Lecture Notes #9 - Curves

Reading:

Angel: Chapter 9

Foley et al., Sections 11(intro) and 11.2

Overview

Introduction to mathematical splines

Bezier curves

Continuity conditions (C^0 , C^1 , C^2 , G^1 , G^2)

Creating continuous splines

 C^2 interpolating splines

B-splines

Catmull-Rom splines

Introduction

Mathematical splines are motivated by the "loftsman's spline":

- Long, narrow strip of wood or plastic
- Used to fit curves through specified data points
- Shaped by lead weights called "ducks"
- Gives curves that are "smooth" or "fair"

Such splines have been used for designing:

- Automobiles
- Ship hulls
- Aircraft fuselages and wings

Requirements

Here are some requirements we might like to have in our mathematical splines:

- Predictable control
- Multiple values
- Local control
- Versatility
- Continuity

Mathematical splines

The mathematical splines we'll use are:

- Piecewise
- Parametric
- Polynomials

Let's look at each of these terms......

Parametric curves

In general, a "parametric" curve in the plane is expressed as:

$$x = x(t)$$

$$y = y(t)$$

Example: A circle with radius r centered at the origin is given by:

5

$$x = r \cos t$$

$$y = r \sin t$$

By contrast, an "implicit" representation of the circle is:

Parametric polynomial curves

A parametric "polynomial" curve is a parametric curve where each function x(t), y(t) is described by a polynomial:

$$x(t) = \sum_{i=0}^{n} a_i t^i$$

$$y(t) = \sum_{i=0}^{n} b_i t^i$$

Polynomial curves have certain advantages:

- Easy to compute
- Infinitely differentiable

6

Piecewise parametric polynomial curves

A "piecewise" parametric polynomial curve uses <u>different</u> polynomial functions for <u>different</u> parts of the curve.

- Advantage: Provides flexibility
- **Problem:** How do you guarantee smoothness at the joints? (Problem known as "continuity.")

In the rest of this lecture, we'll look at:

- 1. Bezier curves -- general class of polynomial curves
- 2. Splines -- ways of putting these curves together

COS 426 7 Lecture Notes #9

Bezier curves

- Developed simultaneously by Bezier (at Renault) and deCasteljau (at Citroen), circa 1960.
- The Bezier curve Q(u) is defined by nested interpolation:

- V_i 's are "control points"
- $\{V_0, \dots, V_n\}$ is the "control polygon"

Bezier curves: Basic properties

Bezier curves enjoy some nice properties:

• Endpoint interpolation:

$$Q(0) = V_0$$

$$Q(1) = V_n$$

- <u>Convex hull:</u> The curve is contained in the convex hull of its control polygon
- Symmetry:

$$Q(u) \text{ defined by } \{V_0, ..., V_n\}$$

$$\equiv Q(1 - u) \text{ defined by } \{V_n, ..., V_0\}$$

9

Bezier curves: Explicit formulation

Let's give V_i a superscript V_i^j to indicate the level of nesting.

An explicit formulation for Q(u) is given by the recurrence:

$$V_i^j = (1 - u) V_i^{j-1} + u V_{i+1}^{j-1}$$

Explicit formulation, cont.

For n = 2, we have:

$$Q(u) = V_0^2$$

$$= (1 - u)V_0^1 + uV_1^1$$

$$= (1 - u)[(1 - u)V_0^0 + uV_1^0] + [(1 - u)V_1^0 + uV_2^0]$$

$$= (1 - u)^2V_0^0 + 2u(1 - u)V_1^0 + u^2V_2^0$$

In general:

$$Q(u) = \sum_{i=0}^{n} V_i \underbrace{\binom{n}{i} u^i (1-u)^{n-i}}_{B_i^n(u)}$$

 $B_i^n(u)$ is the *i*'th Bernstein polynomial of degree *n*.

Bezier curves: More properties

Here are some more properties of Bezier curves

$$Q(u) = \sum_{i=0}^{n} V_i \binom{n}{i} u^i (1-u)^{n-i}$$

- Degree: Q(u) is a polynomial of degree n
- <u>Control points</u>: How many conditions must we specify to uniquely determine a Bezier curve of degree n?

More properties, cont.

• Tangents:

$$Q'(0) = n(V_1 - V_0)$$
$$Q'(1) = n(V_n - V_{n-1})$$

- <u>k'th derivatives:</u> In general,
 - $Q^{(k)}(0)$ depends only on V_0 , ..., V_k
 - $Q^{(k)}(1)$ depends only on V_n , ..., V_{n-k}
 - (At intermediate points $u \in (0, 1)$, all control points are involved for every derivative.)

Cubic curves

For the rest of this discussion, we'll restrict ourselves to <u>piecewise</u> <u>cubic</u> curves.

- In CAGD, higher-order curves are often used
 - Gives more freedom in design
 - Can provide higher degree of continuity between pieces
- For Graphics, piecewise cubic let's you do just about anything
 - Lowest degree for specifiying points to interpolate and tangents
 - Lowest degree for specifying curve in space

All the ideas here generalize to higher-order curves

Matrix form of Bezier curves

Bezier curves can also be described in matrix form:

$$Q(u) = \sum_{i=0}^{3} V_{i} \binom{3}{i} u^{i} (1-u)^{3-i}$$

$$= (1-u)^{3} V_{0} + 3u (1-u)^{2} V_{1} + 3u^{2} (1-u) V_{2} + u^{3} V_{3}$$

$$= \left(u^{3} u^{2} u 1\right) \begin{pmatrix} -1 & 3 & -3 & 1\\ 3 & -6 & 3 & 0\\ -3 & 3 & 0 & 0\\ 1 & 0 & 0 & 0 \end{pmatrix} \begin{pmatrix} V_{0}\\ V_{1}\\ V_{2}\\ V_{3} \end{pmatrix}$$

$$= \left(u^{3} u^{2} u 1\right) M_{\text{Bezier}} \begin{pmatrix} V_{0}\\ V_{1}\\ V_{2}\\ V_{2} \end{pmatrix}$$

Display: Recursive subdivision

Q: Suppose you wanted to <u>draw</u> one of these Bezier curves -- how would you do it?

A: Recursive subdivision:

Display, cont.

Here's pseudocode for the recursive subdivision display algorithm:

```
procedure Display(\{V_0, ..., V_n\}):

if \{V_0, ..., V_n\} flat within \epsilon then

Output line segment V_0V_n

else

Subdivide to produce \{L_0, ..., L_n\} and \{R_0, ..., R_n\}

Display(\{L_0, ..., L_n\})

Display(\{R_0, ..., R_n\})

end if

end procedure
```

Splines

To build up more complex curves, we can piece together different Bezier curves to make "splines."

For example, we can get:

• <u>Positional (*C*⁰) continuity:</u>

• <u>Derivative (*C*¹) continuity:</u>

Q: How would you build an interactive system to satisfy these constraints?

Advantages of splines

Advantages of splines over higher-order Bezier curves:

- Numerically more stable
- Easier to compute
- Fewer bumps and wiggles

Tangent (G¹) continuity

Q: Suppose the tangents were in opposite directions but <u>not</u> of same magnitude -- how does the curve appear?

This construction gives "tangent (G^1) continuity."

Q: How is G^1 continuity different from C^1 ?

Curvature (C²) continuity

Q: Suppose you want even <u>higher</u> degrees of continuity -- e.g., not just <u>slopes</u> but <u>curvatures</u> -- what additional geometric constraints are imposed?

We'll begin by developing some more mathematics.....

Operator calculus

Let's use a tool known as "operator calculus."

Define the operator D by:

$$\mathrm{D}V_{i} \equiv V_{i+1}$$

Rewriting our explicit formulation in this notation gives:

$$Q(u) = \sum_{i=0}^{n} \binom{n}{i} u^{i} (1-u)^{n-i} V_{i}$$

$$= \sum_{i=0}^{n} \binom{n}{i} u^{i} (1-u)^{n-i} D_{i} V_{0}$$

$$= \sum_{i=0}^{n} \binom{n}{i} (uD)^{i} (1-u)^{n-i} V_{0}$$

Applying the binomial theorem gives: $= (uD + (1 - u))^n V_0$

$$= (uD + (1 - u))^n V_0$$

Taking the derivative

One advantage of this form is that now we can take the derivative:

$$Q'(u) = n(uD + (1 - u))^{n-1} (D - 1) V_0$$

What's (D - 1) V_0 ?

Plugging in and expanding:

$$Q'(u) = n \sum_{i=0}^{n-1} {n-1 \choose i} u^{i} (1-u)^{n-1-i} D_{i} (V_{0}-V_{1})$$

This gives us a general expression for the derivative Q'(u).

Specializing to n = 3

What's the derivative Q'(u) for a cubic Bezier curve?

Note that:

- When u = 0: $Q'(u) = 3(V_1 V_0)$
- When u = 1: $Q'(u) = 3(V_3 V_2)$

Geometric interpretation:

So for *C*1 continuity, we need to set:

$$3(V_3 - V_2) = 3(W_1 - W_0)$$

Taking the second derivative

Taking the derivative once again yields:

$$Q''(u) = n (n - 1) (uD + (1 - u))^{n-2} (D - 1)^2 V_0$$

What does $(D - 1)^2$ do?

Second-order continuity

So the conditions for second-order continuity are:

$$(V_3 - V_2) = (W_1 - W_0)$$

$$(V_3 - V_2) - (V_2 - V_1) = (W_2 - W_1) - (W_1 - W_0)$$

Putting these together gives:

Geometric interpretation

C^3 continuity

Summary of continuity conditions

- C^0 straightforward, but generally not enough
- C^3 is too constrained (with cubics)

Creating continuous splines

We'll look at three ways to specify splines with C^1 and C^2 continuity:

- 1. C^2 interpolating splines
- 2. B-splines
- 3. Catmull-Rom splines

C^2 Interpolating splines

The control points specified by the user, called "joints," are <u>interpolated</u> by the spline.

For each of x and y, we needed to specify _____ conditions for each cubic Bezier segment.

So if there are m segments, we'll need _____ constraints.

Q: How many of these constraints are determined by each joint?

In-depth analysis, cont.

At each <u>interior</u> joint j, we have:

- 1. Last curve ends at j
- 2. Next curve begins at *j*
- 3. Tangents of two curves at *j* are equal
- 4. Curvature of two curves at *j* are equal

The m segments give:

- _____ interior joints
- _____ conditions

The 2 end joints give 2 further contraints:

- 1. First curve begins at first joint
- 2. Last curve ends at last joint

Gives _____ constraints altogether.

End conditions

The analysis shows that specifying m + 1 joints for m segments leaves 2 extra degrees of freedom.

These 2 extra constraints can be specified in a variety of ways:

- An interactive system
 - Constraints specified as _____
- "Natural" cubic splines
 - Second derivatives at endpoints defined to be 0
- Maximal continuity
 - Require C^3 continuity between first and last pairs of curves

C^2 Interpolating splines

<u>Problem:</u> Describe an interactive system for specifiying C2 interpolating splines.

Solution:

- 1. Let user specify first four Bezier control points.
- 2. This constrains next _____ control points -- draw these in.
- 3. User then picks _____ more
- 4. Repeat steps 2-3.

Global vs. local control

These C^2 interpolating splines yield only "global control" -- moving any one joint (or control point) changes the entire curve!

Global control is problematic:

- Makes splines difficult to design
- Makes incremental display inefficient

There's a fix, but nothing comes for free. Two choices:

- B-splines
 - Keep C² continuity
 - Give up interpolation
- <u>Catmull-Rom splines</u>
 - Keep interpolation
 - Give up C^2 continuity -- provides C^1 only

B-splines

Previous construction (C^2 interpolating splines):

• Choose joints, constrained by the "A-frames."

New construction (B-splines):

- Choose points on A-frames
- Let these determine the rest of Bezier control points and joints

The B-splines I'll describe are known more precisely as "uniform B-splines."

COS 426 35 Lecture Notes #9

B-spline properties

Here are some properties of B-splines:

- <u>C</u>² continuity
- Approximating
 - Does not interpolate deBoor points
- Locality
 - Each segment determined by 4 deBoor points
 - Each deBoor point determines 4 segments
- Convex hull
 - Curve lies inside convex hull of deBoor points

Algebraic construction of B-splines

$$V_{1} = \underline{\hspace{1cm}} B_{1} + \underline{\hspace{1cm}} B_{2}$$

$$V_{2} = \underline{\hspace{1cm}} B_{1} + \underline{\hspace{1cm}} B_{2}$$

$$V_{0} = \underline{\hspace{1cm}} [\underline{\hspace{1cm}} B_{0} + \underline{\hspace{1cm}} B_{1}] + \underline{\hspace{1cm}} [\underline{\hspace{1cm}} B_{1} + \underline{\hspace{1cm}} B_{2}]$$

$$= \underline{\hspace{1cm}} B_{0} + \underline{\hspace{1cm}} B_{1} + \underline{\hspace{1cm}} B_{2}$$

$$V_{3} = \underline{\hspace{1cm}} B_{1} + \underline{\hspace{1cm}} B_{2} + \underline{\hspace{1cm}} B_{3}$$

Algebraic construction of B-splines, cont.

Once again, this construction can be expressed in terms of a matrix:

$$\begin{pmatrix} V_0 \\ V_1 \\ V_2 \\ V_3 \end{pmatrix} = \frac{1}{6} \begin{pmatrix} 1 & 4 & 1 & 0 \\ 0 & 4 & 2 & 0 \\ 0 & 2 & 4 & 0 \\ 0 & 1 & 4 & 1 \end{pmatrix} \begin{pmatrix} B_0 \\ B_1 \\ B_2 \\ B_3 \end{pmatrix}$$

Drawing B-splines

Drawing B-splines is therefore quite simple:

```
 \begin{aligned} \textbf{procedure} \ Draw-B-Spline} \ (\{B_0, ..., B_n\}): \\ \textbf{for} \ i &= 0 \text{ to } n-3 \text{ do} \\ Convert \ B_i, ..., B_{i+3} \text{ into a Bezier control polygon } V_0, ..., V_3 \\ Display} \ (\{V_0, ..., V_3\}) \\ \textbf{end for} \\ \textbf{end procedure} \end{aligned}
```

Multiple vertices

Q: What happens if you put more than one control point in the same place?

Some possibilities:

- <u>Triple vertex</u>
- <u>Double vertex</u>
- Collinear vertices

End conditions

You can also use multiple vertices at the endpoints:

- <u>Double endpoint</u>
 - Curve tangent to line between first distinct points
- Triple endpoint
 - Curve interpolates endpoint
 - Starts out with a line segment
- Phantom vertices
 - Gives interpolation without line segment at ends

Catmull-Rom splines

The Catmull-Rom splines

- Give up C^2 continuity
- Keep interpolation

For the derivation, let's go back to the interpolation algorithm. We had 4 conditions at each joint *j*:

- 1. Last curve ends at *j*
- 2. Next curve begins at *j*
- 3. Tangents of two curves at *j* are equal
- 4. Curvature of two curves at *j* are equal

If we ...

- Eliminate condition 4
- Make condition 3 depend only on local control points

... then we can have <u>local control!</u>

Derivation of Catmull-Rom splines

<u>Idea</u>: (Same as B-splines)

- Start with joints to interpolate
- Build a cubic Bezier curve between successive points

The endpoints of the cubic Bezier are obvious:

$$V_0 = B_1$$

$$V_3 = B_2$$

Q: What should we do for the other two points?

Derivation of Catmull-Rom, cont.

A: Catmull & Rom use half the magnitude of the vector between adjacent control points:

Many other choices work -- for example, using an arbitrary constant τ times this vector gives a "tension" control.

COS 426 Lecture Notes #9

Matrix formulation

The Catmull-Rom splines also admit a matrix formulation:

$$\begin{pmatrix} V_0 \\ V_1 \\ V_2 \\ V_3 \end{pmatrix} = \frac{1}{6} \begin{pmatrix} 0 & 6 & 0 & 0 \\ -1 & 6 & 1 & 0 \\ 0 & 1 & 6 & -1 \\ 0 & 0 & 6 & 0 \end{pmatrix} \begin{pmatrix} B_0 \\ B_1 \\ B_2 \\ B_3 \end{pmatrix}$$

Exercise: Derive this matrix.

Properties

Here are some properties of Catmull-Rom splines:

- <u>C</u>¹ Continuity
- Interpolating
- Locality
- No convex hull property
 - (Proof left as an exercise.)