Lecture Notes \#9 - Curves

Reading:
Angel: Chapter 9
Foley et al., Sections 11 (intro) and 11.2
Overview
Introduction to mathematical splines
Bezier curves
Continuity conditions ($\left.C^{0}, C^{1}, C^{2}, G^{1}, G^{2}\right)$
Creating continuous splines
C^{2} interpolating splines
B-splines
Catmull-Rom splines

Introduction

Mathematical splines are motivated by the "loftsman's spline":

- Long, narrow strip of wood or plastic
- Used to fit curves through specified data points
- Shaped by lead weights called "ducks"
- Gives curves that are "smooth" or "fair"

Such splines have been used for designing:

- Automobiles
- Ship hulls
- Aircraft fuselages and wings

Requirements

Here are some requirements we might like to have in our mathematical splines:

- Predictable control
- Multiple values
- Local control
- Versatility
- Continuity

Mathematical splines

The mathematical splines we'll use are:

- Piecewise
- Parametric
- Polynomials

Let's look at each of these terms......

Parametric curves

In general, a "parametric" curve in the plane is expressed as:

$$
\begin{aligned}
& x=x(\mathrm{t}) \\
& y=y(t)
\end{aligned}
$$

Example: A circle with radius r centered at the origin is given by:

$$
\begin{aligned}
& x=r \cos t \\
& y=r \sin t
\end{aligned}
$$

By contrast, an "implicit" representation of the circle is:

Parametric polynomial curves

A parametric "polynomial" curve is a parametric curve where each function $\mathrm{x}(\mathrm{t}), \mathrm{y}(\mathrm{t})$ is described by a polynomial:

$$
\begin{aligned}
& x(t)=\sum_{i=0}^{n} a_{i} t^{i} \\
& y(t)=\sum_{i=0}^{n} b_{i} t^{i}
\end{aligned}
$$

Polynomial curves have certain advantages:

- Easy to compute
- Infinitely differentiable

Piecewise parametric polynomial curves

A "piecewise" parametric polynomial curve uses different polynomial functions for different parts of the curve.

- Advantage: Provides flexibility
- Problem: How do you guarantee smoothness at the joints? (Problem known as "continuity.")

In the rest of this lecture, we'll look at:

1. Bezier curves -- general class of polynomial curves
2. Splines -- ways of putting these curves together

Bezier curves

- Developed simultaneously by Bezier (at Renault) and deCasteljau (at Citroen), circa 1960.
- The Bezier curve $Q(u)$ is defined by nested interpolation:
- V_{i}^{\prime} s are "control points"
- $\left\{V_{0}, \ldots, V_{n}\right\}$ is the "control polygon"

Bezier curves: Basic properties

Bezier curves enjoy some nice properties:

- Endpoint interpolation:

$$
\begin{aligned}
& Q(0)=V_{0} \\
& Q(1)=V_{n}
\end{aligned}
$$

- Convex hull: The curve is contained in the convex hull of its control polygon
- Symmetry:

$$
\begin{aligned}
& Q(u) \text { defined by }\left\{V_{0}, \ldots, V_{n}\right\} \\
& \quad \equiv Q(1-u) \text { defined by }\left\{V_{n}, \ldots, V_{0}\right\}
\end{aligned}
$$

Bezier curves: Explicit formulation

Let's give V_{i} a superscript V_{i}^{j} to indicate the level of nesting.
An explicit formulation for $Q(u)$ is given by the recurrence:

$$
V_{i}^{j}=(1-u) V_{i}^{j-1}+u V_{i+1}^{j-1}
$$

Explicit formulation, cont.

For $n=2$, we have:

$$
\begin{aligned}
Q(u) & =V_{0}^{2} \\
& =(1-u) V_{0}^{1}+u V_{1}^{1} \\
& =(1-u)\left[(1-u) V_{0}^{0}+u V_{1}^{0}\right]+\left[(1-u) V_{1}^{0}+u V_{2}^{0}\right] \\
& =(1-u)^{2} V_{0}^{0}+2 u(1-u) V_{1}^{0}+u^{2} V_{2}^{0}
\end{aligned}
$$

In general:

$$
Q(u)=\sum_{i=0}^{n} V_{i} \frac{\binom{n}{i} u^{i}(1-u)^{n-i}}{B_{i}^{n}(u)}
$$

$B_{i}^{n}(u)$ is the i 'th Bernstein polynomial of degree n.

Bezier curves: More properties

Here are some more properties of Bezier curves

$$
Q(u)=\sum_{i=0}^{n} V_{i}\binom{n}{i} u^{i}(1-u)^{n-i}
$$

- Degree: $Q(u)$ is a polynomial of degree n
- Control points: How many conditions must we specify to uniquely determine a Bezier curve of degree n ?

More properties, cont.

- Tangents:

$$
\begin{aligned}
& Q^{\prime}(0)=n\left(V_{1}-V_{0}\right) \\
& Q^{\prime}(1)=n\left(V_{n}-V_{n-1}\right)
\end{aligned}
$$

- k 'th derivatives: In general,
- $Q^{(k)}(0)$ depends only on V_{0}, \ldots, V_{k}
- $Q^{(k)}(1)$ depends only on V_{n}, \ldots, V_{n-k}
- (At intermediate points $u \in(0,1)$, all control points are involved for every derivative.)

Cubic curves

For the rest of this discussion, we'll restrict ourselves to piecewise cubic curves.

- In CAGD, higher-order curves are often used
- Gives more freedom in design
- Can provide higher degree of continuity between pieces
- For Graphics, piecewise cubic let's you do just about anything
- Lowest degree for specifiying points to interpolate and tangents
- Lowest degree for specifying curve in space

All the ideas here generalize to higher-order curves

Matrix form of Bezier curves

Bezier curves can also be described in matrix form:

$$
\begin{aligned}
Q(u) & =\sum_{i=0}^{3} V_{i}\binom{3}{i} u^{i}(1-u)^{3-i} \\
& =\left(\begin{array}{l}
1-u)^{3} V_{0}+3 u(1-u)^{2} V_{1}+3 u^{2}(1-u) V_{2}+u^{3} V_{3} \\
\\
\end{array}=\left(\begin{array}{llll}
u^{3} & u^{2} & \mathrm{u} & 1
\end{array}\right)\left(\begin{array}{rrrr}
-1 & 3 & -3 & 1 \\
3 & -6 & 3 & 0 \\
-3 & 3 & 0 & 0 \\
1 & 0 & 0 & 0
\end{array}\right)\left(\begin{array}{l}
V_{0} \\
V_{1} \\
V_{2} \\
V_{3}
\end{array}\right)\right. \\
& =\left(\begin{array}{lll}
u^{3} & u^{2} & \mathrm{u} \\
1
\end{array}\right) \mathrm{M}_{\text {Bezier }}\left(\begin{array}{l}
V_{0} \\
V_{1} \\
V_{2} \\
V_{3}
\end{array}\right)
\end{aligned}
$$

Display: Recursive subdivision

Q: Suppose you wanted to draw one of these Bezier curves -- how would you do it?

A: Recursive subdivision:

Display, cont.

Here's pseudocode for the recursive subdivision display algorithm:

```
procedure Display({ V , ,., V V }):
    if {}\mp@subsup{V}{0}{},\ldots,\mp@subsup{V}{n}{}}\mathrm{ flat within }\varepsilon\mathrm{ then
            Output line segment }\mp@subsup{V}{0}{}\mp@subsup{V}{n}{
        else
            Subdivide to produce { L , ,., L, L
            Display({}\mp@subsup{L}{0}{},\ldots,\mp@subsup{L}{n}{}}
```



```
    end if
end procedure
```


Splines

To build up more complex curves, we can piece together different Bezier curves to make "splines."

For example, we can get:

- Positional (C^{0}) continuity:
- Derivative (C^{1}) continuity:

Q: How would you build an interactive system to satisfy these constraints?

Advantages of splines

Advantages of splines over higher-order Bezier curves:

- Numerically more stable
- Easier to compute
- Fewer bumps and wiggles

Tangent ($\mathbf{G}^{\mathbf{1}}$) continuity

Q: Suppose the tangents were in opposite directions but not of same magnitude -- how does the curve appear?

This construction gives "tangent (G^{1}) continuity."

Q: How is G^{1} continuity different from C^{1} ?

Curvature (C^{2}) continuity

Q: Suppose you want even higher degrees of continuity -- e.g., not just slopes but curvatures -- what additional geometric constraints are imposed?

We'll begin by developing some more mathematics.....

Operator calculus

Let's use a tool known as "operator calculus."
Define the operator D by:

$$
\mathrm{D} V_{i} \equiv V_{i+1}
$$

Rewriting our explicit formulation in this notation gives:

$$
\begin{aligned}
Q(u) & =\sum_{i=0}^{n}\binom{n}{i} u^{i}(1-u)^{n-i} V_{i} \\
& =\sum_{i=0}^{n}\binom{n}{i} u^{i}(1-u)^{n-i} \mathrm{D}_{i} V_{0} \\
& =\sum_{i=0}^{n}\binom{n}{i}(u \mathrm{D})^{i}(1-u)^{n-i} V_{0}
\end{aligned}
$$

Applying the binomial theorem gives: $\quad=(u \mathrm{D}+(1-u))^{n} V_{0}$

Taking the derivative

One advantage of this form is that now we can take the derivative:

$$
Q^{\prime}(u)=n(u \mathrm{D}+(1-u))^{n-1}(\mathrm{D}-1) V_{0}
$$

What's (D-1) V_{0} ?
Plugging in and expanding:

$$
Q^{\prime}(u)=n \sum_{i=0}^{n-1}\binom{n-1}{i} u^{i}(1-u)^{n-1-i} \mathrm{D}_{i}\left(V_{0}-V_{1}\right)
$$

This gives us a general expression for the derivative $Q^{\prime}(u)$.

Specializing to $\mathbf{n}=3$

What's the derivative $Q^{\prime}(u)$ for a cubic Bezier curve?

Note that:

- When $u=0: Q^{\prime}(u)=3\left(V_{1}-V_{0}\right)$
- When $u=1: Q^{\prime}(u)=3\left(V_{3}-V_{2}\right)$

Geometric interpretation:

So for $C 1$ continuity, we need to set:

$$
3\left(V_{3}-V_{2}\right)=3\left(W_{1}-W_{0}\right)
$$

Taking the second derivative

Taking the derivative once again yields:

$$
Q^{\prime \prime}(u)=n(n-1)(u \mathrm{D}+(1-u))^{n-2}(\mathrm{D}-1)^{2} V_{0}
$$

What does (D -1$)^{2}$ do?

Second-order continuity

So the conditions for second-order continuity are:

$$
\begin{aligned}
\left(V_{3}-V_{2}\right) & =\left(W_{1}-W_{0}\right) \\
\left(V_{3}-V_{2}\right)-\left(V_{2}-V_{1}\right) & =\left(W_{2}-W_{1}\right)-\left(W_{1}-W_{0}\right)
\end{aligned}
$$

Putting these together gives:

Geometric interpretation

C^{3} continuity

Summary of continuity conditions

- C^{0} straightforward, but generally not enough
- C^{3} is too constrained (with cubics)

Creating continuous splines

We'll look at three ways to specify splines with C^{1} and C^{2} continuity:

1. C^{2} interpolating splines
2. B-splines
3. Catmull-Rom splines

C^{2} Interpolating splines

The control points specified by the user, called "joints," are interpolated by the spline.

For each of x and y, we needed to specify \qquad conditions for each cubic Bezier segment.

So if there are m segments, we'll need \qquad constraints.

Q: How many of these constraints are determined by each joint?

In-depth analysis, cont.

At each interior joint j, we have:

1. Last curve ends at j
2. Next curve begins at j
3. Tangents of two curves at j are equal
4. Curvature of two curves at j are equal

The m segments give:

- \qquad interior joints
- \qquad conditions

The 2 end joints give 2 further contraints:

1. First curve begins at first joint
2. Last curve ends at last joint

Gives \qquad constraints altogether.

End conditions

The analysis shows that specifying $m+1$ joints for m segments leaves 2 extra degrees of freedom.

These 2 extra constraints can be specified in a variety of ways:

- An interactive system
- Constraints specified as \qquad
- "Natural" cubic splines
- Second derivatives at endpoints defined to be 0
- Maximal continuity
- Require C^{3} continuity between first and last pairs of curves

C^{2} Interpolating splines

Problem: Describe an interactive system for specifiying C2 interpolating splines.
Solution:

1. Let user specify first four Bezier control points.
2. This constrains next \qquad control points -- draw these in.
3. User then picks \qquad more
4. Repeat steps 2-3.

Global vs. local control

These C^{2} interpolating splines yield only "global control" -- moving any one joint (or control point) changes the entire curve!

Global control is problematic:

- Makes splines difficult to design
- Makes incremental display inefficient

There's a fix, but nothing comes for free. Two choices:

- B-splines
- Keep C^{2} continuity
- Give up interpolation
- Catmull-Rom splines
- Keep interpolation
- Give up C^{2} continuity -- provides C^{1} only

B-splines

Previous construction (C^{2} interpolating splines):

- Choose joints, constrained by the "A-frames."

New construction (B-splines):

- Choose points on A-frames
- Let these determine the rest of Bezier control points and joints

The B-splines I'll describe are known more precisely as "uniform B-splines."

B-spline construction

The points specified by the user in this construction are called "de Boor points."
COS $426 \quad 35 \quad$ Lecture Notes \#9

B-spline properties

Here are some properties of B-splines:

- \underline{C}^{2} continuity
- Approximating
- Does not interpolate deBoor points
- Locality
- Each segment determined by 4 deBoor points
- Each deBoor point determines 4 segments
- Convex hull
- Curve lies inside convex hull of deBoor points

Algebraic construction of B-splines

$$
\begin{aligned}
& V_{1}=\ldots B_{1}+\ldots B_{2} \\
& V_{2}=\ldots B_{1}+\ldots B_{2} \\
& V_{0}=\ldots \quad\left[_B_{0}+\ldots \quad B_{1}\right]+\ldots \quad\left[\ldots _B_{1}+\ldots \quad B_{2}\right] \\
& =\ldots B_{0}+\ldots B_{1}+\ldots B_{2} \\
& V_{3}=\ldots \quad B_{1}+\ldots \quad B_{2}+\ldots \quad B_{3}
\end{aligned}
$$

Algebraic construction of B-splines, cont.

Once again, this construction can be expressed in terms of a matrix:

$$
\left(\begin{array}{l}
V_{0} \\
V_{1} \\
V_{2} \\
V_{3}
\end{array}\right)=\frac{1}{6}\left(\begin{array}{llll}
1 & 4 & 1 & 0 \\
0 & 4 & 2 & 0 \\
0 & 2 & 4 & 0 \\
0 & 1 & 4 & 1
\end{array}\right)\left(\begin{array}{l}
B_{0} \\
B_{1} \\
B_{2} \\
B_{3}
\end{array}\right)
$$

Drawing B-splines

Drawing B-splines is therefore quite simple:

```
procedure Draw-B-Spline ({\mp@subsup{B}{0}{},\ldots,\mp@subsup{B}{\textrm{n}}{}})\mathrm{ )}
    for i=0 to n-3 do
        Convert }\mp@subsup{B}{i}{},\ldots,\mp@subsup{B}{i+3}{}\mathrm{ into a Bezier control polygon }\mp@subsup{V}{0}{},\ldots,\mp@subsup{V}{3}{
```



```
    end for
end procedure
```


Multiple vertices

Q: What happens if you put more than one control point in the same place?

Some possibilities:

- Triple vertex
- Double vertex
- Collinear vertices

End conditions

You can also use multiple vertices at the endpoints:

- Double endpoint
- Curve tangent to line between first distinct points
- Triple endpoint
- Curve interpolates endpoint
- Starts out with a line segment
- Phantom vertices
- Gives interpolation without line segment at ends

Catmull-Rom splines

The Catmull-Rom splines

- Give up C^{2} continuity
- Keep interpolation

For the derivation, let's go back to the interpolation algorithm. We had 4 conditions at each joint j :

1. Last curve ends at j
2. Next curve begins at j
3. Tangents of two curves at j are equal
4. Curvature of two curves at j are equal

If we ...

- Eliminate condition 4
- Make condition 3 depend only on local control points
... then we can have local control!

Derivation of Catmull-Rom splines

Idea: (Same as B-splines)

- Start with joints to interpolate
- Build a cubic Bezier curve between successive points

The endpoints of the cubic Bezier are obvious:

$$
\begin{aligned}
& V_{0}=B_{1} \\
& V_{3}=B_{2}
\end{aligned}
$$

Q: What should we do for the other two points?

Derivation of Catmull-Rom, cont.

A: Catmull \& Rom use half the magnitude of the vector between adjacent control points:

Many other choices work -- for example, using an arbitrary constant τ times this vector gives a "tension" control.

Matrix formulation

The Catmull-Rom splines also admit a matrix formulation:

$$
\left(\begin{array}{l}
V_{0} \\
V_{1} \\
V_{2} \\
V_{3}
\end{array}\right)=\frac{1}{6}\left(\begin{array}{cccc}
0 & 6 & 0 & 0 \\
-1 & 6 & 1 & 0 \\
0 & 1 & 6 & -1 \\
0 & 0 & 6 & 0
\end{array}\right)\left(\begin{array}{l}
B_{0} \\
B_{1} \\
B_{2} \\
B_{3}
\end{array}\right)
$$

Exercise: Derive this matrix.

Properties

Here are some properties of Catmull-Rom splines:

- \underline{C}^{1} Continuity
- Interpolating
- Locality
- No convex hull property
- (Proof left as an exercise.)

