λL)Ũ(
¯
L)

= λL(Ũ(L̄) − Ũ(
¯
L)) + Ũ(

¯
L). (3.1.5)

Letting

β =
Ũ(L̄) − Ũ(

¯
L)

U(L̄) − U(
¯
L)

and

γ = Ũ(
¯
L) − U(

¯
L)
Ũ(L̄) − Ũ(

¯
L)

U(L̄) − U(
¯
L)
,

it is easy to show by comparing (3.1.4) and (3.1.5) that Ũ(L) = βU(L) + γ.

The following example casts doubt on the expected utility theory, especially the inde-

pendence assumption.

Example 3.1.6. (Allais Paradox) There are three monetary outcomes, $2.5 million, $0.5

million, and $0. You are subjected to two choice tests. The first one is to choose between

L1 = (0, 1, 0) and L′
1 = (0.10, 0.89, 0.01).

The second one is to choose between

L2 = (0, 0.11, 0.89) and L′
2 = (0.10, 0, 0.90).

People often exhibit L1 ≻ L′
1 and L′

2 ≻ L2. But if the expected utility theory holds true,

then L1 ≻ L′
1 implies that

U(0.5M) > 0.10U(2.5M) + 0.89U(0.5M) + 0.01U(0).

Adding 0.89U(0) − 0.89U(0.5M) to both sides, we get

0.11U(0.5M) + 0.89U(0) > 0.10U(2.5M) + 0.90U(0).

The following example casts doubt on whether people always assign (objective or sub-

jective) probabilities to the uncertain events.
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Example 3.1.7. (Ellsberg Paradox) You are told that an urn contains 300 balls. One

hundred of the balls are red and 200 are either blue or green. You are subjected to two

choice tests. The first one is to choose between

Gamble A: You receive $ 1000 if the ball is red.

Gamble B: You receive $ 1000 if the ball is blue

The second one is to choose between

Gamble C: You receive $ 1000 if the ball is not red.

Gamble D: You receive $ 1000 if the ball is not blue.

People often exhibit A ≻ B and C ≻ D. A ≻ B implies p(R)u(1000) > p(B)u(1000) or

p(R) > p(B) while C ≻ D implies that 1−p(R) > 1−p(B), a contradiction ! This paradox

suggests that people dislike ambiguity.

3.2 Risk Aversion

In case a lottery yields the monetary outcomes, the lottery can be represented by a cumu-

lative distribution function F : R → [0, 1]. We can extend the expected utility theory to

obtain the v.N-M utility function

U(F ) =

∫

u(x)dF (x),

where u(x) is a Bernoulli utility assigned to x amount of money.

• A decision maker is risk averse if for any lottery F,

∫

u(x)dF (x) ≤ u

(
∫

xdF (x)

)

.

− One way to see the worth of lottery F (·) is to look at the certainty equivalent, denoted

c(F, u) and defined by

u (c(F, u)) =

∫

u(x)dF (x).

− The followings are equivalent:

(1) The decision maker is risk averse.

(2) u(·) is concave.
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(3) c(F, u) ≤
∫

xdF (x).

Proof. (2) → (1): If u(·) is concave, then Jensen’s inequality immediately implies
∫

u(x)dF (x) ≤ u

(
∫

xdF (x)

)

. (3.2.1)

(1) → (3): By (3.2.1), we have

u(c(F, u)) =

∫

u(x)dF (x) ≤ u

(
∫

xdF (x)

)

,

so c(F, u) ≤
∫

xdF (x).

(3) → (2): Suppose that (2) does not hold. Then, there must exist x, y, and λ ∈ (0, 1)

such that

u(λx+ (1 − λ)y) < λu(x) + (1 − λ)u(y).

Now, consider a binary distribution F (·) according to which x is drawn with probability

λ while y is drawn with (1 − λ). Then,

u(λx+ (1 − λ)y) < λu(x) + (1 − λ)u(y) = u(c(F, u)).

Thus,
∫

xdF (x) = λx+ (1 − λ)y < c(F, u),

contradicting (3).

Example 3.2.1. (Demand for a Risky Asset) Suppose that there are two assets, a safe

asset with 1 dollar return per dollar and a risky one with a random return of z dollars per

dollar. Assume that
∫

zdF (z) > 1, meaning that a risk is actuarially favorable. Letting α

and β denote the amounts invested in the risky and safe assets, the utility maximization

problem of the investor with wealth w is

max
α,β≥0

∫

u(αz + β)dF (z) subject to α + β = w.

or

max
0≤α≤w

∫

u(w + α(z − 1))dF (z).

The Kuhn-Tucker first-order condition at the optimum α∗ is

φ(α∗) =

∫

u′(w + α∗(z − 1))(z − 1)dF (z)

{

≤ 0 if α∗ < w

≥ 0 if α∗ > 0.

33



Since φ(0) > 0, α∗ = 0 is not optimal, which implies that if a risk is actuarially favorable,

then a risk averse investor will always accept at least a small amount of the risk.

• The degree of risk aversion is measured by the Arrow-Pratt coefficient of absolute risk

aversion: At wealth level x,

rA(x) = −u′′(x)/u′(x).

− Given two utility functions u1(·) and u2(·), the followings are equivalent:

(1) rA(x, u2) ≥ rA(x, u1) for every x,

(2) u2(x) = ψ(u1(x)) for some increasing concave function ψ(·).

(3) c(F, u2) ≤ c(F, u1) for any F (·).

So, we say that u2(·) is more risk averse than u1(·).

− The Bernoulli utility function u(·) is said to exhibit

decreasing absolute risk aversion (DARA)

constant absolute risk aversion (CARA)

increasing absolute risk aversion (IARA)











if rA(x, u) is











decreasing in x

constant in x

increasing in x

− The (CARA) utility function takes the following form:

u(x) = −e−ax, a > 0 → rA(x, u) = a, ∀x.

Example 3.2.2. (Example 3.2.1 Continued) Suppose that the risk averse investor has

a DARA Bernoulli utility function. We ask whether he invests more as he holds more

wealth. Consider two wealth levels w1 and w2 > w1. Define u1(x) := u(w1 + x) and

u2(x) := u(w2 + x). Because of the DARA property, u1(x) = ψ(u2(x)) for some concave

function ψ(·). Then, the utility maximization problem of the investor with wealth wi is

max
0≤α≤wi

∫

u(wi + α(z − 1))dF (z) =

∫

ui(α(z − 1))dF (z).

The first order condition for the investor with w1 is

φ1(α
∗
1) =

∫

(z − 1)u′1(α
∗
1(z − 1))dF (z) = 0.

For the investor with w2, it is
∫

(z − 1)u′2(α
∗
2(z − 1))dF (z) = 0.
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Since φ1(·) is deceasing due to the concavity of u1(·), we will have α∗
2 > α∗

1 if φ1(α
∗
2) < 0,

which holds because

φ1(α
∗
2) =

∫

(z − 1)ψ′(u2(α
∗
2(z − 1)))u′2(α

∗
2(z − 1))dF (z)

< ψ′(u2(0))

∫ 1

−∞

(z − 1)u′2(α
∗
2(z − 1))dF (z)

+ ψ′(u2(0))

∫ ∞

1

(z − 1)u′2(α
∗
2(z − 1))dF (z)

= ψ′(u2(0))

∫

(z − 1)u′2(α
∗
2(z − 1))dF (z) = 0.

Thus, the demand of risky asset is increasing in wealth, i.e., the risky asset is a normal

good if the investor has a DARA utility function. Also, the risky asset is an inferior good

if the investor has an IARA utility function.

• Another useful measure of risk aversion is the coefficient of relative risk aversion at x

defined as rR(x, u) := −xu′′(x)/u′(x).

− Constant relative risk aversion (CRRA) utility function takes the following form:

u(x) = βx1−ρ + γ, β > 0 → rR(x, u) = β, ∀x.

− Since rR(x) = xrA(x), a consumer who has DRRA utility function must exhibit DARA.

Example 3.2.3. (Example 3.2.1 Continued) The proportion α∗/w of wealth invested

in the risky asset is decreasing (increasing) with w if the investor has an increasing relative

risk aversion or IRRA (DRRA) utility function.

3.3 Comparison between Lotteries

Now that we have learned how to compare risk attitudes, let us learn how to compare

between lotteries.

• The lottery F (·) first-order stochastically dominates (FOSD) the lottery G(·) if, for every

nondecreasing function u : R→ R, we have
∫

u(x)dF (x) ≥

∫

u(x)dG(x).
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− The following holds:

F (·) FOSD G(·) if and only if F (x) ≤ G(x) for every x,

that is the probability of getting at least x is higher under F (·) than under G(·).

Graphically,

− FOSD does not mean that the payoff drawn from F (·) is always higher than the one

from G(·).

− FOSD is stronger than requiring that the mean is higher under F (·) than under G(·).

We can also compare two lotteries with the same mean in terms of their riskiness.

• For two lotteries F (·) and G(·) with the same mean, F (·) second-order stochastically

dominates (SOSD) (or is less risky than) G(·) if for every nondecreasing concave function

u : R → R, we have
∫

u(x)dF (x) ≥

∫

u(x)dG(x).

− FOSD implies SOSD.

− Given a lottery F (·), its mean-preserving spread is another lottery G(·) whose payoff

is y = x+z, where x is first drawn from F (·) and then z from a distribution Hx(·) with
∫

zdHx(z) = 0.

− The followings are equivalent:

(1) F (·) SOSD G(·)

(2) G(·) is a mean-preserving spread of F (·).

(3)
∫ x

0
G(t)dt ≥

∫ x

0
F (t)dt for all x.
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Proof. We only prove (2) → (1). If G(·) is a mean-preserving spread of F (·), then for

any concave function u(·),

∫

u(y)dG(y) =

∫
(
∫

u(x+ z)dHx(z)

)

dF (x)

≤

∫

u

(
∫

(x+ z)dHx(z)

)

dF (x)

=

∫

u(x)dF (x),

where the inequality is due to the Jensen’s inequality.
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Chapter 4

Producer Theory

4.1 Production

• Consider an economy with L commodities.

− y = (y1, · · · , yL) ∈ RL: A production plan, where if yℓ > 0 (yℓ < 0), then |yℓ| units of

ℓth commodity are produced (used) as an output (input).

− A given technology is described by the production set denoted Y ⊂ RL, which is the

set of all feasible production plans.

• We assume that

− Y is nonempty and closed.

− Free disposal: If y ∈ Y and y′ ≤ y (so that y′ produces at most the same amount of

outputs using at least the same amount of inputs), then y′ ∈ Y .

• With only one output and m inputs, the technology can also be described by the input

requirement set :

V (y) := {x ∈ Rm
+ |(y,−x) ∈ Y },

which is the set of all input bundles x that produce at least y units of output.

− f(x) := max{y ∈ R+ : x ∈ V (y)}: Production function.

− Q(y) := {x ∈ Rm
+ |f(x) = y}: Isoquant for output level y.
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− fℓ(x) :=
∂f(x)

∂xℓ

: Marginal product of input ℓ.

− MRTSℓk(x) :=
∂f(x)/∂xℓ

∂f(x)/∂xk
: Marginal rate of technical substitution (MRTS) between

inputs ℓ and k when the current input vector is x.

Example 4.1.1. (Cobb-Douglas Technology) Let there be one output and two inputs,

and a be a parameter such that 0 < a < 1. The Cobb-Douglas technology is defined as

follows:

Y = {(y,−x1,−x2) ∈ R3|y ≤ xa
1x

1−a
2 }

V (y) = {(x1, x2) ∈ R2
+|y ≤ xa

1x
1−a
2 }

f(x) = xa
1x

1−a
2

Q(y) = {(x1, x2) ∈ R2
+|y = xa

1x
1−a
2 }

Y (x̄2) = {(y,−x1,−x2)|y ≤ xa
1x

1−a
2 , x2 = x̄2}.

• Elasticity of substitution between input ℓ and k at the point x is defined as

σℓk :=
d ln(xk/xℓ)

d ln(fℓ(x)/fk(x))
=
d(xk/xℓ)

xk/xℓ

fℓ(x)/fk(x)

d(fℓ(x)/fk(x))
.

− The larger σℓk is, the easier substitution between inputs ℓ and k.

− The elasticity of substitution is constant for the CES production function defined by

f(x) =

(

m
∑

ℓ=1

αℓx
ρ
ℓ

)1/ρ

, where

m
∑

ℓ=1

αℓ = 1.

Proof. Note first that fℓ(x)
fk(x)

=
αℓx

ρ−1

ℓ

αkxρ−1

k

, which implies that

ln

(

fℓ(x)

fk(x)

)

= ln

(

αℓ

αk

)

+ (1 − ρ) ln

(

xk

xℓ

)

.

Thus,

σℓk :=
d ln(xk/xℓ)

d ln(fℓ(x)/fk(x))
=

1

1 − ρ
,

which is immediate from the linear relationship between ln

(

xk

xℓ

)

and ln

(

fℓ(x)

fk(x)

)

.

− Some well-known production functions belong to the CES class:
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(1) ρ = 1 → f(x) =
∑m

ℓ=1 αℓxℓ, which is linear.

(2) ρ = 0 → f(x) =
∏m

ℓ=1 x
αℓ

ℓ , which is Cobb-Douglas.

(3) ρ = −∞ → f(x) = min{x1, · · · , xm}, which is Leontief.

• Returns to scale: A production function f(x) has the property of (globally)

(1) Constant returns to scale if f(tx) = tf(x) for all t > 0 and all x.

(2) Increasing returns to scale if f(tx) > tf(x) for all t > 0 and all x.

(3) Decreasing returns to scale if f(tx) < tf(x) for all t > 0 and all x.

− A local measure of returns to scale is often useful:

e(x) :=
d ln[f(tx)]

d ln(t)

∣

∣

∣

∣

t=1

=
df(tx)

dt

t

f(tx)

∣

∣

∣

∣

t=1

=

∑m
ℓ=1 fℓ(x)xℓ

f(x)
,

which is called the elasticity of scale at the point x.

4.2 Profit Maximization

Let us consider a competitive firm that takes the prices as given.

• Given a price vector p ≫ 0, the firm’s profit maximization problem (PMP) is

max
y

p · y s.t. y ∈ Y.

− y(p) : The set of profit-maximizing production plans, which is singleton if Y is strictly

convex.

− π(p) := p · y(p): Maximized profit, called profit function.

• In case of one output and m inputs, PMP can be alternatively expressed as

max
x

pf(x) −w · x,

where w is the input price vector.

− Thus, y(p) = (y(p,w),−x(p,w)), where y(p,w) and x(p,w) are called the output

supply and factor demand functions, respectively.
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− Assuming that at the optimum, x∗ ≫ 0, the first order condition requires

p
∂f(x∗)

∂xℓ

= wℓ for every ℓ = 1, · · · , m,

which states that the value of the marginal product of input ℓ must equal the cost per

unit of input ℓ.

− This implies that

MRTSℓk(x
∗) =

fℓ(x
∗)

fk(x∗)
=
wℓ

wk
, ∀k, ℓ.

Theorem 4.2.1. (Properties of Profit Function) If Y is closed and satisfies the free

disposal, then the profit function π(p) satisfies

(1) If p′ℓ ≥ pℓ for all output ℓ and p′k ≤ pk for all input k, then π(p′) ≥ π(p).

(2) Homogeneous of degree one.

(3) Convex in p.

(4) Hotelling’s lemma: For all ℓ = 1, · · · , L,

∂π(p)

∂pℓ
= yℓ(p). (4.2.1)

Proof. (1) Since p′ℓ ≥ pℓ for all l for which yℓ(p) ≥ 0, and p′k ≤ pk for all k for which

yk(p) ≤ 0, we have p′ · y(p) ≥ p · y(p). So, we have

π(p′) = p′ · y(p′) ≥ p′ · y(p) ≥ p · y(p) = π(p),

where the first inequality holds since y(p′) is the profit-maximizing vector under p′.

(2) follows easily from the fact that y(tp) = y(p), that is, y(p) is homogeneous of degree

zero.

(3) Given two price vectors p and p′, let p′′ = tp + (1 − t)p′. Then, we have

π(p′′) = p′′·y(p′′) = (tp+(1−t)p′)·y(p′′) = tp·y(p′′)+(1−t)p′·y(p′′) ≤ tπ(p)+(1−t)π(p′),

where the inequality is due to the fact that p · y(p′′) ≤ π(p) and p′ · y(p′′) ≤ π(p′).
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(4) The proof is quite similar to that of Shephard’s lemma. A simpler proof can be provided

if π(p) is assumed to be differentiable. Suppose that y∗ is the profit-maximizing vector

under p∗. Then, define the function

g(p) := π(p) − p · y∗.

Note that g(p) reaches a minimum value of 0 at p = p∗. Thus, the first-order conditions

for a minimum require that

∂g(p∗)

∂pℓ
=
∂π(p∗)

∂pℓ
− y∗ℓ = 0, ∀ℓ = 1, · · · , L.

Since this is true for all choices of p∗, the proof is done.

Remark 4.2.1. Hotelling’s lemmas tells us that

(

∂2π

∂pℓ∂pk

)

ℓ,k

=

(

∂yℓ

∂pk

)

ℓ,k

.

Since the profit function is convex, we have

∂yℓ(p)

∂pℓ

=
∂2π(p)

∂p2
ℓ

≥ 0.

That is, the own price effect is non-negative (non-positive) if the good is output (input).

But there is an easier way to show this. Let us consider two price vectors p and p′, and

let y = y(p) and y′ = y(p′). Then,

p · (y − y′) ≥ 0

and p′ · (y′ − y) ≥ 0,

which add up to

(p′ − p) · (y′ − y) ≥ 0.

Letting p′k = pk for k 6= ℓ, we have

(p′ℓ − pℓ)(y
′
ℓ − yℓ) ≥ 0.
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4.3 Cost Minimization

In this part, we study the cost-minimizing behavior of the firm. Note that to minimize the

cost is necessary for maximizing the profit, whether the firm is competitive or not. From

now on, we only consider the case where there are only one output and m inputs.

• Given input price vector w ≫ 0 and output level y, the firm’s cost minimization problem

is

min
x

w · x s.t. f(x) = y.

− x(w, y) : Cost-minimizing input vector, called conditional factor demand function

− c(w, y) := w · x(w, y): Minimized cost, called cost function

− mc(w, y) := ∂c(w,y)
∂y

: Marginal cost.

Theorem 4.3.1. If f is continuous and strictly increasing, then c(w, y) is

(1) Homogeneous of degree 1 in w.

(2) Strictly increasing in y and nondecreasing in w.

(3) Continuous in w and y.

(4) Concave in w.

If, in addition, f(x) is strictly quasiconcave, we have

(5) Shephard’s lemma: xℓ(w, y) =
∂c(w, y)

∂wℓ
, ∀ℓ = 1, · · · , m.

Proof. Identical to that of Proposition 1.5.1.

Remark 4.3.1. The structural similarity between the firm’s cost-minimization problem

and the consumer’s expenditure-minimization problem implies:

(1) the conditional factor demand function has the same properties as the Hicksian de-

mand function does and

(2) the production function can be recovered from the cost function by applying the same

integrability argument.
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• Given the cost function, the problem of maximizing the profit can be expressed alterna-

tively as

max
y∈R+

py − c(w, y).

− The (well-known) first-order condition is

p = mc(w, y∗),

that is to equate the marginal revenue to the marginal cost at the optimal level of

output.

• Consider the short-run situation where the amounts of some inputs x2 are fixed at x̄2.

Then, the firm’s short-run cost minimization problem is

min
x1

w1 · x1 + w2 · x̄2 s.t. f(x1, x̄2) = y.

− x1(w, y, x̄2) : Short-run conditional factor demand function.

− cs(w, y, x̄2) := w1 ·x1(w, y, x̄2)+w2 ·x̄2: Short-run cost function, where w1 ·x1(w, y, x̄2)

is short-run variable cost while w2 · x̄2 is short-run fixed cost.

• Long-run and short-run cost functions are related in the following way:

c(w, y) = cs(w, y,x2(w, y))

since x2(w, y) is the long-run cost-minimizing level, given w and y.

− The long-run (average) cost curve is the lower envelope of the short-run (average) cost

curves.

− The response of output to its price change is greater in the long-run than in the

short-run. To see this, observe that given x̄2 = x2(w, ȳ) for some ȳ, since g(y) :=

c(w, y) − cs(w, y, x̄2) is maximized at y = ȳ, the first- and second-order necessary

conditions imply

dg(y)

dy

∣

∣

∣

∣

y=ȳ

=
d

dy
[c(w, y)− cs(w, y, x̄2)]

∣

∣

∣

∣

y=ȳ

= mc(w, ȳ) −mcs(w, ȳ, x̄2) = 0

and

d2g(y)

dy2

∣

∣

∣

∣

y=ȳ

=
d2

dy2
[c(w, y)− cs(w, y, x̄2)]

∣

∣

∣

∣

y=ȳ

=
d

dy
[mc(w, ȳ) −mcs(w, ȳ, x̄2)] ≤ 0.
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