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LECTURE NOTES #7: Residual Analysis and Multiple Regression

Reading Assignment

KNNL chapter 6 and chapter 10; CCWA chapters 4, 8, and 10

1. Statistical assumptions

The standard regression model assumes that the residuals, or ϵ’s, are independently, identi-
cally distributed (usually called “iid” for short) as normal with µ = 0 and variance σ2.

(a) Independence

A residual should not be related to another residual. Situations where independence
could be violated include repeated measures and time series because two or more resid-
uals come from the same subject and hence may be correlated. Another violation of
independence comes from nested designs where subjects are clustered (such as in the
same school, same family, same neighborhood). There are regression techniques that
relax the independence assumption, as we saw in the repeated measures section of the
course.

(b) Identically distributed

As stated above, we assume that the residuals are distributed N(0, σ2
ϵ ). That is, we

assume that each residual is sampled from the same normal distribution with a mean of
zero and the same variance throughout. This is identical to the normality and equality
of variance assumptions we had in the ANOVA. The terminology applies to regression
in a slightly different manner, i.e., defined as constant variance along the entire range of
the predictor variable, but the idea is the same.

The MSE from the regression source table provides an estimate of the variance σ2
ϵ for

the ϵ’s.

Usually, we don’t have enough data at any given level of X to check whether the Y’s are
normally distributed with constant variance, so how should this assumption be checked?
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One may plot the residuals against the predicted scores (or instead the predictor vari-
able). There should be no apparent pattern in the residual plot. However, if there is
fanning in (or fanning out), then the equality of variance part of this assumption may be
violated.

To check the normality part of the assumption, look at the histogram of the residuals to
see whether it resembles a symmetric bell-shaped curve. Better still, look at the normal
probability plot of the residuals (recall the discussion of this plot from the ANOVA
lectures).

2. Below I list six problems and discuss how to deal with each of them (see Ch. 3 of KNNL for
more detail)

(a) The association is not linear. You check this by looking at the scatter plot of X and
Y. If you see anything that doesn’t look like a straight line, then you shouldn’t run a
linear regression. You can either transform or use a model that allows curvature such
as polynomial regression or nonlinear regression, which we will discuss later. Plotting
residuals against the predicted scores will also help detect nonlinearity.

(b) Error terms do not have constant variance. This can be observed in the residual plots.
You can detect this by plotting the residuals against the predictor variable. The residual
plot should have near constant variance along the levels of the predictor; there should
be no systematic pattern. The plot should look like a horizontal band of points.

(c) The error terms are not independent. We can infer the appropriateness of this assump-
tion from the details of study design, such as if there are repeated measures variables.
You can perform a scatter plot of residuals against time to see if there is a pattern (there
shouldn’t be a correlation). Other sources of independence violations are due to group-
ing such as data from multiple family members or multiple students from the same
classroom; there may be correlations between individuals in the same family or individ-
uals in the same classroom.

(d) Outliers. There are many ways to check for outliers (scatter plot of Y and X, examining
the numerical value of the residuals, plotting residuals against the predictor). We’ll
also cover a more quantitative method of determining the degree to which an outlier
influences the regression line.

(e) Residuals are not normally distributed. This is checked by either looking at the his-
togram of the residuals or the normal-normal plot of the residuals.
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(f) You have the wrong structural model (aka a mispecified model). You can also use resid-
uals to check whether an additional variable should be added to a regression equation.
For example, if you run a regression with two predictors, you can take the residuals
from that regression and plot them against other variables that are available. If you see
any systematic pattern other than a horizontal band, then that is a signal that there may
be useful information in that new variable (i.e., information not already accounted for
by the linear combination of the two predictors already in the regression equation that
produced those residuals).

3. Nonlinearity

What do you do if the scatterplot of the raw data, or the scatterplot of the residuals against
the predicted scores, suggests that the association between the criterion variable Y and the
predictor variable X is nonlinear? One possibility is that you can re-specify the model. Rather
than having a simple linear model of the form Y = β0 + β1X, you could add more predictors.
Perhaps a polynomial of the form Y = β0 + β1X + β2X2 would be a better fit. Along similar
lines, you may be able to transform one of the variables to convert the model into a linear
model. Either way (adding predictors or transforming existing predictors) we have an exciting
challenge in regression because you are trying to find a model that fits the data. Through the
process of finding such a model, you might learn something about theory or the psychological
processes underlying your phenomenon. There could be useful information in the nature of
the curvature (processes that speed up or slow down at particular critical points).

There are sensible ways of diagnosing how models are going wrong and how to improve a
model. You could examine residuals. If a linear relation holds, then there won’t be much
pattern in the residuals. To the degree there is a relation in the residuals when plotted against
a predictor variable, then that is a clue that the model is misspecified.

4. The “Rule of the Bulge” to decide on transformations.

Here is a heuristic for finding power transformations to linearize data. It’s basically a mnemonic
for remembering which transformation applies in which situation, much like the mnemonics
that help you remember the order of the planets (e.g., My Very Educated Mother Just Saved
Us Nine Pies; though recent debate now questions whether the last of those pies should be
saved. . . ). A more statistics-related mnemonic can help you remember the three key statis-
tical assumptions. INCA: independent normal constant-variance assumptions (Hunt, 2010,
Teaching Statistics, 32, 73-74).

The rule operates within the power family of transformations xp that we discussed in an ear-
lier lecture notes (see syntax there for implementing power transformations in R and SPSS).
Recall that within the power family, the identity transformation (i.e., no transformation) cor-
responds to p = 1. Taking p = 1 as the reference point, we can talk about either increasing p
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(say, making it 2 or 3) or decreasing p (say, making it 0, which leads to the log, or -1, which
is the reciprocal).

With two variables Y and X it is possible to transform either variable. That is, either of these
are possible: Yp = β0 + β1 X or Y = β0 + β1 Xp. Of course, the two exponents in these
equations will usually not be identical.

The rule of the bulge is a heuristic for determining what exponent to use on either the de-
pendent variable (Y) or the predictor variable (X) to help linearize the relation between two
variables. First, identify the shape of the “one-bend” curve you observe in the scatter plot
with variable Y on the vertical axis and variable X on the horizontal axis (all that matters is
the shape, not the quadrant that your data appear in). Use the figure below to identify one of
the four possible one-bend shapes. The slope is irrelevant, just look at the shape (i.e., is it “J”
shaped, “L” shaped, etc.).

Once you identify a shape (for instance, a J-shape pattern in the far right of the previous
figure), then go to the “rule of the bulge” graph below and identify whether to increase or
decrease the exponent. The graph is a gimmick to help you remember what transformation to
use given a pattern you are trying to deal with. For example, a J-shape data pattern is in the
south-east portion of the plot below. The “rule of the bulge” suggests you can either increase
the exponent on X so you could try squaring or cubing the X variable, or instead you could
decrease the exponent on Y such as with a log or a reciprocal. The action to “increase” or
“decrease” is determined by whether you are in the positive or negative part of the “rule of the
bulge” figure, and which variable to transform (X or Y) is determined by the axis (horizontal
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or vertical, respectively).

X

Y

increase p on Y
decrease p on X

decrease p on Y
decrease p on X

increase p on Y 
increase p on X

decrease p on Y
increase p on X

If you decide to perform a transformation to eliminate nonlinearity, it makes sense to trans-
form the predictor variable X rather than the criterion variable Y. The reason is that you may
want to eventually test more complicated regressions with multiple predictors. If you tinker
with Y you might inadvertently mess up a linear relation with some other predictor predictor
variable.

An aside with a little calculus. Sometimes transformations follow from theory. For example,
if a theory presupposes that changes in a dependent variable are inversely related to another
variable, as in the differential equation

dY(X)
dX

=
α

X
(7-1)

then this differential equation has the solution

Y(X) = α lnX + β (7-2)
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Figure 7-1: Media clip

 

The Y(X) notation denotes that Y is a function of X. The point here is that the theoretical
statement about how change works in a particular situation, implies a nonlinear transforma-
tion on X. In the current example, the theory (from its statement about the nature of change
over time) leads naturally to the log transformation. For many more examples of this kind of
approach, see Coleman’s Introduction to Mathematical Sociology.

When working with nonlinear data one needs to be careful about extrapolating to data points
outside the range of observation. Figure 7-1 presents an interesting clip from the Economist.

5. Constant Variance Assumption
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Dealing with the equality of variance assumption is tricky. In a few cases it may be possible
to transform a variable to eliminate the equality of variance (as was the case in ANOVA),
but you have to be careful that the transformation does not mess up other assumptions (in
particular, linearity). Conversely, if you perform a transformation to “clean up” a nonlinearity
problem, you need to be careful that the transformation did not inadvertently mess up the
equality of variance assumption.

Another possible remedial measure in this case is to perform a weighted regression. If your
subjects are clustered and the variances depends on the cluster, then you could weight each
data point by the inverse of the variance. See KNNL ch 11 for details on weighted regression.

6. Outliers

By outlier we mean a data point that has the potential to exert a “disproportionate” degree of
influence on the regression line. A simple index of an outlier is the residual (i.e., the observed
score - predicted score). If a residual for a particular subject is large, then that data point is
suspect as a possible outlier.

With more than one predictor, spotting an outlier is difficult because we need to think about all
the variables (dimensions) concurrently. For instance, with three predictors, an outlier means
that the point “sticks out” in comparison to all the other points within the four dimensional
plot (one dependent variable and three predictors). So simple pairwise scatterplots won’t
always be an option.

Chapter 10 of KNNL discusses various normalizations on the residuals that can be performed.
For instance, is a residual of 3 large or small? In order to tell we can normalize the residuals
into a common scale. Obviously, the magnitude of the residual depends, in part, on the scale
of the dependent variable. There is one normalization that is analogous to a Z score (dividing
the residual by the square root of the MSE). Another set of normalizations involve deleted
residuals (if interested, see chapter 10 KNNL).

One of the best ways to detect an outlier, and whether it is an influential outlier, is throughCook’s D
the use of Cook’s D. This is a measure of the influence on the overall regression of the single
data point in question . Each data point has a Cook’s D. To develop intuition on Cook’s D, I’ll
present an example involving midterm exams. We first look at the scatter plot (Figure 7-2)
and the correlation.

data list free/ test1 test2.

begin data
[data go here]
end data.
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Figure 7-2: SPSS scatter plot
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plot format=regression
/plot test2 with test1.

correlation test2 test1
/print= twotail
/statistics=all.

[OUTPUT FROM CORRELATION COMMAND]
Variable Cases Mean Std Dev
TEST2 28 39.0357 6.0399
TEST1 28 48.5714 4.2464

Variables Cases Cross-Prod Dev Variance-Covar
TEST2 TEST1 28 465.4286 17.2381

- - Correlation Coefficients - -
TEST2 TEST1

TEST2 1.0000 .6721
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( 28) ( 28)
P= . P= .000

TEST1 .6721 1.0000
( 28) ( 28)
P= .000 P= .

(Coefficient / (Cases) / 2-tailed Significance)

Next, we’ll run a regression analysis. The syntax also shows you how to produce scatter plots
within the regression command (redundant with the plots we did above). Also, the last line of
the command creates two new columns of data (labelled resid and fits), which contain resid-
uals and predicted Y values, respectively. You may need to use a “set width=132.” command
before running the regression command to get all the columns next to the “casewise” plot
(and if using a windowing system, you may need to scroll horizontally as well to view the
columns on your monitor).

Figure 7-3 displays the residuals plotted against the predictor variable. This plot was gener-
ated by the plot command below.

regression variables= test1 test2
/statistics = r anov coeff ci
/dependent=test2
/method=enter test1
/residuals outliers(cook)
/casewise=all sepred cook zpred sresid sdresid
/scatterplot (test2, test1)
/save resid(resid) pred(fits).

GRAPH
/SCATTERPLOT(BIVAR)= test1 WITH resid.

comment: you can double click on the resulting residual plot to add a
horizontal reference line at Y=0 to provide a visual cue for the
horizontal band.

Multiple R .67211
R Square .45174
Adjusted R Square .43065
Standard Error 4.55742

Analysis of Variance
DF Sum of Squares Mean Square

Regression 1 444.94316 444.94316
Residual 26 540.02113 20.77004

F = 21.42235 Signif F = .0001

---------------------- Variables in the Equation -----------------------

Variable B SE B 95% Confdnce Intrvl B Beta
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TEST1 .955986 .206547 .531423 1.380548 .672113
(Constant) -7.397887 10.069163 -28.095348 13.299573

----------- in ------------

Variable T Sig T

TEST1 4.628 .0001
(Constant) -.735 .4691

Casewise Plot of Standardized Residual

*: Selected M: Missing

Case TEST2 *PRED *RESID *ZPRED *SRESID *LEVER *COOK D *SEPRED
1 33.00 37.5335 -4.5335 -.3701 -1.0157 .0051 .0219 .9204
2 49.00 44.2254 4.7746 1.2784 1.1020 .0605 .0647 1.4139
3 40.00 38.4894 1.5106 -.1346 .3377 .0007 .0022 .8693
4 44.00 37.5335 6.4665 -.3701 1.4488 .0051 .0446 .9204
5 48.00 40.4014 7.5986 .3364 1.7016 .0042 .0602 .9104
6 36.00 35.6215 .3785 -.8411 .0858 .0262 .0002 1.1340
7 35.00 40.4014 -5.4014 .3364 -1.2096 .0042 .0304 .9104
8 50.00 46.1373 3.8627 1.7494 .9188 .1133 .0739 1.7595
9 46.00 44.2254 1.7746 1.2784 .4096 .0605 .0089 1.4139
10 37.00 38.4894 -1.4894 -.1346 -.3329 .0007 .0021 .8693
11 40.00 43.2694 -3.2694 1.0429 -.7463 .0403 .0229 1.2564
12 39.00 37.5335 1.4665 -.3701 .3286 .0051 .0023 .9204
13 32.00 28.9296 3.0704 -2.4895 .7860 .2295 .1115 2.3472
14 42.00 37.5335 4.4665 -.3701 1.0007 .0051 .0213 .9204
15 39.00 38.4894 .5106 -.1346 .1141 .0007 .0002 .8693
16 37.00 39.4454 -2.4454 .1009 -.5465 .0004 .0056 .8658
17 42.00 43.2694 -1.2694 1.0429 -.2898 .0403 .0035 1.2564
18 40.00 43.2694 -3.2694 1.0429 -.7463 .0403 .0229 1.2564
19 40.00 39.4454 .5546 .1009 .1239 .0004 .0003 .8658
20 47.00 42.3134 4.6866 .8074 1.0606 .0241 .0358 1.1150
21 37.00 30.8415 6.1585 -2.0185 1.4983 .1509 .2575 1.9688
22 34.00 38.4894 -4.4894 -.1346 -1.0035 .0007 .0190 .8693
23 21.00 33.7095 -12.7095 -1.3120 -2.9387 .0638 .4770 1.4374
24 40.00 40.4014 -.4014 .3364 -.0899 .0042 .0002 .9104
25 34.00 39.4454 -5.4454 .1009 -1.2170 .0004 .0277 .8658
26 39.00 42.3134 -3.3134 .8074 -.7498 .0241 .0179 1.1150
27 38.00 38.4894 -.4894 -.1346 -.1094 .0007 .0002 .8693
28 34.00 32.7535 1.2465 -1.5475 .2923 .0887 .0061 1.6075

Residuals Statistics:

Min Max Mean Std Dev N

*PRED 28.9296 46.1373 39.0357 4.0595 28

*ZPRED -2.4895 1.7494 .0000 1.0000 28

*SEPRED .8658 2.3472 1.1585 .3830 28

*ADJPRED 27.8211 45.4607 38.9605 4.1869 28

*RESID -12.7095 7.5986 .0000 4.4722 28

*ZRESID -2.7888 1.6673 .0000 .9813 28

*SRESID -2.9387 1.7016 .0076 1.0249 28

*DRESID -14.1134 7.9144 .0752 4.8862 28

*SDRESID -3.5262 1.7700 -.0088 1.0989 28

*MAHAL .0102 6.1977 .9643 1.4580 28
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Figure 7-3: SPSS scatter plot
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*COOK D .0002 .4770 .0479 .0987 28

*LEVER .0004 .2295 .0357 .0540 28

Total Cases = 28

It appears that subject 23 is an outlier because the residual (-12.71) is much larger in mag-
nitude than any other residual. We’ll omit that subject for now and redo the analysis. That
particular subject was the only one to have a test2 score of 21 so we can conveniently select
that subject out by asking SPSS to not use subjects whose test2 score equals 21. Had the
data file included a subject ID index (e.g., a subject number), then it would have been more
efficient to select directly on subject number.

select if (test2 ne 21).
execute.
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[abbreviated output]

Multiple R .66568 Analysis of Variance
R Square .44313 DF Sum of Squares Mean Square
Adjusted R Square .42085 Regression 1 286.98276 286.98276
Standard Error 3.79814 Residual 25 360.64687 14.42587

F = 19.89361 Signif F = .0002

Variable B SE B 95% Confdnce Intrvl B Beta T Sig T

TEST1 .794477 .178125 .427622 1.161332 .665679 4.460 .0002
(Constant) .950880 8.719227 -17.006703 18.908463 .109 .9140

Casewise Plot of Standardized Residual

*: Selected M: Missing

Case # TEST2 *PRED *RESID *ZPRED *SRESID *COOK D *SEPRED
1 33.00 38.2913 -5.2913 -.4251 -1.4248 .0467 .7966
2 49.00 43.8526 5.1474 1.2488 1.4262 .1093 1.1830
3 40.00 39.0858 .9142 -.1860 .2455 .0012 .7440
4 44.00 38.2913 5.7087 -.4251 1.5372 .0544 .7966
5 48.00 40.6747 7.3253 .2923 1.9687 .0814 .7627
6 36.00 36.7023 -.7023 -.9034 -.1916 .0013 .9935
7 35.00 40.6747 -5.6747 .2923 -1.5251 .0489 .7627
8 50.00 45.4416 4.5584 1.7271 1.3031 .1519 1.4796
9 46.00 43.8526 2.1474 1.2488 .5950 .0190 1.1830
10 37.00 39.0858 -2.0858 -.1860 -.5600 .0063 .7440
11 40.00 43.0582 -3.0582 1.0097 -.8377 .0290 1.0488
12 39.00 38.2913 .7087 -.4251 .1908 .0008 .7966
13 32.00 31.1410 .8590 -2.5773 .2689 .0149 2.0542
14 42.00 38.2913 3.7087 -.4251 .9987 .0229 .7966
15 39.00 39.0858 -.0858 -.1860 -.0230 .0000 .7440
16 37.00 39.8803 -2.8803 .0531 -.7728 .0115 .7320
17 42.00 43.0582 -1.0582 1.0097 -.2899 .0035 1.0488
18 40.00 43.0582 -3.0582 1.0097 -.8377 .0290 1.0488
19 40.00 39.8803 .1197 .0531 .0321 .0000 .7320
20 47.00 42.2637 4.7363 .7705 1.2861 .0527 .9294
21 37.00 32.7300 4.2700 -2.0991 1.2621 .2073 1.7260
22 34.00 39.0858 -5.0858 -.1860 -1.3655 .0372 .7440
23 40.00 40.6747 -.6747 .2923 -.1813 .0007 .7627
24 34.00 39.8803 -5.8803 .0531 -1.5778 .0480 .7320
25 39.00 42.2637 -3.2637 .7705 -.8862 .0250 .9294
26 38.00 39.0858 -1.0858 -.1860 -.2915 .0017 .7440
27 34.00 34.3189 -.3189 -1.6208 -.0904 .0007 1.4113

Case TEST2 *PRED *RESID *ZPRED *SRESID *COOK D *SEPRED

Residuals Statistics:

Min Max Mean Std Dev N

*PRED 31.1410 45.4416 39.7037 3.3223 27

*ZPRED -2.5773 1.7271 .0000 1.0000 27

*SEPRED .7320 2.0542 .9787 .3390 27

*ADJPRED 30.7858 44.6260 39.6260 3.3887 27

*RESID -5.8803 7.3253 .0000 3.7244 27

*ZRESID -1.5482 1.9286 .0000 .9806 27

*SRESID -1.5778 1.9687 .0096 1.0152 27

*DRESID -6.1071 7.6331 .0777 3.9971 27

*SDRESID -1.6291 2.0985 .0146 1.0393 27

*MAHAL .0028 6.6426 .9630 1.5666 27

*COOK D .0000 .2073 .0372 .0499 27
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*LEVER .0001 .2555 .0370 .0603 27

Total Cases = 27

In the two regressions the slopes are comparable but the intercepts differ a great deal in ab-
solute terms. Further, the R2s are not very across the two regressions suggesting that the
two regressions are comparable. Perhaps that point we suspected to be an outlier is not very
influential because its presence or absence does little to change the resulting regression.

The main things to note in this example are the effects of the outlier on the parameter estimates
and how the residuals, and associated printouts, were used to decipher where the assumptions
were being violated. The way we detected whether this suspected point was an outlier was to
remove it and re-run the regression. We compared the effects of the model with the suspected
outlier included and the model without the suspected outlier. For this example, both cases
yielded comparable results. So, for this example including the outlier will not do too much
damage.

I am not advocating that outliers be dropped in data analysis. Rather, I simply compared
two different regressions (one with the outlier and one without) to see whether the results
differed. The comparison of these two regressions lets me assess how much “influence” the
particular data point has on the overall regression. This time the two regressions were similar
so I feel pretty confident in reporting results with all subjects. In this example the outlier
appears to have little impact on the final result.

This idea of comparing the model with the outlier and the model without the outlier can
be extended. Why not do this for every data point? First, perform one regression with all
the data included. Then perform N different regressions; for each regression a single data
point is removed. This would tell us how “influential” each data point is on the regression
line. Luckily, there is a quick way of doing this computation (if you had 200 subjects, the
technique I just outlined would require 201 separate regressions). The quick way is Cook’s
D (D stands for distance). The formula for Cook’s D involves quite a bit of matrix algebra so
I won’t present it here (see KNNL for a derivation). Cook’s D is basically a measure of the
difference between the regression one gets by including subject i and the regression one gets
by omitting subject i. So, each subject gets his or her own Cook’s D. A subject’s individual
D is an index of how influential that subject’s data are on the regression line. Large values
of Cook’s D indicate that the particular data point (subject) has a big effect on the regression
equation. Cook’s D is influenced both by the residual and the leverage1 of the predictors.

1For a definition of leverage see KNNL. It turns out that SPSS has it’s own definition of leverage. SPSS uses a centered
leverage, i.e., ĥi - 1

n where n is the number of subjects. Most people just use ĥi. SPSS prints out the leverage values as
part of the casewise plot (labeled LEVER; in most versions of SPSS you have to write “lever” on the casewise line to get
this to print out).



Lecture Notes #7: Residual Analysis and Multiple Regression 7-14

Determining what constitutes a large value of Cook’s D involves calculating the sampling
distribution for F, so we’ll just have to make good guesses as to constitutes high values of
Cook’s D. A rule of thumb is to look for Cook’s D values that are relatively greater than
the majority of the D’s in the sample. Some people propose a simple rule of thumb, such
as any Cook’s D greater than 4/N is a potential influential outlier. in this example with 27
observations 4/27=.148 so two points are potential influential outliers.

Another strategy for determining key values of Cooks D is to use the F table to set up crit-
ical values. Use α = 0.50 (not 0.05), the numerator degrees of freedom are the number of
parameters in the structural model (including the intercept), and the denominator degrees of
freedom are N minus the number of parameters (the same df associated with MSE). For ex-
ample, with two predictors (so a total of 3 parameters including the intercept), 24 df in the
error, and α = .50, we find a tabled value of 0.812.

In the present example, there was one predictor so there were 2 parameters including the
intercept, there were 26 residual degrees of freedom. The F value corresponding to .50 with
2,26 degrees of freedom is .712. This gives a numerical benchmark for Cook’s D in this
particular example: any observed Cook’s D greater than 0.712 is suspect because it might be
an influential outlier.

One could use the built in F function in SPSS (or Excel) to find the necessary value of F . In
SPSS, for example, with the menu system under TRANSFORM-COMPUTE you will find a
list of functions. Select IDF.F. For this example you would type IDF.F(.50,2,26), define the
new variable you want the output to go into, and click on OK. Or, in the syntax window type
this command and you will get a new column of identical numbers that give the F cutoff
(“Fcrit” is an arbitrary name for the new column this command creates).

compute Fcrit = idf.f(.50, 2, 26).
execute.

An alternative but identical approach to finding the critical Cook’s D value would be to use
the inverse F function on the column of Cook D scores to find the cumulative area under the
F . That is, if you save Cook’s D scores in a new column called cook (or any other arbitrary
variable name you like), then you can run this command on that column of saved Cook D
scores:

compute pval = cdf.f(cook, 2, 26).
execute.

This syntax will produce a new column of “pvals”. Look for any “pval” greater than .50
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and those are potential influential outliers. Both the cdf.f and idf.f approaches will lead to
identical conclusions based on the F test.

This logic of comparing regressions with and without a data point can also be extended to
examine the effect on individual regression parameters like intercept and slopes. Cook’s D
focuses on the effect of the entire regression rather than individual βs. There is an analogous
measure DFBETA that examines the effect of each single data point on each regression pa-
rameter. SPSS computes the change for each β in standardized units of removing each data
point. To get this within SPSS just add a

\SAVE SDBETA(name)

to your regression syntax. If you have two predictors, this command will create three new
columns in your data file labeled name1, name2 and name3 for the standardized difference in
beta of that point on each of the intercept and the two predictors. A value of say -.1 means
that particular beta drops .1 standard error units when that data point is added as compared
to when it is omitted. Some people treat a standardized DFBETA greater than one a potential
influential outlier, others us the rule 2/sqrt(N), so any standardized DFBETA greater than
2/sqrt(N) becomes a suspicious influential outlier.

7. What to do if you have influential outliers?

As I said before, don’t automatically drop the outliers. Check whether there was a data entry
error or if something was different about that particular data collection session (e.g., a new
RA’s first subject and the RA messed up the protocol).

If there is a small cluster of outliers, you may want to check whether there is something
informative about this small group. It could be error, but it could be a signal about a relatively
small class of participants. For example, in a dataset with 250 families there may be 6 kids
who act out aggressively, and these may be the kids who are at high risk.

You can run nonparametric or robust regression, which is not as sensitive to outliers as the
typical regressions we run though can exhibit lower power.

8. Relation between the two sample t test and regression with one predictor.

Now I’ll show the connection between ANOVA and regression.

Let’s start off with a simple example with two experimental groups. Here are the data. Note
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the three extra columns. These columns represent three different ways to code the predictor
variable. All are fine as long as you keep track of the values you used (much like interpreting
a contrast value that depends on the particular coefficients). The means for the two groups are
8.56 and 5.06, the grand mean is 6.81, and the treatment effect α is 1.75. Think about what
each of the three scatterplots (the first column on the y-axis and each of the three remaining
columns on separate x-axes) will look like.

5.4 1 1 1
6.2 1 1 1
3.1 1 1 1
3.8 1 1 1
6.5 1 1 1
5.8 1 1 1
6.4 1 1 1
4.5 1 1 1
4.9 1 1 1
4.0 1 1 1
8.8 0 -1 2
9.5 0 -1 2
10.6 0 -1 2
9.6 0 -1 2
7.5 0 -1 2
6.9 0 -1 2
7.4 0 -1 2
6.5 0 -1 2
10.5 0 -1 2
8.3 0 -1 2

data list free / dv dummy contrast group.

REGRESSION USING 0 AND 1 TO CODE FOR GROUPS

regression variables = dv dummy
/statistics = r anova coeff ci
/dependent = dv
/method=enter dummy.

Multiple R .80955 Analysis of Variance
R Square .65537 DF Sum of Squares Mean Square
Adjusted R Square .63623 Regression 1 61.25000 61.25000
Standard Error 1.33766 Residual 18 32.20800 1.78933

F = 34.23063 Signif F = .0000

Variable B SE B 95% Confdnce Intrvl B Beta T Sig T

DUMMY -3.500000 .598220 -4.756813 -2.243187 -.809552 -5.851 .0000
(Constant) 8.560000 .423005 7.671299 9.448701 20.236 .0000

A SECOND REGRESSION USING 1 AND -1 TO CODE FOR GROUPS

regression variables = dv contrast
/statistics = r anova coeff ci
/dependent = dv
/method=enter contrast.

Multiple R .80955 Analysis of Variance
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R Square .65537 DF Sum of Squares Mean Square
Adjusted R Square .63623 Regression 1 61.25000 61.25000
Standard Error 1.33766 Residual 18 32.20800 1.78933

F = 34.23063 Signif F = .0000

Variable B SE B 95% Confdnce Intrvl B Beta T Sig T

CONTRAST -1.750000 .299110 -2.378406 -1.121594 -.809552 -5.851 .0000
(Constant) 6.810000 .299110 6.181594 7.438406 22.768 .0000

The test of significance for these two regressions are identical. The slope is reduced by 1/2 as
compared to the first regression. This is because the coding on the predictor variable is two
units apart (1 and -1) rather than one unit (1 and 0). The intercept also changes because of
two reasons: the line has shifted over to the left and the slope has changed.

Below is yet another predictor variable (1 and 2) as well as the usual two-sample t test and
the output from a oneway ANOVA so that you can compare regression and ANOVA.

t-test groups= group
/variables dv.

Number
Variable of Cases Mean SD SE of Mean
-----------------------------------------------------------------------
DV

GROUP 1 10 5.0600 1.189 .376
GROUP 2 10 8.5600 1.471 .465
-----------------------------------------------------------------------

Mean Difference = -3.5000

t-test for Equality of Means 95%
Variances t-value df 2-Tail Sig SE of Diff CI for Diff
-------------------------------------------------------------------------------
Equal -5.85 18 .000 .598 (-4.757, -2.243)
Unequal -5.85 17.24 .000 .598 (-4.761, -2.239)

oneway dv by group(1,2)
ANALYSIS OF VARIANCE

SUM OF MEAN F F
SOURCE D.F. SQUARES SQUARES RATIO PROB.

BETWEEN GROUPS 1 61.2500 61.2500 34.2306 .0000

WITHIN GROUPS 18 32.2080 1.7893

TOTAL 19 93.4580



Lecture Notes #7: Residual Analysis and Multiple Regression 7-18

A THIRD REGRESSION USING A CODE OF 1 AND 2 FOR THE TWO GROUPS

regression variables = dv group
/statistics = r anova coeff ci
/dependent = dv
/method=enter group.

Multiple R .80955 Analysis of Variance
R Square .65537 DF Sum of Squares Mean Square
Adjusted R Square .63623 Regression 1 61.25000 61.25000
Standard Error 1.33766 Residual 18 32.20800 1.78933

F = 34.23063 Signif F = .0000

Variable B SE B 95% Confdnce Intrvl B Beta T Sig T

GROUP 3.500000 .598220 2.243187 4.756813 .809552 5.851 .0000
(Constant) 1.560000 .945868 -.427195 3.547195 1.649 .1164

In this last regression I reversed the group codes so the sign of the slope changed. That is,
in the first two regressions the subjects listed in the first group had a greater group code than
subjects listed in the second group (e.g., 1 and 0, respectively). But in the third regression I
switched so that the first group had the lesser value than the second group (i.e., 1 and 2). I did
this to show you that except for sign, the t test is identical across all three regressions; hence
all that matters is that the two groups have unique group codes. The regression equation does
rest.

I have shown by example that one can reproduce the classic two sample t-test through regres-
sion. You can anticipate that the correct predictor variables in regression can give you the
same results as any ANOVA. Later, I will show the general connection between regression
and ANOVA, but first we need to generalize our conception of regression to include more
than one predictor.

9. Multiple regression

Multiple regression is a simple and natural extension of what we have been talking about
with one predictor variable. Multiple regression permits any number of (additive) predictor
variables. Multiple regression simply means “multiple predictors.”

The model is similar to the case with one predictor; it just has more X’s and β’s.

Y = β0 + β1X1 + β2X2 + β3X3 . . .+ βpXp + ϵ (7-3)

where p is the number of predictor variables. The assumptions are the same as for linear
regression with one predictor. Each βi corresponds to the slope on the ith variable holding all
other predictor variables constant (i.e., the “unique” slope, or the partial slope). This idea cor-
responds to the partial derivative in calculus. Ideally, the predictors should not be correlated



Lecture Notes #7: Residual Analysis and Multiple Regression 7-19

with the other predictors because this creates multicollinearity problems–the standard error
of the slope will be larger than it should be. More on this “multicollinearity problem” later.

With two predictors there is a three dimensional scatterplot that corresponds to the regression
problem. Figure 7-4 shows a scatterplot in three dimensions. The three dimensions refer to
the predictors and the two dependent variable, with the points in the plot representing subjects.

For two predictors, the regression is finding the plane that minimizes the residuals. Figure 7-
5 shows the same scatter plot but with a plane of best fit. The analog with the pegboard
demonstration should be obvious–rather than fitting a line there is now a plane.

Three or more predictor variables are difficult to display in a plot because we need more than
three dimensions but the idea and intuition scales to any number of dimensions.

Variance decomposition is also extended to the case of multiple regression. The degrees
of freedom in the numerator take into account the number of predictors. The F ratio from
the source table is interpreted as whether all the variables as a set account for a significant
proportion of the variability in the dependent variable. That is, the F ratio is comparing “the
model” as a whole (MSregression) to “what’s left over” (MSresiduals). This corresponds
to the simple ANOVA design that decomposed sums of squares into between and within
components. The form of the multiple regression source table is

SS df MS F

SSR=
∑

(Ŷi − Y)2 number of parameters - 1 SSR/df MSR/MSE
SSE=

∑
(Yi − Ŷi)

2 N - number of parameters SSE/df

The value R2 is simply
SSregression

SStotal
. This value is interpreted as the percentage of the

variance in Y that can be accounted for by the set of X variables. Recall the pie chart we
played with earlier in the term with ANOVA. The square root of R2, sometimes denoted ryŷ,
is the correlation between the observed data and the fitted values. Both are indices of how
well a linear model fits the data.

The F given by MSR/MSE is an omnibus test that shows how well the model as a whole (all
predictors as an aggregate) fit the data. This F tests whether R2 is significantly different from
zero. As with all omnibus tests, this particular F is not very useful. We usually care more
about how specific predictors are performing, especially in relation to other predictors. Thus,
we are usually interested in each slope. This is analogous to the “I hats” from contrasts in
ANOVA.
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Figure 7-4: Scatterplot with two predictor variables
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Figure 7-5: Linear fit with residuals plotted.
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Each slope is an index of the predictor’s unique contribution. In a two predictor regression
there will, of course, be two slopes. The interpretation of these two slopes is as follows. The
slope β1 is attached to predictor X1 and the slope β2 is attached to predictor X2. The slope
β1 can be interpreted as follows: if predictor X2 is held constant and predictor X1 increases
by one unit, then a change of β1 will result in the criterion variable Y. Similarly, the slope
β2 means that if predictor X1 is held constant and predictor X2 increases by one unit, then a
change of β2 will result in the criterion variable Y. Thus, each slope is an index of the unique
contribution of each predictor variable to the criterion variable Y. This logic extends to any
number of predictors such that the slope βi refers to the unique contribution of variable i
holding all other variables constant.

We can test each individual slope β̂i against the null hypothesis that the population βi = 0
as well as build confidence intervals around the estimates of the slopes. The test for each
slope is a test of whether the predictor variable accounts for a significant unique portion of
the variance in the criterion variable Y. SPSS output conveniently provides both the estimates
of the β parameters as well as their standard errors. The t test is the ratio of the slope estimate
over its standard error and the confidence interval is the usual estimate plus or minus the
margin of error.

We need to be careful when interpreting the t test for each β̂i because those tests depend
on the intercorrelations among the predictor variables. If the predictors are correlated, then
there is no single way to assess the unique contribution of each predictor separately. That
is, when a correlation between predictors is present, there is no sensible way to “hold all
other predictors constant”. Thus, the presence of correlations between the predictor variables
introduces redundancy. This problem is similar to what we encountered with unequal sample
sizes in the factorial ANOVA.

As we saw with simple linear regression, the multiple regression function (Equation 7-3) can
be used to make predictions, both mean E(Ŷ) and individual Ŷ. There is also a standard error
prediction (SEPRED) corresponding to each subject.

Those interested in a full explanation of the relevant formulae should consult KNNL who
develop the matrix algebra approach to multiple regression. The value of matrix notation
becomes clear when dealing with multiple regression. I will not emphasize the details of
definitional and computational formulae for multiple regression in this class because they are
generalizations of the simple linear regression case using matrix algebra concepts. If you
understand the case for simple linear regression, then you understand multiple regression too.
In this class I will emphasize the ability to interpret the results from a regression rather than
how to compute a regression.

10. Testing “sets of variables”
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Sometimes one wants to test whether a subset of predictor variables increases predictability.
For example, I may have a regression with five variables. I want to test whether the last three
variables increase the fit to the data (i.e., minimize the residuals, or equivalently, increase R2)
significantly over and above whatever the first two variables are already doing. An example
of this is with the use of blocking variables. Suppose I have two variables that I want to use
as blocking factors to soak up error variance and three other variables of interest. I am mainly
interested in whether these latter three variables can predict the dependent variable over and
above the two blocking factors.

The way to do this is through the “increment in R2 test.” You do two separate regression
equations. One is the full model with five variables included; the other is the reduced model
with the particular subset under consideration omitted from the regression. You then test the
difference in R2; that is, how much did R2 increase from the reduced to the full regression.
The formula is

F =

SSE(R) - SSE(F)
dfreduced - dffull

SSE(F)
dffull

(7-4)

=

(
SSE(R) - SSE(F)

SSE(F)

)( dffull
dfreduced - dffull

)
(7-5)

where SSE(R) and SSE(F) are the sum of squares error for the reduced and full models,
respectively, and dfred and dffull are the degrees of freedom (for the denominator) in the
reduced regression and the full regression, respectively. In Lecture Notes #8, I’ll present a
version of this same equation in terms of R2 rather than SSE. In the example with the blocking
variables, the full regression would include all five predictors and the reduced regression
would include only the two predictors that are being used as blocking factors (i.e., the reduced
regression omits the three variables of interest). This F test is comparing the difference in
error between the two models. This is the approach the Maxwell and Delaney used throughout
their book for explaining ANOVA.

The observed F in Equation 7-4 is compared to the tabled F, where dfred-dfful the degrees of
freedom for the numerator and dfful is the degrees of freedom for the denominator.

The F test in Equation 7-4 provides an omnibus test for whether the omitted variables (the
ones that appear in the full model but not the reduced model) account for a significant por-
tion of the variance in the criterion variable Y. Thus, in my example with the two blocking
factors and three variables of interest, the F test in Equation 7-4 tells me whether the three
predictor variables of interest as a set account for a significant portion of the variance in Y,
over and above that previously accounted for by the two blocking factors. As such, this F
test is an omnibus test because it gives information about the set of three variables rather than
information about the separate usefulness of each predictor.

If you think about it, wouldn’t it be possible to do an increment in R2 for each independent
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variable separately (i.e., looking at each predictor variable’s “independent” contribution to
R2)? In other words, the full regression includes all p predictors and one performs a sequence
of reduced regressions each with p - 1 predictors, where for each of the reduced regressions
one of the predictor variables is omitted. It turns out that this is a sensible idea because it gives
the significance test for the unique contribution of each predictor variable. Earlier I noted that
the t-test associated with the slope provides a test for the unique contribution of the variable
associated with that slope. As you would expect, the two tests (t-test on the individual slope
or the F-test using Equation 7-4 where only one variable is omitted in the reduced regression)
are identical; both are testing the unique contribute of that particular predictor variable.
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Appendix 1: Relevant R syntax

Cook’s distance

If you save the lm() output, then you can run the cooks.distance() command on the output

data <- read.table("data.outlier")
colnames(data) <- c("x", "y")
lm.out <- lm(y ˜ x, data)
summary(lm.out)

##
## Call:
## lm(formula = y ˜ x, data = data)
##
## Residuals:
## Min 1Q Median 3Q
## -12.7095 -3.2694 0.4445 3.2685
## Max
## 7.5986
##
## Coefficients:
## Estimate Std. Error t value
## (Intercept) -7.3979 10.0692 -0.735
## x 0.9560 0.2065 4.628
## Pr(>|t|)
## (Intercept) 0.469
## x 8.96e-05 ***
## ---
## Signif. codes:
## 0 '***' 0.001 '**' 0.01 '*' 0.05
## '.' 0.1 ' ' 1
##
## Residual standard error: 4.557 on 26 degrees of freedom
## Multiple R-squared: 0.4517,Adjusted R-squared: 0.4306
## F-statistic: 21.42 on 1 and 26 DF, p-value: 8.964e-05

c.d <- cooks.distance(lm.out)
round(c.d, 3)

## 1 2 3 4 5 6
## 0.022 0.065 0.002 0.045 0.060 0.000
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## 7 8 9 10 11 12
## 0.030 0.074 0.009 0.002 0.023 0.002
## 13 14 15 16 17 18
## 0.112 0.021 0.000 0.006 0.003 0.023
## 19 20 21 22 23 24
## 0.000 0.036 0.258 0.019 0.477 0.000
## 25 26 27 28
## 0.028 0.018 0.000 0.006

Now you can treat c.d like a variable that you can plot or perform other computations.

To find the critical F for Cook’s at .50 you can use this command (following the example given
earlier in the lecture notes)

qf(0.5, 3, 24)

## [1] 0.8115318

R has an entire suite of additional diagnostics such as the dfbetas(), rstandard(), rstudent(), etc. The
R command dfbetas() is the standardized version, whereas, dfbeta() is the unstandardized version.

Multiple Regression

It is easy to perform multiple regression in R. Just list all predictors in the lm command. If you
want a full factorial design you can use the asterisk instead of the plus sign; if you want specific
interactions you can use the colon (see Lecture Notes 4 for a similar description in the case of the
aov() command). We will talk about interactions in regression in more detail in a later lecture notes.

lm.out <- lm(y˜ x1 + x2 + x3 + x4)
summary(lm.out)
cooks.distance(lm.out)

Two sample t-test example

Here is the example I did earlier in the lecture notes showing that a regression can reproduce the
results of a two sample t test. The cell means are 5.06 and 8.56; the grand mean is 6.81 and the αs
of the structural model are 5.06 - 6.81 = -1.75 and 8.56 - 6.81 = 1.75.
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data <- read.table("data.ttest")
colnames(data) <- c("dv", "dummy", "contrast", "group")

# report typical two sample t test for comparison
t.test(dv ˜ group, data)

##
## Welch Two Sample t-test
##
## data: dv by group
## t = -5.8507, df = 17.241, p-value =
## 1.822e-05
## alternative hypothesis: true difference in means between group 1 and group 2 is not equal to 0
## 95 percent confidence interval:
## -4.760793 -2.239207
## sample estimates:
## mean in group 1 mean in group 2
## 5.06 8.56

# dummy code regression
summary(lm(dv ˜ dummy, data))

##
## Call:
## lm(formula = dv ˜ dummy, data = data)
##
## Residuals:
## Min 1Q Median 3Q Max
## -2.060 -1.085 0.040 1.065 2.040
##
## Coefficients:
## Estimate Std. Error t value
## (Intercept) 8.5600 0.4230 20.236
## dummy -3.5000 0.5982 -5.851
## Pr(>|t|)
## (Intercept) 7.86e-14 ***
## dummy 1.53e-05 ***
## ---
## Signif. codes:
## 0 '***' 0.001 '**' 0.01 '*' 0.05
## '.' 0.1 ' ' 1
##
## Residual standard error: 1.338 on 18 degrees of freedom
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## Multiple R-squared: 0.6554,Adjusted R-squared: 0.6362
## F-statistic: 34.23 on 1 and 18 DF, p-value: 1.532e-05

# contrast code regression
summary(lm(dv ˜ contrast, data))

##
## Call:
## lm(formula = dv ˜ contrast, data = data)
##
## Residuals:
## Min 1Q Median 3Q Max
## -2.060 -1.085 0.040 1.065 2.040
##
## Coefficients:
## Estimate Std. Error t value
## (Intercept) 6.8100 0.2991 22.768
## contrast -1.7500 0.2991 -5.851
## Pr(>|t|)
## (Intercept) 1.02e-14 ***
## contrast 1.53e-05 ***
## ---
## Signif. codes:
## 0 '***' 0.001 '**' 0.01 '*' 0.05
## '.' 0.1 ' ' 1
##
## Residual standard error: 1.338 on 18 degrees of freedom
## Multiple R-squared: 0.6554,Adjusted R-squared: 0.6362
## F-statistic: 34.23 on 1 and 18 DF, p-value: 1.532e-05


