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Chapter 1

Response of Single Degree-of-Freedom

Systems to Initial Conditions

In this chapter we begin the study of vibrations of mechanical systems. Generally speaking a

vibration is a periodic or oscillatory motion of an object or a set of objects. Vibrating systems

are ubiquitous in engineering and thus the study of vibrations is extremely important.

The most basic problem of interest is the study of the vibration of a one degree-of-freedom

(i.e., a system whose motion can be described using a single scalar second-order ordinary dif-

ferential equation). The generic model for a one degree-of-freedom system is a mass connected

to a linear spring and a linear viscous damper (i.e., a mass-spring-damper system). Because of

its mathematical form, the mass-spring-damper system will be used as the baseline for analysis

of a one degree-of-freedom system. In particular, the differential equation of motion will be

derived for the mass-spring-damper system. It will then be shown that the time response of

this system is the sum of the zero input response and the zero initial condition response. In this

chapter we will focus attention on the zero input response, i.e., the response of the system to a

given set of initial conditions. Several examples of single degree-of-freedom systems will then

be given. In each of these examples the differential equation will be derived and will be shown

to have the same mathematical form as the generic mass-spring-damper system.

1.1 Mass-Spring-Damper System

The most basic system that is used as a model for vibrational analysis is a block of mass m
connected to a linear spring (with spring constant K and unstretched length ℓ0) and a viscous

damper (with damping coefficient c). In addition, an external force P(t) is applied to the block

and the displacement of the block is measured from the inertially fixed point O, where O is the

point where the spring is unstretched. Finally, the spring and damper are both attached at the

inertially fixed point Q. This system is shown in Fig. 1–1 Denoting unit vector in the direction

from O to Q as Ex and the inertial reference frame of the ground by F , the inertial acceleration

of the block is given as
Fa = ẍEx (1–1)

Next, the forces exerted by the spring and damper are given, respectively, as

Fs = −K(ℓ − ℓ0)us (1–2)

Ff = −cvrel (1–3)

First, because the spring is attached at point Q, we have

ℓ = ‖r− rQ‖ (1–4)
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Q

Figure 1–1 Block of mass m sliding without friction along a horizontal surface con-

nected to a linear spring and a linear viscous damper.

where r and rQ are the positions of the block and the attachment points of the spring, respec-

tively. Using a coordinate system with its origin at point O at Ex as the first principal direction,

we have

r = xEx (1–5)

rQ = ℓ0Ex (1–6)

Therefore,

ℓ = ‖xEx − ℓ0Ex‖ = ‖(x − ℓ0)Ex‖ = |x − ℓ0| (1–7)

Then, because x < ℓ0 we have

|x − ℓ0| = ℓ0 − x (1–8)

Finally, the unit vector in the direction from the attachment point of the spring to the position

of the block is

us =
r− rQ

‖r− rQ‖
= (x − ℓ0)Ex

ℓ0 − x
= −Ex (1–9)

The force in the linear spring is then given as

Fs = −K(ℓ0 − x − ℓ0)(−Ex) = −KxEx (1–10)

Next, because the ground is already assumed to be inertial, the relative velocity between the

block and the ground is simply the velocity of the block, i.e.,

vrel = Fv = ẋEx (1–11)

Therefore, the force exerted by the viscous damper is obtained as

Ff = −cẋEx (1–12)

The resultant external force acting on the particle is then obtained as

F = P+ Fs + Ff = PEx −KxEx − cẋEx = (P −Kx − cẋ)Ex (1–13)

Applying Newton’s second law to the particle, we obtain

(P −Kx − cẋ)Ex =mẍEx (1–14)

Dropping Ex from Eq. (1–14) and rearranging, we obtain the differential equation of motion as

mẍ + cẋ +Kx = P (1–15)
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Now historically it has been the case that the differential equation has been written in a form

that is normalized by the mass, i.e., we divide Eq. (1–15) by m to obtain

ẍ + c

m
ẋ + K

m
x = P

m
= p(t) (1–16)

where p(t) = P(t)/m. Furthermore, it is common practice to define the quantities K/m and

c/m as follows:

ω2
n = K

m

2ζωn = c

m

The quantities ωn and ζ are called the natural frequency and damping ratio of the system,

respectively. In terms of the natural frequency and damping ratio, the differential equation of

motion for the mass-spring-damper system can be written in the so called standard form as

ẍ + 2ζωnẋ +ω2
nx = p(t) (1–17)

It is seen that Eq. (1–17) is a second-order linear constant coefficient ordinary differential equa-

tion. Often, the term “constant coefficient” is replaced with the term time-invariant, i.e., we

say that Eq. (1–17) is a called a second-order linear time-invariant (LTI) ordinary differential

equation. The terminology “time invariant” stems from the fact that, for a given input p(t) and

a given set of initial conditions (x(t0), ẋ(t0) = (x0, ẋ0) at the initial time t = t0 is the same as

the solution to the input p(t + τ) for the initial conditions (x(t0 + τ), ẋ(t0 + τ) = (x0, ẋ0) at

the (shifted) initial time t = t0 + τ . Because of this fact associated with an LTI system, without

loss of generality we can assume that the initial time is zero, i.e., t0 = 0. Thus, when studying

the zero input response of an LTI system we can restrict our attention to initial conditions

(x(0), ẋ(0) = (x0, ẋ0).

1.2 General Solution of a Second-Order LTI Differential Equation

Eq. (1–17) can be written as
d2x

dt2
+ 2ζωn

dx

dt
+ω2

nx = p(t) (1–18)

which can be further written as
(

d2

dt2
+ 2ζωn

d

dt
+ω2

n

)

x = p(t) (1–19)

Now let

L = d2

dt2
+ 2ζωn

d

dt
+ω2

n (1–20)

Then we can view the system of Eq. (1–17) as a system of the form

Lx = f (1–21)

It is seen that the operator L defined in Eq. (1–20) is linear because

L(αx1 + βx2) = αL(x1)+ βL(x2) (1–22)

for all constants α and β. Then it is seen that Eq. (1–21) is a linear system whose general

solution is of then form Eq. (1–17) is given as

x(t) = xh(t)+ xp(t) (1–23)
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here xh(t) is the homogeneous solution (i.e., the solution for a particular set of initial conditions

(x(t0), ẋ(t0) = (x0, ẋ0) with a zero input function p(t) ≡ 0) while xp(t) is the particular

solution (i.e., the solution for zero initial conditions (x(t0), ẋ(t0) = (0,0) and an arbitrary input

function p(t) ≠ 0). The homogeneous solution and particular solutions are also called the zero

input response and zero initial condition response, respectively. The general solution x(t) to

a second-order LTI system is then given as the sum of the zero input response and the zero

initial condition response. Because the zero input response satisfies Eq. (1–17) when p(t) ≡ 0,

we have

ẍh + 2ζωnẋh +ω2
nxh = 0 (1–24)

Contrariwise, because the zero initial condition response satisfies Eq. (1–17) when p(t) ≠ 0 and

the initial conditions are zero, we have

ẍp + 2ζωnẋp +ω2
nxp = p(t) (1–25)

From the preceding discussion, it is seen that studying the general response of a second-

order LTI system amounts to studying independently the zero input response and the zero

initial condition response. Consequently, the study of single degree-of-freedom vibrations

amounts to quantifying the zero input response and the zero initial condition response. In

this remainder of this chapter we study in detail the zero input response of a second-order LTI

system that arises in the study of mechanical vibrations.

1.3 General Solution to Second-Order Homogeneous LTI System

We now focus on the zero input response of the second-order LTI system of Eq. (1–17), i.e., we

focus on the system

ẍh + 2ζωnẋh +ω2
nxh = 0 (1–26)

Suppose that we guess the solution to Eq. (1–26) as

xh(t) = eλt (1–27)

where λ is constant that has yet to be determined. Differentiating the assumed solution of

Eq. (1–27) twice, we have

ẋh(t) = λeλt (1–28)

ẍh(t) = λ2eλt (1–29)

Substituting the results of Eqs. (1–28) and (1–29) into (1–26), we obtain

λ2eλt + 2ζωnλe
λt +ω2

ne
λt = 0 (1–30)

Then, because eλt is not zero as a function of time, it can be dropped from Eq. (1–30) to give

λ2 + 2ζωn +ω2
n = 0 (1–31)

Equation (1–31) is called the characteristic equation whose roots give the behavior of the zero

input response of Eq. (1–17). Using the quadratic formula, the roots of Eq. (1–31) are given as

λ1,2 = −ζωn ±
√

4ζ2ω2
n − 4ω2

n = −ζωn ±ωn

√

ζ2 − 1 (1–32)

It can be seen that the types of roots admitted by Eq. (1–31) depend upon the value of ζ. In

particular, the types of roots are governed by the quantity ζ2 − 1. We have three cases to

consider: (1) 0 ≤ ζ < 1, (2) ζ = 1, and (3) ζ > 1. We now consider each of these cases in turn.
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Case 1: 0 ≤ ζ < 1 (Underdamping)

When 0 ≤ ζ < 1 the zero input response is said to be underdamped. For an underdamped

system the quantity ζ2 − 1 < 0 which implies that
√

ζ2 − 1 = i
√

1− ζ2. The roots of the

characteristic equation for an underdamped system are then given as

λ1,2 = −ζωn ± iωn

√

1− ζ2 (1–33)

It is seen from Eq. (1–33) that the roots of the characteristic equation for an underdamped

system are complex. Furthermore, the general zero input response for an underdamped system

is given as

xh(t) = e−ζωnt
[

c1 cos

(

ωn

√

1− ζ2t

)

+ c2 sin

(

ωn

√

1− ζ2t

)]

(1–34)

Eq. (1–34) can be written as

xh(t) = e−ζωnt (c1 cosωdt + c2 sinωdt) (1–35)

where the quantityωd =ωn

√

1− ζ2 is called the damped natural frequency of the system. The

constants c1 and c2 can be solved for by using the initial conditions (x(0), ẋ(0)) = (x0, ẋ0) as

follows. First, substituting the initial condition x(0) = x0 into Eq. (1–35), we obtain c1 as

xh(0) = x0 = c1 (1–36)

Next, differentiating xh(t) in Eq. (1–35), we obtain

ẋh(t) = −ζωne
−ζωnt (c1 cosωdt + c2 sinωdt)

+ e−ζωnt (−c1ωd sinωdt + c2ωd cosωdt)
(1–37)

Applying the initial condition ẋ(0) = ẋ0, we obtain

ẋh(0) = ẋ0 = −ζωnc1 +ωdc2 (1–38)

Substituting the result for c1 from Eq. (1–36) into Eq. (1–38), we obtain

ẋ0 = −x0ζωn +ωdc2 (1–39)

Solving for c2 we have

c2 =
ẋ0 + ζωnx0

ωd
(1–40)

The zero input response for an underdamped system is then given as

xh(t) = e−ζωnt
(

x0 cosωdt +
ẋ0 + ζωnx0

ωd
sinωdt

)

(1–41)

A schematic of the underdamped zero input response for various values of 0 ≤ ζ < is shown

in Fig. 1–2.
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0

0

x
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(t
)

t

ζ = 0.05
ζ = 0.1
ζ = 0.2
ζ = 0.5

Figure 1–2 Schematic of the zero input response of an underdamped second-order

linear time-invariant system.

Case 2: ζ = 1 (Critical Damping)

When ζ = 1 the zero input response is said to be critically damped. For critically damped

system the quantity ζ2 − 1 = 0 which implies that
√

ζ2 − 1 = 0. The roots of the characteristic

equation for an underdamped system are then given as

λ1,2 = −ζωn = −ωn (1–42)

It is seen from Eq. (1–42) that the roots of the characteristic equation for a critically damped

system are real and repeated (i.e., the two roots are the same). Furthermore, the general zero

input response for a critically damped system is given as

xh(t) = e−ωnt (c1 + c2t) (1–43)

The constants c1 and c2 can be solved for by using the initial conditions (x(0), ẋ(0)) = (x0, ẋ0)
as follows. First, applying the initial condition x(0) = x0 into Eq. (1–43), we have

xh(0) = x0 = c1 (1–44)

Next, differentiating Eq. (1–43), we obtain

ẋh(t) = −ωne
−ωnt (c1 + c2t)+ c2e

−ωnt (1–45)

Applying the initial condition ẋ(0) = ẋ0, we obtain

ẋh(0) = ẋ0 = −ωnc1 + c2 (1–46)
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Substituting the result for c1 from Eq. (1–44), we have

ẋh(0) = ẋ0 = −ωnx0 + c2 (1–47)

Solving Eq. (1–47) for c2 gives

c2 = ẋ0 +ωnx0 (1–48)

The zero input response for an critically damped system is then given as

xh(t) = e−ωnt [x0 + (ẋ0 +ωnx0)t] (1–49)

A schematic of a critically damped zero input response is shown in Fig. 1–3.

Action

0
0

x
h
(t
)

t

Figure 1–3 Schematic of the zero input response of a critically damped second-order

linear time-invariant system.

Case 3: ζ > 1 (Overdamping)

When ζ > 1 the zero input response is said to be overdamped. For an overdamped system the

quantity ζ2−1 > 0 which implies that
√

ζ2 − 1 > 0. The roots of the characteristic equation for

an underdamped system are then given as

λ1,2 = −ζωn ±ωn

√

ζ2 − 1 (1–50)

It is seen from Eq. (1–50) that the roots of an overdamped system are real and distinct. Further-

more, the general zero input response for an overdamped system is given as

xh(t) = c1e
λ1t + c2e

λ2t (1–51)
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The constants c1 and c2 can be solved for by using the initial conditions (x(0), ẋ(0)) = (x0, ẋ0)
as follows. First, applying the initial condition x(0) = x0, we obtain

xh(0) = x0 = c1 + c2 (1–52)

Next, differentiating Eq. (1–51) gives

ẋh(t) = −c1λ1e
λ1t + c2λ2e

λ2t (1–53)

Then, applying the initial condition ẋ(0) = ẋ0, we obtain

ẋh(0) = ẋ0 = −c1λ1 + c2λ2 (1–54)

Equations (1–52) and (1–54) can then be solved simultaneously for c1 and c2 to give

c1 = x0λ2 − ẋ0

λ1 + λ2
(1–55)

c2 = x0λ1 + ẋ0

λ1 + λ2
(1–56)

The general zero input response for an overdamped system is then given as

xh(t) =
x0λ2 − ẋ0

λ1 + λ2
eλ1t + x0λ1 + ẋ0

λ1 + λ2
eλ2t (1–57)

A schematic of an overdamped zero input response for various values of ζ > 1 is shown in

Fig. 1–4.

0

0

x
h
(t
)

t

ζ = 1.1
ζ = 1.2
ζ = 1.5
ζ = 2

Figure 1–4 Schematic of the zero input response of an overdamped second-order

linear time-invariant system.



Chapter 2

Forced Response of Single

Degree-of-Freedom Systems

2.1 Response of Single Degree-of-Freedom Systems to Nonperiodic In-

puts

2.2 Physics of Impulsive Motion

Recall from dynamics that the principle of impulse and momentum for a particle states that

F̂ = N
G′ −NG (2–1)

where NG is the linear momentum of the particle as viewed by an observer in an inertial ref-

erence frame N . Suppose now that we consider the following system. A block of mass m is

connected to a linear spring with spring constant K and unstretched length ℓ0 and a viscous

linear damper with damping coefficient c as shown in Fig. 2–1. The block is initially at rest

(i.e., its initial velocity is zero) at its static equilibrium position (i.e., the spring is initially un-

stressed) when a horizontal impulse P̂ is applied. We are interested here in determining the

velocity of the block immediately after the application of the impulse P̂.

ℓ0

c

g

P̂m

x

K

Q

Figure 2–1 Block of mass m connected to linear spring and linear damper struck by

horizontal impulse P̂.

The solution of the above problem is found as follows. First, let F be the ground. Then,
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choose the following coordinate system fixed in F :

Origin at block

when x = 0

Ex = To the left

Ez = Into page

Ey = Ez × Ex

Then, the position of the block is given in terms of the displacement x as

r = xEx (2–2)

Because {Ex ,Ey ,Ez} is a fixed basis, the velocity of the block in reference frame F is given as

Fv =
Fdr

dt
= ẋEx = vEx (2–3)

Now because we are going to apply the principle of linear impulse and momentum to this

problem, we do not need the acceleration of the block. Instead, we know that neither the spring

nor the damper can apply an instantaneous impulse. Therefore, the only impulse applied to

the system at t = 0 is that due to P̂. Consequently, the external impulse acting on the system

at t = 0 is

F̂ = P̂ = P̂Ex (2–4)

Furthermore, the linear momentum of the block the instant before the impulse is applied is

zero (i.e., the block is initially at rest) while the linear momentum of the block the instant after

the impulse is applied is given as

F
G′ =mF

v′ =mv′Ex (2–5)

Setting F̂ equal to
F
G′, we obtain

P̂ =mv′ ≡mv(t = 0+) (2–6)

Solving for v(t = 0+), we obtain

v(t = 0+) = P̂

m
(2–7)

The result of this analysis shows that the response of a resting second-order linear system to

an impulsive force F̂ is equivalent to giving the system the initial velocity shown in Eq. (2–7).

2.3 Impulse Response of Second-Order Linear System

Suppose now that we consider the general motion of the system in Fig. 2–1, i.e., we consider

motion to a general force F(t). Then, recalling the result from earlier, the differential equation

of motion is given as

mẍ + cẋ +Kx = F(t)+Kℓ0 (2–8)

It is noted that the equilibrium point of the system in Eq. (2–8) is xeq = ℓ0, we can define the

variable y = x − xeq and rewrite Eq. (2–8) in terms of y to give

mÿ + cẏ +Ky = F(t) (2–9)

Now suppose that F(t) is the following function:

F(t) = F̂δ(t) (2–10)

where δ(t) is defined as follows:

δ(t − a) =
{

∞ , t = a
0 , t ≠ τ

(2–11)
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The function δ(t) is called the Dirac delta function or the unit impulse function. It is known

that the Dirac delta function satisfies the following properties:

∫∞

−∞
δ(t − a)dt = 1 (2–12)

∫∞

−∞
f(t)δ(t − a)dt = f(a) (2–13)

where f(t) is an arbitrary function. For simplicity, consider the case where F̂ = 1, i.e., the case

of unit impulse being applied to the system. Also, let g(t) be the response to the input δ(t),
i.e., consider the system

mg̈ + cġ +Kg = δ(t) (2–14)

Let T be a value of t such that T > 0. Then, integrating Eq. (2–14) from zero to T , we have

∫ T

0

[

mg̈ + cġ +Kg
]

dt =
∫ T

0
δ(t)dt (2–15)

Now we have the following

∫ T

0
mg̈dt = mġ(t)|T0 (2–16)

∫ T

0
cġdt = mg(t)|T0 (2–17)

Taking the limit as T → 0 from above, we obtain

lim
T→0+

mġ(t)
∣

∣

T
0 = lim

T→0+
m
[

ġ(T)| − ġ(0)
]

=mġ(0+) (2–18)

lim
T→0+

mg(t) |T0 = lim
T→0+

m
[

g(T)− g(0)
]

= 0 (2–19)

Furthermore, because the position of the mass cannot change during the application of an

instantaneous impulse, we see that

lim
T→0+

∫ T

0
Kg(t)dt = lim

T→0+
Kg(0)t |T0 = lim

T→0+
Kg(0) = 0 (2–20)

Using the results of Eqs. (2–18), (2–19) and (2–20) in Eq. (2–15), we obtain

mġ(0+) = 1 (2–21)

Solving Eq. (2–21) for ġ(0+), we obtain

ġ(0+) = 1

m
(2–22)

It is seen that, for the case where P̂ ≡ 1, the results of Eq. (2–7) and Eq. (2–22) are identical. More

specifically, as we saw above, the effect of a unit impulsive force on a resting particle of mass

m is to provide an initial velocity of magnitude 1/m while the response of a second-order linear

system to a unit impulse function (i.e., the Dirac delta function) is to provide an initial velocity

of magnitude 1/m. Consequently, the physics of an impulsive force on a resting particle is

identical to the mathematics of the impulse response of the system to a unit impulse.

Now that we know that the response of a second-order resting system is to change the

velocity (while leaving position unchanged), we can use this fact to obtain the impulse response

g(t). In particular, assuming an underdamped system, we know that the general form of the

free response is given as

g(t) = e−ζωnt(A cosωdt + B sinωdt) (2–23)
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where ωn =
√

k/m is the natural frequency, ζ is the damping ratio, and ωd = ωn

√

1− ζ2 is

the damped natural frequency. Differentiating this last equation, we have

ġ(t) = −ζωne
−ζωnt(A cosωdt + B sinωdt)+ e−ζωnt(−Aωd sinωdt + Bωd cosωdt) (2–24)

Noting that g(0) = 0 and that ġ(0+) = 1/m, we have

A = 0 (2–25)

B = 1

mωd
(2–26)

Therefore, the response of the system to a unit impulse at t = 0 is given as

g(t) =
{

1
mωd

e−ζωnt sinωdt , t > 0

0 , t ≤ 0
(2–27)

It is seen that, for an underdamped system, the impulse response is a decaying sinusoid with

a zero phase (i.e., the applied impulse did not result in a nonzero phase shift). A schematic of

the impulse response is shown in Fig. 2–2.

0

0
t

g
(t
)

Figure 2–2 Schematic of Impulse Response of Underdamped Second-Order Linear

System.

2.4 Step Response of Second-Order Linear System

After the unit impulse function, the next fundamental function of importance in the analysis

of vibratory systems is the unit step function. The unit step function, denoted u(t), is defined
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as

u(t − a) =
{

0 , t ≤ a
1 , t > a

(2–28)

Recalling the unit impulse function δ(t) from Eq. (2–11), it is seen that u(t) is related to δ(t)
as follows:

u(t − a) =
∫ t

−∞
δ(τ − a)dτ (2–29)

where τ is a dummy variable of integration. Now suppose we want to determine the response,

s(t), of the system of Eq. (2–9) to a unit step input at t = 0. The function s(t) is called the step

response and, from Eq. (2–9), satisfies

ms̈ + cṡ +Ks = u(t) (2–30)

It is noted that Eq. (2–30) can be written as

m
d2s

dt2
+ c ds

dt
+Ks = u(t) (2–31)

We can obtain s(t) as follows. Consider again the relationship that holds between the unit

impulse and the impulse response, i.e.,

mg̈ + cġ +Kg = δ(t) (2–32)

Then, from Eq. (2–29), we have
du(t − a)

dt
= δ(t − a) (2–33)

Therefore, for a unit step function at t = 0, we have

mg̈ + cġ +Kg = du

dt
(2–34)

Integrating both sides of Eq. (2–34) gives

∫ t

−∞

[

d2g

dτ2
+ c dg

dτ
+Kg

]

dτ =
∫ t

−∞

du(a)

da
da = u(t) (2–35)

Now from the fundamental theorem of calculus we have

∫ t

−∞

d2g

dτ2
= d2

dt2

∫ t

−∞
g(τ)dτ (2–36)

∫ t

−∞

dg

dτ
= d

dt

∫ t

−∞
gdτ (2–37)

Therefore, Eq. (2–35) can be rewritten as

[

d2

dτ2
+ c d

dτ
+K

]

∫ t

−∞
g(τ)dτ = u(t) =

∫ t

−∞
δ(τ)dτ (2–38)

Now if we compare Eq. (2–38) to Eq. (2–31), it is seen that

s(t) =
∫ t

−∞
g(τ)dτ (2–39)

In other words, the response of the system of Eq. (2–9) to a unit step function is the integral of

the response of the system to a unit impulse1. We can then use the result of Eq. (2–39) and the

1More generally, it is the case that the response of any linear time-invariant system to the integral of a
function f(t) is equal to the integral of the response to the original function f(t).
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impulse response given in Eq. (2–27) as follows. First, for t ≤ 0 we have s(t) = 0. For t > 0, we

have

s(t) =
∫ t

0

1

mωd
e−ζωnτ sinωdτdτ =

1

mωd

∫ t

0
e−ζωnτ sinωdτdτ (2–40)

Now from DeMoivre’s theorem we have

sinωdτ =
eiωdτ − e−iωdτ

2i
(2–41)

Therefore,

s(t) = 1

2imωd

∫ t

0
e−ζωnτ

[

eiωdτ − e−iωdτ
]

= 1

2imωd

∫ t

0

[

e−(ζωn−iωd)τ − e−(ζωn+iωd)τ
]

= 1

2imωd

[

−e
−(ζωn−iωd)τ

ζωn − iωd
+ e

−(ζωn+iωd)τ

ζωn + iωd

]t

0

= − e
−ζωnτ

2imωd

[

eiωdτ

ζωn − iωd
− e−iωdτ

ζωn + iωd

]t

0

= − e
−ζωnτ

2imωd

[

(ζωn + iωd)eiωdτ − (ζωn − iωd)e−iωdτ

ζ2ω2
n +ω2

d

]t

0

(2–42)

Now, noting that ωd =ωn

√

1− ζ2, we have

s(t) = − 1

2imωdω
2
n

[

(ζωn + iωd)e
−(ζωn−iωd)τ − (ζωn − iωd)e

−(ζωn+iωd)τ
]t

0

= 1

2imωdω
2
n

[

(ζωn + iωd)
(

1− e−(ζωn−iωd)t
)

− (ζωn − iωd)
(

1− e−(ζωn+iωd)t
)]

= 1

2imωdω
2
n

[

2iωd − e−ζωnt
{

ζωn

(

eiωdt − e−iωdt
)

+ iωd

(

eiωdt + e−iωdt
)}]

= 1

mωdω
2
n

[

ωd − e−ζωnt
(

ζωn
eiωdt − e−iωdt

2i
+ωd

eiωdt + e−iωdt
2

)]

(2–43)

Now we have
eiωdt + e−iωdt

2
= cosωdt (2–44)

Using Eq. (2–44) together with Eq. (2–41), we have

s(t) = 1

mωdω
2
n

[

ωd − e−ζωnt (ζωn sinωdt +ωd cosωdt)
]

= 1

mω2
n

[

1− e−ζωnt
(

cosωdt +
ζωn

ωd
sinωdt

)] (2–45)

It is noted that the expression in Eq. (2–45) is valid when t > 0. Therefore, the response of the

system of Eq. (2–9) to a unit step function is given as

s(t) =
{

0 , t ≤ 0
1

mω2
n

[

1− e−ζωnt
(

cosωdt + ζωn
ωd

sinωdt
)]

, t > 0
(2–46)
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2.5 Response of Single Degree-of-Freedom Systems to Periodic Inputs

Recall the standard form of the differential equation that describes the motion of a damped

single degree-of-freedom system subject from Eq. (1–17) as

ẍ + 2ζωnẋ +ω2
nx = p(t) (2–47)

Suppose now that p(t) has the general form

p(t) =ω2
nf(t) (2–48)

Then Eq. (2–47) can be written as

ẍ + 2ζωnẋ +ω2
nx =ω2

nf(t) (2–49)

Suppose further that f(t) is a periodic function of the form f(t) = Aeiωt . We then have

ẍ + 2ζωnẋ +ω2
nx =ω2

nAe
iωt (2–50)

The function f(t) = Aeiωt will be called the normalized input function.

2.5.1 General Solution to Second-Order Linear Differential Equation

It is known that the general solution to Eq. (2–50) is the sum of the homogeneous and particular

solutions, i.e.,

x(t) = xh(t)+ xp(t) (2–51)

where xh(t) satisfies the equation

ẍ + 2ζωnẋ +ω2
nx = 0 (2–52)

and xp(t) is the particular solution that satisfies Eq. (2–50). In this analysis we are interested

in determining the particular solution of Eq. (2–50).

2.5.2 Particular Solution to Complex Periodic Input

Suppose now that we want to determine the particular solution to Eq. (2–50). Given that the

input F(t) = ω2
nf(t) = ω2

nAe
iωt is an exponential with exponent iωt, the particular solution

will itself have the form

xp(t) = X(ω)eiωt (2–53)

where we note that the coefficient X is a function of the input frequency ω. Differentiating

xp(t) in Eq. (2–53), we obtain

ẋp(t) = iωXeiωt (2–54)

ẍp(t) = −ω2Xeiωt (2–55)

Substituting xp(t), ẋp(t), and ẍp(t) from Eqs. (2–53)–(2–55), respectively, into Eq. (2–50), we

have

−ω2Xeiωt + i2ζωnωXe
iωt +ω2

nXe
iωt =ω2

nAe
iωt (2–56)

Rearranging Eq. (2–56) gives

Xeiωt
[

(ω2
n −ω2)+ i2ζωnω

]

=ω2
nAe

iωt (2–57)

Observing that eiωt is not zero as a function of time, it can be dropped from Eq. (2–57) to give

[

(ω2
n −ω2)+ i2ζωnω

]

=ω2
nA (2–58)



16 Chapter 2. Forced Response of Single Degree-of-Freedom Systems

Rearranging Eq. (2–58), we obtain

X(ω)

A
= ω2

n

ω2
n −ω2 + i2ζωnω

(2–59)

Suppose now that we let

G(iω) = X(ω)

A
= ω2

n

ω2
n −ω2 + i2ζωnω

(2–60)

Finally, we can divide the numerator and denominator of Eq. (2–60) by ω2
n to obtain

G(iω) = X(ω)

A
= 1

1−
(

ω

ωn

)2

+ i2ζ ω
ωn

(2–61)

The quantity G(iω) is called the transfer function of the system to the input Aeiωt . It is seen

that the transfer function is the ratio of the amplitude of the output to the amplitude of the

input. It is seen that the transfer function of the system of Eq. (2–50) is a function of the

frequency, ω, of the input F(t) =ω2
nAe

iωt

Now since the transfer function G(iω) is complex, it can be written as

G(iω) = α+ iβ (2–62)

where

α = Re [G(iω)] (2–63)

β = Im [G(iω)] (2–64)

where Re [·] and Im [·] are the real and imaginary parts of G. From complex analysis, we know

that any complex number can be written as

z = α+ iβ = |z|e−iφ (2–65)

where

|z| =
√
zz̄ =

√

α2 + β2 (2–66)

φ = tan−1

(−β
α

)

(2–67)

and z̄ = α − iβ is the complex conjugate of z. It is noted in Eq. (2–66) that z̄ is the complex

conjugate of z (i.e., z̄ = α − iβ) and the negative sign in Eq. (2–67) is associated with the

numerator. Using the result of Eq. (2–65), we can write G(iω) as

G(iω) = |G(iω)|e−iφ(ω) (2–68)

where

|G(iω)| =
√

G(iω)Ḡ(iω) (2–69)

φ(ω) = −Im [G(iω)]

Re [G(iω)]
(2–70)

Returning to the particular solution xp(t), we note that

xp(t) = Xeiωt = AG(iω)eiωt = A|G(iω)|ei(ωt−φ) (2–71)
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2.5.3 Response of Second-Order System to Sine and Cosine Inputs

In section 2.5.2 we obtained the response of the second-order system of Eq. (2–47) to a complex

periodic input of the form p(t) = ω2
nAe

iωt . However, actual physical systems are real, not

complex. Consequently, it would never actually be the case that the input to a physical system

would be complex.

A question that arises from the fact that only a real function would be an input to a physical

system is, what is the particular solution of the system Eq. (2–47) to a real periodic input? This

question is answered as follows. We know that the two fundamental periodic functions are

cosωt and sinωt. Using the normalization Aω2
n, the real question being asked is, what are

the particular solutions of Eq. (2–47) to the inputs Aω2
n cosωt and Aω2

n sinωt? We can obtain

these two particular solutions as follows. First, from Eq. (2–71) we know from De’Moivre’s

theorem that

ei(ωt−φ) = cos(ωt −φ)+ i sin(ωt −φ) (2–72)

Therefore, the particular solution xp(t) in Eq. (2–71) can be written as Aω2
ne

iωt can be written

as

xp(t) = Xeiωt = AG(iω)eiωt = A|G(iω)| cos(ωt −φ)+ iA|G(iω)| sin(ωt −φ) (2–73)

Expanding Eq. (2–73), we obtain

xp(t) = Xeiωt = A|G(iω)| cos(ωt −φ)+ iA|G(iω)| sin(ωt −φ) (2–74)

Now, by the principle of superposition we know that the particular solution of Eq. (2–47) to

the sum of two inputs p1(t) + p2(t) is the sum of the responses, i.e., if x1(t) is the particular

solution to the input p1(t) and x2(t) is the particular solution to the input p2(t), then x1(t)+
x2(t) is the particular solution to the input p1(t)+ p2(t). Now suppose we rewrite the general

complex input Aω2
ne

iωt as

Aω2
ne

iωt = Aω2
n cosωt + iAω2

n sinωt = fr (t)+ ifi(t) (2–75)

where

fr (t) = Aω2
n cosωt (2–76)

fi(t) = Aω2
n sinωt (2–77)

Now observe that fr (t) and fi(t) are the real and imaginary parts of Aω2
ne

iωt , respectively.

Furthermore, observe from Eq. (2–73) that A|G(iω)| cos(ωt − φ) and A|G(iω)| sin(ωt − φ)
are the real and complex parts, respectively, of the response xp(t) to Aω2

ne
iωt . Then, by the

principle of superposition we know that the response of Eq. (2–47) to fr (t) must be the real

part of xp(t) in Eq. (2–73), i.e.,

xr (t) = Re
{

A|G(iω)|ei(ωt−φ)
}

= A|G(iω)| cos(ωt −φ) (2–78)

Similarly, the response of Eq. (2–47) to fi(t) is the imaginary part of xp(t) in Eq. (2–73), i.e.,

xi(t) = Im
{

A|G(iω)|ei(ωt−φ)
}

= A|G(iω)| sin(ωt −φ) (2–79)

2.5.4 Frequency Response to Periodic Input

We now turn to a more detailed analysis of the response of the system of Eq. (2–50) to a

periodic input. In particular, we are interested in the amplitude and phase of the output as a

function of input frequency. Generally speaking, the amplitude is determined as the ratio of the

output amplitude to the input amplitude. Recall that the transfer function G(iω) was defined

as G(iω) = X(ω)/A where X(ω) is the output amplitude (i.e., the amplitude of the particular
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solution) and A is the input amplitude of the normalized input function f(t) = Aeiωt . The

frequency response to a periodic input is defined as the combination of the magnitude and

phase of the ratio of the output to the input. Recall the magnitude and phase of G(iω) from

Eqs. (2–69) and (2–70). Furthermore, recall from Eq. (2–61) that

G(iω) = X(ω)

A
= 1

1−
(

ω

ωn

)2

+ i2ζ ω
ωn

(2–80)

Then the magnitude of G(iω) is given as

|G(iω)| =
[

G(iω)Ḡ(iω)
]1/2 =





























1

1−
(

ω

ωn

)2

+ i2ζ ω
ωn





















1

1−
(

ω

ωn

)2

− i2ζ ω
ωn





























1/2

(2–81)

where

Ḡ(iω) = 1

1−
(

ω

ωn

)2

− i2ζ ω
ωn

(2–82)

Eq. (2–81) can be simplified to give

|G(iω)| = 1






[

1−
(

ω

ωn

)2
]2

+
[

2ζ
ω

ωn

]2






1/2 (2–83)

Next, the phase of G(iω) can be obtained as follows. First, we know that

G(iω) = G(iω)Ḡ(iω)
Ḡ(iω)

= |G(iω)|2
Ḡ(iω)

(2–84)

Substituting |G(iω)| and Ḡ(iω) from Eqs. (2–61) and (2–82), we obtain

G(iω) =
1−

(

ω

ωn

)2

− i2ζ ω
ωn

[

1−
(

ω

ωn

)2
]2

+
[

2ζ
ω

ωn

]2
(2–85)

Extracting the real and imaginary parts of G(iω) from Eq. (2–85), we have

Re [G(iω)] =
1−

(

ω

ωn

)2

[

1−
(

ω

ωn

)2
]2

+
[

2ζ
ω

ωn

]2
(2–86)

Im [G(iω)] =
−2ζ

ω

ωn
[

1−
(

ω

ωn

)2
]2

+
[

2ζ
ω

ωn

]2
(2–87)

The phase is then obtained as

φ(ω) = tan−1 −Im [G(iω)]

Re [G(iω)]
= tan−1











2ζ
ω

ωn

1−
(

ω

ωn

)2











(2–88)
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Figure 2–3 Magnitude of Frequency Response of a Single Degree-of-Freedom Linear

System to an Input f(t) = Aeiωt .

The magnitude and phase of G(iω) are shown in Figs. 2–3 and 2–4, respectively, for various

values of the damping ratio ζ. It is seen from Fig. 2–3 that the amplitude of the response

approaches ∞ as ζ → 0, i.e.,

lim
ζ→0

|G(iω)| = ∞ (2–89)

In general, it can be shown that the maximum value of |G(iω)| is given as

|G(iω)|max =
1

2ζ
√

1− ζ2
(2–90)

Furthermore, it is seen that as ζ approaches zero, the value at which |G(iω)| is maximum

approaches unity, i.e.,

lim
ζ→0

arg max |G(iω)| = 1 (2–91)

Turning attention to the phase of G(iω) (i.e., φ(ω)), it is seen that all of the curves pass

through the point ω/ωn = 1 and φ = π/2. Furthermore, it is seen that φ approaches zero and

∞ as ω/ωn approaches zero and ω/ωn approaches ∞, respectively, i.e.,

lim
ω/ωn→∞

φ(ω) = 0 (2–92)

lim
ω/ωn→∞

φ(ω) = π (2–93)

It is noted that, for the special case of ζ = 0, the phase has a discontinuity at ω/ωn = 1 (this

is not shown in Fig. 2–4). Finally, for the case where ζ = 0 and ω/ωn = 1 the system is at

resonance with a phase angle of π/2.
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Figure 2–4 Phase of Frequency Response of a Single Degree-of-Freedom Linear Sys-

tem to an Input f(t) = Aeiωt .
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2.5.5 Transfer Functions of Second-Order System to Sine and Cosine Inputs

In section 2.5.4 the transfer function of the second-order differential equation given in Eq. (2–47)

to the input Aω2
ne

iωt was derived. In this section we determine the transfer functions of

Eq. (2–47) to the inputs Aω2
n cosωt and Aω2

n sinωt. First, the response of Eq. (2–47) to the

input Aω2
n cosωt is given from Eq. (2–78) as

xr (t) = A|G(iω)| cos(ωt −φ) (2–94)

Now we know that xr (t) can be written as

xr (t) = Xr cos(ωt − β) (2–95)

where Xr and β are the amplitude and phase, respectively, of xr (t). Comparing Eq. (2–94) and

(2–95) it is seen that

Xr = A|G(iω)| (2–96)

β = φ (2–97)

Therefore, the magnitude and phase of xr (t) is the same as the magnitude and phase xp(t)
where xp(t) is given from Eq. (2–71). Now because a complex number is defined completely

from its magnitude and phase, we have

Gr (iω) = G(iω) (2–98)

In other words, the transfer function of that the Aω2
n cosωt is identical to the transfer function

of Eq. (2–98) to the input Aω2
ne

iωt . Next, the response of Eq. (2–47) to the input Aω2
n sinωt is

given from Eq. (2–79) as

xi(t) = A|G(iω)| sin(ωt −φ) (2–99)

Now we know that xi(t) can be written as

xi(t) = Xi sin(ωt − γ) (2–100)

where Xi and γ are the amplitude and phase, respectively, of xi(t). Comparing Eq. (2–99) and

(2–100) it is seen that

Xi = A|G(iω)| (2–101)

γ = φ (2–102)

Therefore, the magnitude and phase of xi(t) is the same as the magnitude and phase xp(t)
where xp(t) is given from Eq. (2–71). Again, because a complex number is defined completely

from its magnitude and phase, we have

Gi(iω) = G(iω) (2–103)

In other words, the transfer function of that the Aω2
n sinωt is identical to the transfer function

of Eq. (2–103) to the input Aω2
ne

iωt .

2.5.6 Comments on Complex Periodic Input vs. Real Periodic Input

The results of section 2.5.5 demonstrate an important fact. The transfer function (i.e., the

magnitude and phase of the output x(t) over the input p(t) where p(t) is a periodic function

of time) to the input Aω2
ne

iωt is the same as the transfer function to the inputs Aω2
n cosωt

and Aω2
n sinωt. The reason the transfer function is the same regardless of whether complex

or real periodic inputs are used is because the responses to Aω2
n cosωt and Aω2

n sinωt have

the same magnitude and phase as does the response to Aω2
ne

iωt . This was the reason that

we studied the response to the complex periodic input in the first place. Therefore, it is not

necessary to analyze the response to the sine and cosine functions separately; they can be

combined into a single analysis using a complex periodic input.
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Example 2–1

A collar of mass m slides without friction along a circular arc portion of a rigid massless

structure as shown in Fig. 2–5. The structure consists of two arms, one oriented horizontally

and the other oriented at a constant angle α from the downward direction. The entire structure,

centered at point Q, translates with known horizontal displacement q(t) along a rod, where q
is measured from a track-fixed point O. A collar of massm slides along the arc of the structure

circular part of the structure. The position of the collar relative to the structure is measured

by the angle θ, where θ is measured from the downward direction. Attached to the collar is

a curvilinear spring with spring constant K and unstretched length ℓ0 = Rα. Also, a viscous

friction force with viscous friction coefficient c is exerted by the circular arc on the collar. The

spring and friction forces are given, respectively, as

Fs = −K(ℓ − ℓ0)et
Ff = −cvrel

where et is the tangent vector to the track at the location of the collar and vrel is the velocity of

the collar relative to the track. Assuming no gravity, determine (a) the differential equation of

motion; (b) the static equilibrium value θeq for the system; (c) the differential equation of motion

relative to the static equilibrium point found in (b); (d) the standard form of the differential

equation obtained in part (c); (e) the transfer function for Θ/Q where Θ is the amplitude of the

output(i.e., the amplitude of θ) q(t) = (QK/ω2)eiωt ; (f) the time response of the system to the

sinusoidal input q given in part (e).

q(t)
Viscous Friction, c

m

A

BO Q

R

α θ

Figure 2–5 Collar of mass m moving on circular part of a structure, where the

structure slides with horizontal displacement q(t).

Solution to Example 2–1

(a) Differential Equation of Motion

Kinematics

Let F be fixed to the track. Then choose the following coordinate system fixed in F :

Origin at Q whenq = 0

Ex = to the right

Ez = out of page

Ey = Ez × Ex



2.5 Response of Single Degree-of-Freedom Systems to Periodic Inputs 23

Next, let A be fixed to the structure. Then choose the following coordinate system fixed in A:

Origin at Q
ex = to the right

ez = out of page

ey = ez × ex

Finally, let B be fixed to the direction Qm. Then choose the following coordinate system fixed

in B:
Origin at Q

er = along Qm
ez = out of page

eθ = ez × er

Then the position of point Q is given as

rQ = qEx = qex (2–104)

Furthermore, the position of the collar relative to point Q is given as

rm/Q = Rer (2–105)

Then the position of the collar is obtained as

r = rm = rQ + rm/Q = qex + Rer (2–106)

Next, the angular velocity of reference frame B in reference frame F is

F
ω
B = θ̇ez (2–107)

Now the velocity and acceleration of point Q in reference frame F are

FvQ = q̇ex (2–108)
FaQ = q̈ex (2–109)

The velocity of the collar relative to pointQ in reference frameF is obtained from the transport

theorem as

Fvm/Q =
Fd

dt

(

rm/Q
)

=
Bd

dt

(

rm/Q
)

+ F
ω
B × rm/Q (2–110)

where

Bd

dt

(

rm/Q
)

= 0 (2–111)

F
ω
B × rm/Q = θ̇ez × Rer = Rθ̇eθ (2–112)

Consequently,
Fvm/Q = Rθ̇eθ (2–113)

The acceleration of the collar relative to point Q in reference frame F is obtained from the

transport theorem as

Fam/Q =
Fd

dt

(

Fam/Q

)

=
Bd

dt

(

Fvm/Q

)

+ F
ω
B × Fvm/Q (2–114)

where

Bd

dt

(

Fvm/Q

)

= Rθ̈eθ (2–115)

F
ω
B × Fvm/Q = θ̇ez × Rθ̇eθ = −Rθ̇2er (2–116)
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Consequently,
Fam/Q = −Rθ̇2er + Rθ̈eθ (2–117)

Finally, the acceleration of the collar in reference frame F is

Fa = FaQ + Fam/Q = q̈ex − Rθ̇2er + Rθ̈eθ (2–118)

Kinetics

The free body diagram of the collar is shown in Fig. 2–6.

Ff

Fs

N

Figure 2–6 Free body diagram for Example 2–1.

Now the forces acting on the particle are

N = Reaction force of track on collar

Fs = Force of curvilinear spring

Ff = Force of viscous friction

Resolving these forces, we have

N = Ner (2–119)

Fs = −K(ℓ − ℓ0)et (2–120)

Ff = −cvrel (2–121)

Now

et = eθ (2–122)

ℓ = R(α+ θ) (2–123)

ℓ0 = Rα (2–124)

vrel = Fv− FvQ = Fvm/Q = Rθ̇eθ (2–125)

Then the spring and friction forces are given as

Fs = −K(R(α+ θ)− Rα)eθ = −KRθeθ (2–126)

Ff = −cRθ̇eθ (2–127)

The resultant force acting on the particle is then given as

F = N+ Fs + Ff = Ner −KRθeθ − cRθ̇eθ (2–128)

Applying Newton’s second law, we obtain

Ner −KRθeθ − cRθ̇eθ =m(q̈ex − Rθ̇2er + Rθ̈eθ) =mq̈ex −mRθ̇2er +mRθ̈eθ (2–129)

Now it is convenient to substitute ex in terms of er and eθ as

ex = sinθer + cosθeθ (2–130)
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Therefore,

Ner − (KRθ + cRθ̇)eθ =mq̈ex −mRθ̇2er +mRθ̈eθ

=mq̈(sinθer + cosθeθ)−mRθ̇2er +mRθ̈eθ

=mq̈ sinθer +mq̈ cosθeθ −mRθ̇2er +mRθ̈eθ

= (mq̈ sinθ −mRθ̇2)er + (mq̈ cosθ ++mRθ̈)eθ

(2–131)

Setting the er and eθ components equal, we obtain

N = mq̈ sinθ −mRθ̇2 (2–132)

−(KRθ + cRθ̇) = mq̈ cosθ ++mRθ̈ (2–133)

It is seen that the second of these equation is the differential equation of motion. Rearranging,

we obtain

mRθ̈ + cRθ̇ +KRθ = −mq̈ cosθ (2–134)

(b) Static Equilibrium Point

Let θeq be the static equilibrium value of θ. Setting θ̇eq, θ̈eq, and q(t) equal to zero, we see that

the static equilibrium point is given as

KRθeq = 0 (2–135)

Equation (2–135) implies that

θeq = 0 (2–136)

(c) Differential Equation Linearized Relative to θeq

It is seen that it is not necessary to change θ̇ and θ̈ because the static equilibrium point is

θeq = 0. Now the linearized value of cosθ is

cosθ ≈ 1 (2–137)

for values of θ near zero. Therefore, the linearized differential equation for values of θ near

θeq is

mRθ̈ + cRθ̇ +KRθ = −mq̈ (2–138)

(d) Standard Form of Differential Equation

Dividing the linearized differential equation by mR, we obtain

θ̈ + c

m
θ̇ + K

m
θ = − q̈

R
(2–139)

(e) Transfer Function for Input q(t) = QKeiωt/ω2

Differentiating q(t), we obtain

q̇(t) = iQKeiωt/ω (2–140)

q̈(t) = −QKeiωt (2–141)

Then the differential equation is

θ̈ + c

m
θ̇ + K

m
θ = QK

R
eiωt = Qmω2

n

R
eiωt = Qm

R
ω2
ne

iωt (2–142)



26 Chapter 2. Forced Response of Single Degree-of-Freedom Systems

where, because ω2
n = K/m, we have K =mω2

n. Now let

A = Qm

R
(2–143)

Furthermore, let

θ(t) = Θeiωt (2–144)

which implies

θ̇ = iωΘeiωt (2–145)

θ̈ = −ω2
Θeiωt (2–146)

Therefore,

Θeiωt
[

−ω2 + i2ζωnω+ω2
n

]

= Aω2
ne

iωt (2–147)

Therefore,
Θ

A
= ω2

n

ω2
n −ω2 + i2ζωnω

(2–148)

which implies that

Θ

Q
=

A
Qω

2
n

ω2
n −ω2 + i2ζωnω

= m

R

ω2
n

ω2
n −ω2 + i2ζωnω

= m

R

1

1−
(

ω
ωn

)2
+ i2ζ ω

ωn

(2–149)

Consequently,
Θ

Q
= m

R
G(iω) (2–150)

where

G(iω) = 1

1−
(

ω
ωn

)2
+ i2ζ ω

ωn

(2–151)

(f) Time Response to Input Given in Part (e)

The time response for the standard system

ẍ + 2ζωnẋ +ω2
nx = Aω2

ne
iωt (2–152)

is given as

x(t) = A|G(iω)|ei(ωt−φ) (2–153)

where |G(iω)| and φ are the magnitude and phase of G(iω). Now our input amplitude is

A = Qm

R
(2–154)

Therefore, the time response for this problem is

θ(t) = Qm

R
|G(iω)|ei(ωt−φ) (2–155)

�
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Example 2–2

A collar of mass m slides along an inertially fixed circular track of radius R as shown in Fig. 2–

7. Attached to the collar is a curvilinear spring with spring constant K and unstretched length

ℓ0 = Rθ0. The position of the collar on the track is measured by the angle θ, where θ is

measured from the inertially fixed downward direction. Furthermore, the contact between the

track and the collar creates a viscous friction force with friction coefficient c. The forces exerted

by the curvilinear spring and the viscous damper are given, respectively, as

Fs = −K(ℓ − ℓ0)et
Ff = −cvrel

where et is the tangent vector to the track at the location of the collar and vrel is the velocity

of the collar relative to the track. Finally, attached to the other end of the spring is a massless

collar that moves with specified displacement described the angle φ(t), where, like θ, φ is also

measured from inertially fixed downward direction. Assuming no gravity, determine (a) the

differential equation of motion; (b) the value θeq for which the system is in static equilibrium;

(c) the differential equation of motion relative to the static equilibrium found in part (b); (d)

the standard form of the differential equation obtained in part (d); (e) the natural frequency,

damping ratio, and damped natural frequency of the system (assuming that the system is

underdamped); (f) the transfer function ᾱ/P where ᾱ is the amplitude of the output of α(t)
and φ(t) = PK sinωt; (g) the time response of the system to the sinusoidal input φ given in

part (f).

Viscous Friction, c

m

K

O

Q

R

θφ

Figure 2–7 Collar sliding on fixed circular track attached to a linear spring with

moving attachment point and viscous friction.
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Solution to Example 2–2

(a) Differential Equation of Motion

Kinematics

Let F be fixed to the circular track. Then choose the following coordinate system fixed in F :

Origin at O
Ex = along Om when θ = 0

Ez = out of page

Ey = Ez × Ex

Next, let A be fixed to the direction Om. Then choose the following coordinate system fixed in

A:
Origin at O

er = along Om
ez = out of page

ez = ez × er

Then the position of the collar is given as

r = Rer (2–156)

which implies that

Fv =
Fdr

dt
=
Adr

dt
+ F

ω
A × r (2–157)

where F
ω
A = θ̇ez. Now we have

Adr

dt
= 0 (2–158)

F
ω
A × r = θ̇ez × Rer = Rθ̇eθ (2–159)

which implies that
Fv = Rθ̇eθ (2–160)

The acceleration of the collar as viewed by an observer fixed to the track is then given as

Fa =
Fd

dt

(

Fv
)

=
Ad

dt

(

Fv
)

+ F
ω
A × Fv (2–161)

Now we have

Ad

dt

(

Fv
)

= Rθ̈eθ (2–162)

F
ω
A × Fv = θ̇ez × Rθ̇eθ = −Rθ̇2er (2–163)

which implies that
Fa = −Rθ̇2er + Rθ̈eθ (2–164)

Kinetics

From the free body diagram, the following forces act on the collar:

N = Reaction force of track

Fs = Force of curvilinear spring

Ff = Force of viscous friction
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Now we have

N = Ner (2–165)

Fs = −K(ℓ − ℓ0)et (2–166)

Ff = −cvrel (2–167)

Using the fact that et = eθ and that the surface is absolutely fixed, we obtain vrel = Fv. Conse-

quently,

N = Ner (2–168)

Fs = −K(ℓ − ℓ0)eθ (2–169)

Ff = −cRθ̇eθ (2–170)

Finally, we know that

ℓ = R(θ −φ) (2–171)

and that ℓ0 = Rθ0 which implies

Fs = −K(R(θ −φ)− Rθ0)eθ = −KR(θ −φ− θ0)eθ (2–172)

The resultant force acting on the collar is then obtained as

F = Ner −KR(θ −φ− θ0)eθ − cRθ̇eθ (2–173)

Applying Newton’s second law to the collar, we obtain

Ner −KR(θ −φ− θ0)eθ − cRθ̇eθ =m
[

−Rθ̇2er + Rθ̈eθ

]

(2–174)

which yields the following two scalar equations:

−mRθ̇2 = N (2–175)

mRθ̈ = −KR(θ −φ− θ0)− cRθ̇ (2–176)

It is seen that the second of these last two equations has no unknown reaction forces and, thus,

is the differential equation. Rearranging this equation, we obtain

mRθ̈ + cRθ̇ +KRθ = KRθ0 +KRφ (2–177)

Dropping the common factor of R gives

mθ̈ + cθ̇ +Kθ = Kθ0 +Kφ (2–178)

(b) Static Equilibrium Point

Let θeq be the static equilibrium point. Then we have θ̇eq = θ̈eq = 0. Also, setting φ = 0, we

obtain

Kθeq = Kθ0 (2–179)

which implies

θeq = θ0 (2–180)

(c) Differential Equation Relative to Equilibrium Point

Let α = θ − θ0. Then α̇ = θ̇ and α̈ = θ̈ which implies that

mα̈+ cα̇+K(α+ θ0) = Kθ0 +Kφ (2–181)

Simplifying this last equation gives

mα̈+ cα̇+Kα = Kφ (2–182)
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(d) Standard Form of Differential Equation

Dividing the last differential equation by m gives

α̈+ c

m
α̇+ K

m
α = K

m
φ (2–183)

(e) Natural Frequency, Damping Ratio, and Damped Natural Frequency

The natural frequency is given as

ωn =
√

K/m (2–184)

The damping ratio is found by solving

2ζωn =
c

m
(2–185)

which implies that the damping ratio is given as

ζ = c

2mωn
= c

2
√
mK

(2–186)

The damped natural frequency is given as

ωd =
√

1− ζ2ωn (2–187)

where ζ and ωn are as computed above.

(f) Transfer Function for Periodic Input φ(t) = PK sinωt

We know that the transfer function for an input of the form sinωt is the same as the transfer

function for an input eiωt . Therefore, for this part of the problem let φ(t) = PKeiωt . Also, let

α(t) = ᾱeiωt (2–188)

Then

α̇(t) = iωbarαeiωt (2–189)

α̈(t) = −ω2barαeiωt (2–190)

Substituting into the differential equation, we obtain

ᾱeiωt
[

−ω2 + i2ζωnω+ω2
n

]

= K

m
PKeiωt = PKω2

ne
iωt (2–191)

Now let

A = PK (2–192)

Then,

ᾱeiωt
[

ω2
n −ω2 + i2ζωnω

]

= Aω2
ne

iωt (2–193)

Rearranging gives

ᾱ

A
= ω2

n

ω2
n −ω2 + i2ζωnω

= 1

1−
(

ω
ωn

)2
+ i2ζ ω

ωn

= G(iω) (2–194)

Therefore,
ᾱ

P
= ᾱ

A

A

P
= KG(iω) (2–195)
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(g) Time Response to φ(t) = AK sinωt

We know that the time response to the standard system

ẍ + 2ζωnẋ +ω2
nx = Aω2

ne
iωt (2–196)

is given as

x(t) = A|G(iω)|ei(ωt−φ) (2–197)

Now in our case we have

A = PK (2–198)

which implies that

α(t) = PK|G(iω)|ei(ωt−φ) (2–199)

Therefore, the response of the system to the input AK sinωt is the imaginary part of α(t), i.e.,

αr (t) = Im [α(t)] = PK|G(iω)| sin(ωt −φ) (2–200)

�

Example 2–3

A massless cart moves horizontally along the ground with a known displacement q(t), where q
is measured from a point O fixed to the ground as shown in Fig. 2–8. A block of mass m slides

along the surface of the cart. Attached to the block are a linear spring with spring constant

K and unstretched length ℓ0 and a viscous damper with damping coefficient c. The spring

and damper are attached at point Q, where Q is located on the vertical support of the cart.

Knowing that x describes the displacement of the block relative to the cart and that gravity

acts downward, determine (a)the differential equation of motion for the system; (b) (b) the

static equilibrium value xeq for the differential equation given in part (a); (c) the differential

equation of motion relative to the static equilibrium found in part (b); (d) the standard form

of the differential equation obtained in part (c); (e) the natural frequency, damping ratio, and

damped natural frequency of the system in terms of the parameters K and c (assuming that

the system is underdamped); (f) the transfer function associated with the ratio of the amplitude

Y/Q where Y is the amplitude of the output y(t) and q(t) = QKeiaωt ; (g) the time response,

denoted z(t), of the system to the periodic input q(t) = QK(cosaωt).

q(t)
c

m

x

K
O

Q

Figure 2–8 Block sliding on horizontally moving cart with linear spring and viscous

damper.
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Solution to Example 2–3

(a) Differential Equation of Motion

Kinematics

Let F be fixed to the ground. Then choose the following coordinate system fixed in reference

frame F :
Origin at O

Ex = to the right

Ez = into page

Ey = Ez × Ex

Next, A be fixed to the block. Then choose the following coordinate system fixed in reference

frame A:
Origin at Q

ex = along Qm
ez = Ez
ey = ez × ex

Now, because the block is in pure translation, the position of the support Q is given as

rQ = qEx (2–201)

Next, the position of the block relative to the upper support is given as

rP/Q = xex (2–202)

Therefore, the position of the block relative to the ground is obtained as

r = rP = rQ + rP/Q = qEx + xex = (q + x)ex (2–203)

where we note that Ex = ex . Then the velocity and acceleration of the block in reference frame

F are given as block are given, respectively, as

Fv = (q̇ + ẋ)ex (2–204)
Fa = (q̈ + ẍ)ex (2–205)

Kinetics

The free body diagram of the block is shown in Fig. 2–9.

Fs

Fd

N

mg

Figure 2–9 Free body diagram for block sliding on horizontally moving cart with

linear spring and viscous damper.

where
Fs = Force exerted by spring

Fd = Force exerted by damper

mg = Force of gravity

N = Reaction force of cart on block
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Now we have

Fs = −K(ℓ − ℓ0)us (2–206)

Fd = −cvrel (2–207)

mg = −mgey (2–208)

N = Ney (2–209)

Observing that the spring is attached at point Q, we have

r− rQ = qEx + xex − qEx = xex (2–210)

ℓ = ‖r− rQ‖ = x (2–211)

us = r− rQ

‖r− rQ‖
= xex

x
= ex (2–212)

(2–213)

Therefore,

Fs = −K(x − ℓ0)ex (2–214)

Next, the relative velocity vrel is computed as

vrel = Fv− FvQ = (q̇ + ẋ)ex − q̇ex = ẋex (2–215)

where it is noted that FvQ = q̇Ex = q̇ex . Therefore, the force of the damper is given as

Fd = −cvrel = −cẋex (2–216)

The resultant force acting on the particle is then given as

F = Fs ++Fd +mg+N = −K(x − ℓ0)ex − cẋex −mgey +Ney (2–217)

Then, applying Newton’s second law (i.e., F =mFa), we have

−K(x − ℓ0)ex − cẋex −mgey +Ney =m(q̈ + ẍ)ex (2–218)

Separating this last equation into ex and ey components gives

−
[

K(x − ℓ0)+ cẋ
]

ex +
[

N −mg
]

ey =m(q̈ + ẍ)ex (2–219)

Equating ex and ey components gives

−
[

K(x − ℓ0)+ cẋ
]

= m(q̈ + ẍ) (2–220)

N −mg = 0 (2–221)

It is seen that Eq. (2–220) has no unknown reaction forces and, thus, is the differential equation

of motion. Rearranging Eq. (2–220), we obtain

mẍ + cẋ +Kx = Kℓ0 −mq̈ (2–222)

(b) Static Equilibrium Point

Let xeq be the static equilibrium point. Then

ẋeq = 0 (2–223)

ẍeq = 0 (2–224)

Furthermore, in order to find the static equilibrium point, we need to set q(t) = 0. Substituting

the equilibrium conditions into Eq. (2–222) gives

Kxeq = Kℓ0 (2–225)

Solving for xeq, we obtain

xeq = ℓ0 (2–226)
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(c) Differential Equation Relative to Static Equilibrium Point

Suppose we define

y = x − xeq =⇒ x = y + xeq = y + ℓ0 (2–227)

We then have

ẏ = ẋ (2–228)

ÿ = ẍ (2–229)

Then the differential equation can be written in terms of y as

mÿ + cẏ +K(y + ℓ0) = Kℓ0 −mq̈ (2–230)

Simplifying this last equation gives

mÿ + cẏ +Ky = −mq̈ (2–231)

(d) Standard Form of Differential Equation

Dividing Eq. (2–231) by m, we obtain the standard form of the differential equation as

ÿ + c

m
ẏ + K

m
y = −q̈ (2–232)

(e) Natural Frequency, Damping Ratio, and Damped Natural Frequency

The natural frequency is given as

ωn =
√

K

m
(2–233)

The damping ratio is found by solving

2ζωn =
c

m
(2–234)

for ζ. We have

2ζωn = 2ζ

√

K

m
= c

m
(2–235)

Solving for ζ gives

ζ = c

2m

√

m

K
= c

2
√
mK

(2–236)

Finally, the damped natural frequency is given as

ωd =ωn

√

1− ζ2 (2–237)

(f) Transfer Function for Periodic Input q(t) = QKeiaωt

Differentiating q(t) = QKeiaωt twice gives

q̇(t) = iaωQKeiaωt (2–238)

q̈(t) = −a2ω2QKeiaωt (2–239)

Substituting q̈(t) into Eq. (2–232) and using the generic expressions for ωn and ζ, we obtain

ÿ + 2ζωnẏ +ω2
ny = a2ω2QKeiaωt (2–240)
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Now let the output y(t) be given as

y(t) = Yeiaωt (2–241)

Then

ẏ = iaωYeiωt (2–242)

ÿ = −a2ω2Yeiωt (2–243)

Substituting y , ẏ , and ÿ into Eq. (2–240) gives

[

−a2ω2 + i2aζωnω+ω2
n

]

Yeiaωt = a2ω2QKeiaωt (2–244)

Observing that K =mω2
n, we have

[

ω2
n − a2ω2 + ia2ζωnω

]

Yeiaωt = a2ω2QKeiaωt =
(

Qma2ω2
)

ω2
ne

iωt (2–245)

Now let

A = Qma2ω2 (2–246)

Then, dropping the common factor of eiωt and dividing through by −a2ω2 + i2aζωnω+ω2
n

gives

Y = Aω2
n

ω2
n − a2ω2 + i2aζωnω

(2–247)

Then, dividing numerator and denominator by ω2
n gives

Y = A

1−
(

aω
ωn

)2
+ i2ζ aωωn

(2–248)

Dividing both sides by Q, we obtain the transfer function Y/A as

Y

Q
= A/Q

1−
(

aω
ωn

)2
+ i2ζ aωωn

(2–249)

Now let

Ω = aω (2–250)

Then, in terms of Ω we can let

G(iΩ) = 1

1−
(

Ω

ωn

)2
+ i2ζ Ω

ωn

(2–251)

Then
Y

Q
= A

Q
G(iΩ) =mΩ2G(iΩ) (2–252)

(g) Time Response z(t) to q(t) = QK cosaωt

We know that for a system in the standard form

ẍ + 2ζωnẋ +ω2
nx = Aω2

ne
iωt (2–253)

The time response is

x(t) = A|G(iω)|ei(ωt−φ) (2–254)

In our case we have the amplitude A from Eq. (2–246) as

A = Qma2ω2 = QmΩ2 (2–255)
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where we recall that Ω = aω. Therefore, the time response to the input QKeiaωt is

y(t) = QmΩ2|G(iΩ)|ei(Ωt−φ) (2–256)

Then the response to the input QK cosaωt is the real part of y(t), i.e.,

z(t) = Re
[

QmΩ2|G(iΩ)|ei(Ωt−φ)
]

= QmΩ2|G(iΩ)| cos(Ωt −φ)
= Qma2ω2|G(iaω)| cos(aωt −φ)

(2–257)

�

Example 2–4

A collar of mass m1 slides along an inertially fixed track. The displacement of the collar is

measured relative to the fixed point O by the variable x. The collar is attached to a linear

spring with spring constant K, a linear damper with damping coefficient c, and a rigid massless

arm of length L. Attached to the other end of the arm is a particle of mass m2. Knowing that

the arm rotates with a constant angular rate Ω, (a) derive the differential equation of motion for

the system in terms of the displacement x; (b) determine the equilibrium point of the system;

(c) write the differential equation in part (a) relative to the equilibrium point found in part (b);

and (d) determine the time response of the collar.

Ωt

c

m1

m2x

K

O

P

Figure 2–10 Collar on Spring and Damper with Imbalanced Mass.

Solution to Example 2–4

(a) Differential Equation of Motion

Kinematics

First, let F be the track. Then, choose the following coordinate system fixed in reference frame

F :
Origin at point O

Ex = Along OP
Ez = Out of page

Ey = Ez × Ex
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Next, letR be a reference frame fixed to the arm. Then, choose the following coordinate system

fixed in reference frame R:

Origin at O
er = Along m1m2

ez = Out of page

eθ = ez × er

Then the angular velocity of arm as viewed by an observer fixed to the track is given as

F
ω
R = Ωez (2–258)

Next, the position of the collar is given as

r1 = xEx (2–259)

The velocity and acceleration of the collar in reference frame F are given, respectively, as

Fv1 = ẋEx (2–260)
Fa1 = ẍEx (2–261)

Now in order to solve this problem, we also need the acceleration of the particle attached to

the arm. The position of the particle is given as

r2 = r1 + r2/1 (2–262)

where r2/1 is the position of the particle relative to the collar. Now we know that r2/1 is given

as

r2/1 = Ler (2–263)

Then, the velocity and acceleration of the particle are given, respectively, as

Fv2 = Fv1 + Fv2/1 (2–264)
Fv2 = Fa1 + Fa2/1 (2–265)

Now we already have Fv1 and Fa1 from Eqs. (2–260) and (2–261), respectively. Computing the

velocity of the particle relative to the collar, we have

Fv2/1 =
Fd

dt

(

r2/1

)

=
Rd

dt

(

r2/1

)

+FωR × r2/1 (2–266)

Now we have

Rd

dt

(

r2/1

)

= 0 (2–267)

F
ω
R × r2/1 = Ωez × Ler = LΩeθ (2–268)

Adding the expressions in Eqs. (2–267) and (2–268), we obtain

Fv2/1 = LΩeθ (2–269)

Next, the acceleration of the particle relative to the collar in reference frame F is given as

Fa2/1 =
Fd

dt

(

Fv2/1

)

=
Rd

dt

(

Fv2/1

)

+FωR × Fv2/1 (2–270)

Noting that L and Ω are constant, we have

Rd

dt

(

Fv2/1

)

= 0 (2–271)

F
ω
R × Fv2/1 = Ωez × LΩeθ = −LΩ2er (2–272)
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Adding Eqs. (2–271) and (2–272), we obtain the acceleration of the particle relative to the collar

in reference frame F as
Fa2/1 = −LΩ2er (2–273)

Adding Eqs. (2–261) and (2–273), the acceleration of the particle is given as

Fa2 = ẍEx − LΩ2er (2–274)

Then the acceleration of the center of mass of the collar-particle system is obtained as

Fā = m1
Fa1 +m2

Fa2

m1 +m2
= ẍEx −

m2

m1 +m2
LΩ2er (2–275)

Kinetics

The free body diagram of the system consisting of the collar and the particle is shown in Fig. 2–

11.

Ff

Fs

N

Figure 2–11 Free body diagram for collar attached to spring, damper, and rotating

arm with particle.

It is noted explicitly that the reaction force exerted by the arm on the collar is not included in

the free body diagram of the collar-particle system because this reaction force is internal to the

system. Consequently, the forces acting on the collar particle system are

Fs = Spring force

Ff = Force of viscous friction

N = Reaction force of track on system

Now we know that the reaction force N must act in the direction orthogonal to the track.

Furthermore, because the motion is planar, the force N must lie in the plane of motion. Conse-

quently, N must lie in the direction of Ey and can be expressed as

N = NEy (2–276)

Next, because the friction force is viscous, we have

Ff = −cvrel (2–277)

wherevrel is the velocity of the collar relative to the track (because the track is the surface on

which the particle slides and the attachment point of the spring and damper is fixed to the

track). Therefore,

vrel = Fv1 = ẋEx (2–278)

which implies that the force of viscous friction is given as

Ff = −cẋEx (2–279)

Next, the spring force is given as

Fs = −K(ℓ − ℓ0)us (2–280)
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Now from the geometry we have ℓ = ‖bfr1 − rO‖ = ‖xEx‖ = x. Next,

us =
r1 − rO

‖r1 − rO‖
= xEx

x
= Ex (2–281)

Therefore, the spring force is given as

Fs = −K(x − ℓ0)Ex (2–282)

Adding Eqs. (2–276), (2–279), and (2–282), the force acting on the collar-particle system is given

as

F = N+ Ff + Fs = NEy − cẋEx −K(x − ℓ0)Ex = −
[

cẋ +K(x − ℓ0)
]

Ex +NEy (2–283)

Setting F in Eq. (2–283) equal to (m1 +m2)
Fā using the expression for Fā from Eq. (2–275), we

obtain

−
[

cẋ +K(x − ℓ0)
]

Ex +NEy = (m1 +m2)ẍEx −m2LΩ
2er (2–284)

Now we note that er is given in terms of Ex and Ey as

er = sinΩtEx − cosΩtEy (2–285)

Substituting the expression for er into Eq. (2–284), we have

−
[

cẋ +K(x − ℓ0)
]

Ex +NEy = (m1 +m2)ẍEx −m2LΩ
2(sinΩtEx − cosΩtEy) (2–286)

Eq. (2–286) simplifies to

−
[

cẋ +K(x − ℓ0)
]

Ex +NEy =
[

(m1 +m2)ẍ −m2LΩ
2 sinΩt

]

Ex +m2LΩ
2 cosΩtEy (2–287)

Equating Ex and Ey components in Eq. (2–287), we obtain the following two scalar equations:

(m1 +m2)ẍ −m2LΩ
2 sinΩt = −

[

cẋ +K(x − ℓ0)
]

Ex (2–288)

m2LΩ
2 cosΩt = N (2–289)

Observing that Eq. (2–288) has no unknown reaction forces and all other quantities (with the

exception of x) are known, the differential equation of motion is given as

(m1 +m2)ẍ −m2LΩ
2 sinΩt = −

[

cẋ +K(x − ℓ0)
]

(2–290)

Rearranging Eq. (2–290), we obtain

ẍ + c

m1 +m2
ẋ + K

m1 +m2
x = m2LΩ2

m1 +m2
sinΩt + K

m1 +m2
ℓ0 (2–291)

Suppose now that we define M =m1 +m2. Then the differential equation of Eq. (2–291) can be

written as

ẍ + c

M
ẋ + K

M
x = m2LΩ2

M
sinΩt + K

M
ℓ0 (2–292)

(b) Static Equilibrium Point of System

Setting ẋ and ẍ to zero and shutting off the input (in this case the rotation of the arm), the

condition for static equilibrium of the collar is given as

K

M
xeq =

K

M
ℓ0 (2–293)

which implies that

xeq = ℓ0 (2–294)
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(c) Differential Equation Relative to Equilibrium Point

Setting z = x − xeq = x − ℓ0, the differential equation becomes

z̈ + c

M
ż + K

M
z = m2LΩ2

M
sinΩt (2–295)

(d) Time Response of Collar

It is seen that the input applied to the system is

F(t) = m2LΩ2

M
sinΩt (2–296)

Recall that the standard form of the input is given as

f(t) =ω2
nAe

iωt (2–297)

Now for this problem we have

ω2
n =

K

M
(2–298)

Therefore,

ω2
nA =

K

M
A = m2LΩ2

M
(2–299)

Solving for A, we obtain

A = m2LΩ2

K
= m2

M

(

Ω

ωn

)2

L (2–300)

Next, recall the standard second-order linear time-invariant system

ẍ + 2ζωnẋ +ω2
nx = f(t) =ω2

nAe
iωt (2–301)

where

f(t) =ω2
nAe

iωt (2–302)

is the normalized input function. The transfer function G(iω) = X/A for the system of

Eq. (2–301) is given as

G(iω) = 1

1−
(

ω

ωn

)2

+ i2ζ ω
ωn

(2–303)

where the magnitude and phase of G(iω) are given, respectively, as

|G(iω)| =





























1

1−
(

ω

ωn

)2

+ i2ζ ω
ωn





















1

1−
(

ω

ωn

)2

− i2ζ ω
ωn





























1/2

(2–304)

φ(ω) = tan−1 −Im [G(iω)]

Re [G(iω)]
= tan−1











2ζ
ω

ωn

1−
(

ω

ωn

)2











(2–305)

Also, recall the time response for the system of Eq. (2–301) is given as

x(t) = A|G(iω)|ei(ωt−φ) (2–306)
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Suppose now that we let F(t) be defined as

F(t) = m2LΩ2

M
eiΩt =ω2

n

[

m2

M

(

Ω

ωn

)2

L

]

eiΩt =
[

m2

M

(

Ω

ωn

)2

L

]

f(t) (2–307)

Therefore, the response of the system

q̈ + c

M
q̇ + K

M
q = f(t) (2–308)

to the input f(t) from Eq. (2–307) is given as

q(t) =
[

m2

M

(

Ω

ωn

)2

L

]

|G(iΩ)|ei(Ωt−φ) (2–309)

Finally, we are interested in the response to the input

m2LΩ2

M
sinΩt =

[

m2

M

(

Ω

ωn

)2
]

sinΩt (2–310)

Observing that

ei(Ωt−φ) = cos (i(Ωt −φ))+ i sin (Ωt −φ) (2–311)

The time response of the system in Eq. (2–292) is the imaginary part of q(t), i.e.,

z(t) = Im[q(t)] =
[

m2

M

(

Ω

ωn

)2

L

]

|G(iΩ)| sin (Ωt −φ) (2–312)

�
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2.6 Base Motion Isolation

An important problem in vibratory systems is base motion isolation. The problem of base

motion isolation is as follows. Consider an object in vibratory (i.e., connected to a linear spring

and a viscous damper) such that the spring and damper are connected at the other end to a

system that is itself vibrating. The objective is to isolate the motion of the mass from this other

system. A good example of a base motion isolation system is the suspension of an automobile

where it is desired to isolate the vibration of the automobile from undulations in the road. In

this section we derive the frequency response of a base motion isolation system.

The basic model for a base isolation system is shown in Fig. 2–12. The primary object is a

collar of mass m. The collar slides along an inertially fixed horizontal track. The displacement

of the collar is given by x(t) and is measured relative to a point O, where O is fixed to the track.

Attached to the collar is a linear spring with spring constant K and unstretched length ℓ0 and a

viscous damper with damping coefficient c. Attached to the other end of the spring and damper

is a base that slides with known displacement q(t) (again, measured from the inertially fixed

point O) where q(t) is assumed to be a periodic function of the form

q(t) = Aeiωt

The objective of this study is to determine the frequency response of the system to the motion

of the base and to understand how this frequency response can be used to isolate the motion

of the base from the collar.

System of Interest

Moving Base
q(t)

c

m

x

K
O

P

Q

Figure 2–12

We begin by deriving the differential equation of motion for the system. Choosing the hori-

zontal shaft and an inertial reference frame (denotedF ), we can define the following coordinate

system fixed in reference frame F :

Origin at O
Ex = To the right

Ez = Out of page

Ey = Ez × Ex

The positions of the base and collar are then given as

rQ = qEx (2–313)

r = xEx (2–314)

The corresponding velocities and accelerations in reference frame F are then given, respec-

tively, as

FvQ = q̇Ex (2–315)
Fv = ẋEx (2–316)
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FaQ = q̈Ex (2–317)
Fa = ẍEx (2–318)

Next, the free body diagram of the collar is shown in Fig. 2–13 (where we assume that all motion

takes place in the horizontal plane and thus there is no gravity). It is seen that the forces acting

Ff

Fs

Figure 2–13 Free Body Diagram of Base Motion Isolation System.

on the collar are due to the spring and gravity. The spring force is given as

Fs = −K(ℓ − ℓ0)us (2–319)

In this case the length of the spring and the direction along which the spring acts are obtained,

respectively, as

ℓ = ‖r− rQ‖ = ‖xEx − qEx‖ = |x − q| = x − q (2–320)

us = r− rQ

‖r− rQ‖
= (x − q)Ex

x − q = Ex (2–321)

Therefore,

Fs = −K(x − q − ℓ0)Ex (2–322)

Next, the force exerted by the viscous damper is given as

Ff = −cvrel (2–323)

In this case vrel is obtained as

vrel = Fv− FvQ = ẋEx − q̇Ex = (ẋ − q̇)Ex (2–324)

Therefore,

Ff = −c(ẋ − q̇)Ex (2–325)

The resultant force acting on the particle is then given as

F = Fs + Ff = −K(x − q − ℓ0)Ex − c(ẋ − q̇)Ex (2–326)

Setting F equal to mFa, we obtain

−K(x − q − ℓ0)Ex − c(ẋ − q̇)Ex =mẍEx (2–327)

which leads to the scalar equation

−K(x − q − ℓ0)− c(ẋ − q̇) =mẍ (2–328)

Rearranging Eq. (2–328) gives

mẍ + cẋ +Kx = cq̇ +K(q + ℓ0) (2–329)

Finally, defining y = x − ℓ0, we can rewrite Eq. (2–329) in terms of y to give

mÿ + cẏ +Ky = cq̇ +Kq (2–330)

It is seen that the motion of the base affects the motion of the collar through both the spring

and the damper. Rewriting Eq. (2–330) in standard form, we have

ÿ + 2ζωnẏ +ω2
ny = 2ζωnq̇ +ω2

nq (2–331)
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Now assume that the input to the system is given as

q(t) = Qeiωt (2–332)

Furthermore, assume that the output has the form

y(t) = Yeiωt (2–333)

Substituting q(t) and y(t) into Eq. (2–331) gives

−ω2Yeiωt + i2ζωnωYe
iωt +ω2

nYe
iωt = i2ζωnωQe

iωt +ω2
nQe

iωt (2–334)

Noting that eiωt is not zero, Eq. (2–334) simplifies to

[

−ω2 + i2ζωnω+ω2
n

]

Y =
[

i2ζωnω+ω2
n

]

Q (2–335)

Rearranging Eq. (2–335) gives

Y

Q
=

1+ i2ζ ω
ωn

1−
(

ω
ωn

)2
+ i2ζ ω

ωn

(2–336)

Now, using the expression for G(iω) from Eq. (2–61), Y/Q can be written as

Y

Q
=
(

1+ i2ζ ω
ωn

)

G(iω) (2–337)

Now since y(t) is complex, we know that

y(t) = |Y(iω)|e−iφ(ω) (2–338)

Where we can obtain the magnitude and phase of y(t) as follows. First, we have

Y(iω) = Y(iω)Ḡ(iω)
Ḡ(iω)

=
[

1+ i2ζ ω
ωn

]

G(iω)
Ḡ(iω)

Ḡ(iω)
(2–339)

Eq. (2–339) can be rewritten as

Y(iω) =
[

1+ i2ζ ω
ωn

] |G(iω)|2
Ḡ(iω)

Q (2–340)

Then, using the expression for G(iω) from Eq. (2–61), we have

Y(iω) =
[

1+ i2ζ ω
ωn

]

[

1−
(

ω

ωn

)2

− i2ζ ω
ωn

]

|G(iω)|2Q (2–341)

Expanding Eq. (2–341) gives

Y(iω) =
[

1−
(

ω

ωn

)2

+
(

2ζ
ω

ωn

)2

− i2ζ
(

ω

ωn

)3
]

|G(iω)|2Q (2–342)

Using Eq. (2–342), the magnitude and phase of y(t) are given as

|Y(iω)| =
[

1+
(

2ζ
ω

ωn

)2
]1/2

|G(iω)|Q (2–343)

φ(ω) = tan−1







2ζ
(

ω
ωn

)3

1−
(

ω
ωn

)2
+
(

2ζ ω
ωn

)2





 (2–344)
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where it is noted that φ(ω) is obtained as

φ(ω) = tan−1

[−Im (H(iω))

Re (H(iω))

]

(2–345)

where

H(iω) = 1−
(

ω

ωn

)2

+
(

2ζ
ω

ωn

)2

− i2ζ
(

ω

ωn

)3

(2–346)

and

Re (H(iω)) = 1−
(

ω

ωn

)2

+
(

2ζ
ω

ωn

)2

(2–347)

Im (H(iω)) = −2ζ

(

ω

ωn

)3

(2–348)

Therefore,

|Y(iω)|
Q

=
[

1+
(

2ζ
ω

ωn

)2
]1/2

|G(iω)| (2–349)

Substituting |G(iω)| from Eq. (2–69), we obtain

T(iω) = |Y(iω)|
Q

=



























1+
(

2ζ ω
ωn

)2

[

1−
(

ω

ωn

)2
]2

+
[

2ζ

(

ω

ωn

)]2



























1/2

(2–350)

The quantity T(iω) is called the transmittibility and gives a measure of the amount of the input

(i.e., the motion of the base) that is transmitted to the output. We note several features of the

transmittibility function. First, it is seen that

T(iω) =











> 1 , ω/ωn < 1

= 1 , ω/ωn = 1

< 1 , ω/ωn > 1
(2–351)

In other words, the motion transmitted by the base to the system is amplified for low frequen-

cies and it attenuated for high frequencies. Therefore, when designing a base motion isolation

system the parameters ζ and ωn must be chosen correctly in order to attenuate the input sig-

nal. Finally, it is seen that the phase φ(ω) is zero for low frequencies and all values of ζ, and

approach π for large values of ω/ωn (although it approach π very slowly when ζ is close to

unity). Therefore, the response is in phase with the input when ω/ωn is small and is out of

phase with the input when ω/ωn is large.
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ω/ωn

0
0 0.5

1

1 1.5

2

2 2.5

3

3

4

5

6

7
ζ = 0.075
ζ = 0.1
ζ = 0.25
ζ = 0.5
ζ = 1

|T
(i
ω
)|

Figure 2–14 Magnitude of Transmittibility Function for a System Under the Influence

of a Base Motion Input q(t) = Qeiωt .
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ω/ωn

φ
(ω
)

0
0 0.5 1 1.5 2 2.5 3

ζ = 0.075
ζ = 0.1
ζ = 0.25
ζ = 0.5
ζ = 1

π/8

π/4

3π/8

π/2

5π/8

3π/4

7π/8

π

Figure 2–15 Phase of Transmittibility Function for a System Under the Influence of

a Base Motion Input q(t) = Qeiωt .
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2.7 Fourier Series Representation of an Arbitrary Periodic Function

Consider now an arbitrary periodic function f(t) with period T , i.e., f(t) satisfies the property

f(t +nT) = f(t),∀n=I (2–352)

where I is the set of integers. Examples of arbitrary periodic functions include a square-wave

(see Fig. 2–16) and a sawtooth (see Fig. 2–17). It is known that any arbitrary periodic function

0

0
t

S
q

u
a
re

W
a
v
e

Figure 2–16 Square-Wave Function.

can be expressed as an infinite series of sines and cosines. This infinite series is called a

Fourier series. Suppose now that we consider a function f(t) that is periodic with period T on

the interval from zero to T . Then, in terms of a Fourier series expansion, the periodic function

f(t) can be written as

f(t) =
∞
∑

k=−∞
cke

ikΩt (2–353)
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Figure 2–17 Sawtooth Function.

where Ω = 2π/T is the fundamental frequency. It is known that the functions eikΩt , (k =
0,±1,±2, . . .) are orthogonal over the time interval t ∈ [0, T ], i.e.,

∫ T

0
eikΩteilΩtdt =

∫ T

0
ei(k+l)Ωtdt

= 1

i(k+ l)Ω
[

ei(k+l)Ωt
]T

0

= 1

i(k+ l)Ω
[

ei(k+l)ΩT − 1
]

= 1

i(k+ l)Ω
[

e2πi(k+l)T − 1
]

= 1

i(k+ l)Ω
[

e2πi(k+l)T − 1
]

= 1

i(k+ l)Ω [1− 1] = 0

(2–354)

The coefficients ck, (k = 0,±1,±2, . . .) are obtained as follows. Suppose we multiply both

sides of Eq. (2–353) by e−ilΩt (where l ∈ I) and integrate over the period of the function

(i.e., from zero to T ). We then obtain

∫ T

0
f(t)e−ilΩtdt =

∫ T

0





∞
∑

k=−∞
cke

ikΩt



 e−ilΩtdt =
∞
∑

k=−∞
ck

∫ T

0
ei(k−l)Ωtdt (2–355)

where
∫ T

0
ei(k−l)Ωtdt = 1

i(k− l)Ω
[

ei(k−l)Ωt
]T

0
(2–356)
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Noting that Ω = 2π/T , we have

∫ T

0
ei(k−l)Ωtdt = 1

i(k− l)Ω
[

ei(k−l)2π − 1
]

(2–357)

Suppose now that we let m = k − l (we note that, because k and l are integers, m is also an

integer). Then when m ≠ 0 we have

1

imΩ

[

e2imπ − 1
]

= 0, (m ≠ 0) (2–358)

Furthermore, for the case that m = 0, we need to take the limit as m → 0 as

lim
m→0

1

imΩ

[

e2imπ − 1
]

(2–359)

Because both the numerator and denominator approach zero as m → 0, we can use L’Hopital’s

rule to obtain

lim
m→0

e2imπ − 1

imΩ
= lim
m→0

2iπe2imπ

iΩ
= 2π

Ω
lim
m→0

e2imπ = 2π

2π/T
= T (2–360)

Noting that the condition m = 0 is equivalent to the condition that k = l, we have

∫ T

0
f(t)e−ikΩtdt = Tck (2–361)

which implies

ck =
1

T

∫ T

0
f(t)e−ikΩtdt, (k = 0,±1,±2, . . .) (2–362)

The expression for ck from Eq. (2–362) can then be used in Eq. (2–353) to obtain the Fourier

series expansion of the periodic function f(t).
It is noted that a Fourier series can be written in real form as follows. First, we note that

c−k =
1

T

∫ T

0
f(t)eikΩtdt (2–363)

Then, we have

c−k + ck =
1

T

∫ T

0
f(t)

[

e−ikΩt + eikΩt
]

dt (2–364)

Now we have

cosθ = eiθ + e−iθ
2

(2–365)

from which we obtain

c−k + ck =
2

T

∫ T

0
f(t) cos(kΩt) (2–366)

Similarly,

c−k − ck =
1

T

∫ T

0
f(t)

[

eikΩt − e−ikΩt
]

dt (2–367)

sinθ = eiθ − e−iθ
2i

(2–368)

from which we obtain

c−k − ck =
2i

T

∫ T

0
f(t) sin(kΩt)dt (2–369)

Then we can define

ak = c−k + ck (2–370)

ibk = c−k − ck (2–371)
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Solving for ck and c−k in terms of ak and bk, we obtain

c−k = ak + ibk
2

(2–372)

ck = ak − ibk
2

(2–373)

We can then write

f(t) =
∞
∑

k=−∞
cke

ikΩt =
−1
∑

k=−∞
cke

ikΩt + c0 +
∞
∑

k=1

cke
ikΩt

= c0 +
∞
∑

k=1

c−ke
−ikΩt +

∞
∑

k=1

cke
ikΩt

(2–374)

Substituting the expressions for ck and c−k into this last equation, we obtain

f(t) = a0

2
+

∞
∑

k=1

ak + ibk
2

e−ikΩt +
∞
∑

k=1

ak − ibk
2

eikΩt (2–375)

Rearranging, we have

f(t) = a0

2
+

∞
∑

k=1

ak
eikΩt + e−ikΩt

2
− i

∞
∑

k=1

bk
eikΩt − e−ikΩt

2

= a0

2
+

∞
∑

k=1

ak
eikΩt + e−ikΩt

2
+

∞
∑

k=1

bk
eikΩt − e−ikΩt

2i

(2–376)

Then, using Eqs. (2–365) and (2–368), we obtain

f(t) = a0

2
+

∞
∑

k=1

ak cos(kΩt)+
∞
∑

k=1

bk sin(kΩt) (2–377)

Eq. (2–377) is a real form of a Fourier series for an arbitrary periodic function f(t).

Example 2–5

Consider the following function:

f(t + kT) =
{

1 , kT ≤ t + kT < kT + T/2
−1 , kT + T/2 ≤ t + kTleq(k+ 1)T

, (k = 0,±1,±2, . . .) (2–378)

Determine both the complex and real form of the Fourier series expansion of f(t)

Solution to Example 2–5

From Eq. (2–362), the coefficients of a Fourier expansion of a periodic function are given in

complex form as

ck =
1

T

∫ T

0
f(t)e−ikΩtdt, (k = 0,±1,±2, . . .) (2–379)

Now because the square-wave takes on values of 1 and -1 on the intervals t ∈ [0, T/2) and

t ∈ [T/2, T ), respectively, we need to compute the integral in two parts, i.e.,

ck =
1

T

[

∫ T/2

0
e−ikΩtdt +

∫ T

T/2
−e−ikΩtdt

]

= 1

T

[

∫ T/2

0
e−ikΩtdt −

∫ T

T/2
e−ikΩtdt

]

(2–380)
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Computing the first integral in Eq. (2–380), we have

∫ T/2

0
e−ikΩtdt = − 1

ikΩ

[

e−ikΩt
]T/2

0
= − 1

ikΩ

[

e−ikΩT/2 − 1
]

(2–381)

Noting that Ω = 2π/T , we have

∫ T/2

0
e−ikΩtdt = − 1

ikΩ

[

e−ikπ − 1
]

(2–382)

Now we note that

e−ikπ =
{

−1 , k = 1,3,5, . . .
1 , k = 2,4,6, . . .

(2–383)

Therefore,
∫ T/2

0
e−ikΩtdt =

{

2
ikΩ , k = 1,3,5, . . .

0 , k = 2,4,6, . . .
(2–384)

Computing the second integral, we have

∫ T

T/2
e−ikΩtdt = − 1

ikΩ

[

e−ikΩt
]T

T/2
= − 1

ikΩ

[

e−ikΩT − e−ikΩT/2
]

(2–385)

Again, using the fact that Ω = 2π/T , we obtain

∫ T

T/2
−e−ikΩtdt = − 1

ikΩ

[

e−2ikπ − e−ikπ
]

(2–386)

Now we know that e−2ikπ = 1. Furthermore, we can apply the result of Eq. (2–383) to obtain

∫ T

T/2
e−ikΩtdt =

{

− 2
ikΩ , k = 1,3,5, . . .

0 , k = 2,4,6, . . .
(2–387)

Substituting the result of Eqs. (2–384) and (2–387) into Eq. (2–380), we obtain

ck =
{

4
ikΩT , l = 1,3,5, . . .

0 , k = 2,4,6, . . .
(2–388)

Now we consider the special case of k = 0 (which was not easily done earlier because k appears

in the denominator of the anti-derivative of e−ikΩt . In the case where k = 0, we have

c0 =
∫ T

0
f(t)dt =

∫ T/2

0
dt +

∫ T

T/2
−dt = 0 (2–389)

It is noted that the value of c0 could have been deduced from the fact that the function is

odd. Now in order to obtain only the odd values of l in the Fourier series, we can make the

substitution

k = 2m− 1 (2–390)

where m = 0,±1,±2, . . .. Then, using the fact that Ω = 2π/T , the Fourier series representation

of the square-wave function of Eq. (2–378) is given as

f(t) = 2

iπ

∞
∑

m=−∞
ei(2m−1)Ωt (2–391)

Next, using Eqs. (2–370) and (2–371), we can write the Fourier series of Eq. (2–391) in real form

as follows. First, we have

ak = c−k + ck =
4

−ikΩT +
4

ikΩT
= 4ikΩT − 4ikΩT

−k2Ω2T 2
= 0 (2–392)
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Next,

ibk = c−k − ck =
4

−ikΩT −
4

ikΩT
= − 8

ikΩT
(2–393)

which implies that

bk =
1

i

[

− 8

ikΩT

]

= 4

kπ
(2–394)

Then, using the real form of the Fourier series as given in Eq. (2–377), we obtain

f(t) =
∞
∑

k=1

4

kπ
sin(kΩt) (2–395)

�

2.8 Response of a Single Degree-of-Freedom System to an Arbitrary

Periodic Input

Using the results of Section 2.7, we can now obtain the response of the second-order differential

equation

ẍ + 2ζωnẋ +ω2
nx = f(t) (2–396)

to a general periodic input f(t). First, recall the response of the system of Eq. (2–71) [i.e., the

particular solution] to the complex periodic input Aω2
ne

iωt as

x(t) = AG(iω)eiωt = A|G(iω)|ei(ωt−φ) (2–397)

where |G(iω)| and φ(ω) were the magnitude and phase of the transfer function G(iω), where

G(iω) was given from Eq. (2–61) as

G(iω) = 1

1−
(

ω
ωn

)2
+ i2ζ ω

ωn

(2–398)

Correspondingly, |G(iω) and φ(ω) were given from Eqs. (2–83) and (2–88), respectively, as

|G(iω)| = 1






[

1−
(

ω

ωn

)2
]2

+
[

2ζ
ω

ωn

]2






1/2 (2–399)

φ(ω) = tan−1











2ζ
ω

ωn

1−
(

ω

ωn

)2











(2–400)

Suppose now that we let f(t) be a periodic function

f(t) =
∞
∑

k=−∞
cke

ikΩt (2–401)

Then, because the system of Eq. (2–396) is linear, the principal of superposition applies, i.e., the

particular solution to the input of Eq. (2–401) is the sum of the terms in the infinite series. First,

let us determine the response of the system of Eq. (2–396) to the input

fk(t) = ckeikΩt (2–402)
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In order to obtain the response to fk(t), it is convenient to write Eq. (2–402) as

fk(t) = ckeikΩt =ω2
nAke

ikΩt (2–403)

Then, the response of the system of Eq. (2–396) to the input of Eq. (2–403) is given as

xk(t) = Ak|G(iωk)|ei(kΩt−φ(kΩ)) (2–404)

where |G(ikΩ)| and φ(kΩ) are obtained from Eqs. (2–399) and (2–400), respectively, as

|G(ikΩ)| = 1






[

1−
(

kΩ

ωn

)2
]2

+
[

2ζ
kΩ

ωn

]2






1/2 (2–405)

φ(kΩ) = tan−1











2ζ
kΩ

ωn

1−
(

kΩ

ωn

)2











(2–406)

Now for simplicity we can write

ωk = kΩ = 2πk

T
(2–407)

φk = φ(kΩ) (2–408)

Then, applying the principal of superposition and using the Fourier series representation of an

arbitrary periodic input f(t) with period T [where f(t) is given by Eq. (2–353)], the response is

given as

x(t) =
∞
∑

k=0

xk(t) =
∞
∑

k=0

Ak|G(iωk)|ei(ωkt−φk) (2–409)

In other words, the response of the system of Eq. (2–396) to the periodic input f(t) is the sum

of the responses of Eq. (2–396) to the individual periodic inputs ckeikΩt ≡ ω2
nAke

jkΩt that are

the terms in the Fourier series expansion of f(t).



Chapter 3

Response of Multiple Degree-of-Freedom

Systems to Initial Conditions

We now turn our attention to vibrating systems with more than one degree-of-freedom. As

opposed to single degree-of-freedoms systems, whose dynamics are described by a single dif-

ferential equation, systems with n degrees of freedom systems are described by a system of n
differential equations. Moreover, this system of differential equations is, in general, coupled

(meaning that the dynamics of each object in the system depend on one another). In this chap-

ter we will begin the study of vibrations of multiple degree-of-freedom systems by studying sys-

tems without any time-varying external forcing. The study of unforced two degree-of-freedom

systems will itself be divided into two parts: (1) systems without damping and (2) systems with

damping.

3.1 Unforced Undamped Multiple Degree-of-Freedom Systems

The most basic class of systems in the study of multiple degree-of-freedom vibratory systems

is the class of undamped and unforced systems. In particular, in this section we develop a

generic mathematical model for linear time-invariant (LTI) undamped and unforced multiple

degree-of-freedom systems and develop the mathematics associated with characterizing the

response of these systems.

3.1.1 Model Problem: Blocks with Attached to Linear Springs

Consider the system shown in Fig. 3–1 of two blocks of massm1 andm2 is connected in tandem

to three linear springs with spring constants K1, K2, and K3 and corresponding unstretched

lengths ℓ10, ℓ20, and ℓ30.

The blocks slide without friction along a horizontal surface of length ℓ and the displacements

of each collar, denoted x1 and x2, respectively, are measured relative to the inertially fixed point

O, where O is located on a vertical wall located at the left end of the surface. The objective of

this part of this analysis is to derive a system of two differential equations for the blocks in

terms of x1 and x2.

First, taking the ground as an inertial reference frame (denoted F ), we note that the accel-

erations of the blocks in reference frame F are given, respectively, as

Fa1 = ẍ1Ex (3–1)
Fa2 = ẍ2Ex (3–2)
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ℓ

K1 K2 K3

m1 m2

x1

x2

O

Figure 3–1 Two blocks of mass m1 and m2 connected in tandem to three springs

with spring constants K1, K2, and K3 with corresponding unstretched lengths ℓ10, ℓ20,

and ℓ30.

where Ex is the unit vector in the rightward direction. Next, the forces acting on each collar are

given, respectively, as

F1 = Fs1 + Fs2 (3–3)

F2 = −Fs2 + Fs3 (3–4)

where we note that, because spring 2 lies between the two blocks, the force exerted by spring 2

on m1 is equal and opposite the force exerted by spring 2 on m2 (i.e., because Fs2 acts on m1,

−Fs2 acts on m2). Now the forces exerted by each of the three springs are given, respectively,

as

Fs1 = −K1(ℓ1 − ℓ10)us1 (3–5)

Fs2 = −K2(ℓ2 − ℓ20)us2 (3–6)

Fs3 = −K3(ℓ3 − ℓ30)us3 (3–7)

First, the lengths of each of the springs are given, respectively, as

ℓ1 = x1 (3–8)

ℓ2 = x2 − x1 (3–9)

ℓ3 = ℓ − x2 (3–10)

where ℓ is the length of the track. Next, the unit vectors in the directions from the attachment

points of each spring to the corresponding blocks are given, respectively, as

us1 = Ex (3–11)

us2 = −Ex (3–12)

us3 = −Ex (3–13)

We note that us2 = us3 = −Ex because the attachment points of springs 2 and 3 lie ahead of

the positions of the first and second block, respectively. Then the spring forces are given as

Fs1 = −K1(x1 − ℓ10)Ex (3–14)

Fs2 = K2(x2 − x1 − ℓ20)Ex (3–15)

Fs3 = K3(ℓ − x2 − ℓ30)Ex (3–16)
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Then, Newton’s 2nd law for the first block is given as

F1 = Fs1 + Fs2 =m1
Fa1 (3–17)

which implies that

−K1(x1 − ℓ10)Ex +K2(x2 − x1 − ℓ20)Ex =m1ẍ1Ex (3–18)

Dropping Ex from this last equation gives

−K1(x1 − ℓ10)+K2(x2 − x1 − ℓ20) =m1ẍ1 (3–19)

Rearranging, we obtain

m1ẍ1 +K1x1 −K2(x2 − x1) = K1ℓ10 −K2ℓ20 (3–20)

Equation 3–20) can be rewritten as

m1ẍ1 + (K1 +K2)x1 −K2x2 = K1ℓ10 −K2ℓ20 (3–21)

Newton’s 2nd law for the second collar is given as

F2 = −Fs2 + Fs3 =m2
Fa2 (3–22)

which implies that

−K2(x2 − x1 − ℓ20)Ex +K3(ℓ − x2 − ℓ30)Ex =m2ẍ2Ex (3–23)

Dropping Ex from this last equation gives

−K2(x2 − x1 − ℓ20)+K3(ℓ − x2 − ℓ30) =m2ẍ2 (3–24)

Rearranging, we obtain

m2ẍ2 +K2(x2 − x1)+K3x2 = K2ℓ20 +K3(ℓ − ℓ30) (3–25)

Equation 3–25) can be rewritten as

m2ẍ2 −K2x1 + (K2 +K3)x2 = K2ℓ20 +K3(ℓ − ℓ30) (3–26)

The system of two differential equations describing the motion of the two collars is then given

as

m1ẍ1 + (K1 +K2)x1 −K2x2 = K1ℓ10 −K2ℓ20 (3–27)

m2ẍ2 −K2x1 + (K2 +K3)x2 = K2ℓ20 +K3(ℓ − ℓ30) (3–28)

The system of differential equations given in Eqs. (3–27) and (3–28) can be written in matrix

form as
[

m1 0

0 m2

][

ẍ1

ẍ2

]

+
[

K1 +K2 −K2

−K2 K2 +K3

][

x1

x2

]

=
[

K1ℓ10 −K2ℓ20

−K2ℓ20 +K3(ℓ − ℓ30)

]

(3–29)

MẌ+KX = b (3–30)

Now it is seen that the condition for static equilibrium of the system in Eq. (3–30) is given as

KXeq = b (3–31)

Now let

Y = X− Xeq (3–32)
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We then have

Ẏ = Ẋ (3–33)

Ÿ = Ẍ (3–34)

Substituting the expression for b into Eq. (3–30), we obtain

MẌ+KX = KXeq (3–35)

This last equation can be rewritten as

MẌ+K(X− Xeq) = 0 (3–36)

Noting that Y = X− Xeq and Ẍ = Ÿ, Eq. (3–36) can be rewritten as

MŸ+KY = 0 (3–37)

It is seen that Eq. (3–37) has a similar mathematical form to the single degree-of-freedom sys-

tem, the difference being that in this case we have a matrix and column-vector differential

equation (or, alternatively, a system of differential equations) as opposed to a scalar differen-

tial equation. Consequently, the solution to Eq. (3–37) will itself be a column vector. For the

general case of n degrees of freedom the quantities M, K, and Y are given as follows:

M =













m11 m12 · · · m1n

m21 m22 · · · m2n

...
...

. . .
...

mn1 mn2 · · · mnn













(3–38)

M =













k11 k12 · · · k1n

k21 k22 · · · k2n

...
...

. . .
...

kn1 kn2 · · · knn













(3–39)

(3–40)

3.1.2 General Solution to Undamped Multiple Degree-of-Freedom System

In a manner analogous to the single degree-of-freedom system, suppose we let

Y = qu (3–41)

where u is a constant vector. Differentiating Y(t) in Eq. (3–41), we obtain

Ẏ(t) = q̇u (3–42)

Ÿ(t) = q̈u (3–43)

Substituting the expressions from Eqs. (3–41) and (3–43) into Eq. (3–37) gives

Mq̈u+Kqu = 0 (3–44)

Noting that q is a scalar, Eq. (3–44) can be rewritten as

Muq̈ +Kuq = 0 (3–45)

Multiplying both sides of Eq. (3–44) by uT , we obtain

uTMuq̈ + uTKuq = 0 (3–46)
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Now because u is a column vector, we see that the quantities uTMu and uTMu are scalars.

Suppose now that we let

λ = uTKu

uTMu
=⇒ uTKu = λ(uTMu) (3–47)

Now it can be shown that the matrices M and K are symmetric and positive definite (see Ap-

pendix A for the definition of a positive definite matrix). Consequently, we have

uTKu > 0 ∀u ≠ 0 (3–48)

uTMu > 0 ∀u ≠ 0 (3–49)

Consequently, λ > 0. We then obtain

uTMuq̈ + λuTMuq = 0 (3–50)

Factoring out uTMu in Eq. (3–50) gives

uTMu(q̈ + λq) = 0 (3–51)

Equation (3–51) implies that

q̈ + λq = 0 =⇒ q̈ = −λq (3–52)

Substituting the result of Eq. (3–52) into Eq. (3–37), we obtain

−λMu+Ku = 0 (3–53)

Rearranging Eq. (3–53) gives

Ku = λMu (3–54)

Equation (3–54) is a weighted eigenvalue problem (see Appendix A) in the matrices K and M.

whose eigenvalues are obtained from the condition

det (λM−K) = 0 (3–55)

Furthermore, because the eigenvalues must be positive, the general solution of Eq. (3–52) is

given as

q(t) =
n
∑

k=1

C1k cosωkt + C2k sinωkt = Ck cos(ωkt −φk) (3–56)

whereω2
k = λk and the constants C1k and C2k (equivalently, Ck andφk) are determined from the

initial conditions. Observing that there will be two eigenvalues and eigenvectors in Eq. (3–54),

we obtain

Y(t) =
n
∑

k=1

qkukUq (3–57)

where

U =
[

u1 u2 · · · un
]

(3–58)

q =













q1

q2

...

qn













(3–59)

Suppose now that we return to Eq. (3–41). Then for each eigenvector of Eq. (3–54) we have

Kuk = λkMuk, (k = 1, . . . , n) (3–60)
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which implies that

KU = MU





















λ1 0 0 · · · 0

0 λ2 0 · · · 0
... 0

. . . · · ·
...

...
...

...
. . . 0

0 0 · · · 0 λn





















(3–61)

Now let

Λ =





















λ1 0 0 · · · 0

0 λ2 0 · · · 0
... 0

. . . · · ·
...

...
...

...
. . . 0

0 0 · · · 0 λn





















(3–62)

We then obtain

KU = MUΛ (3–63)

Multiplying both sides by UT gives

UTKU = UTMUΛ (3–64)

Returning to the original differential equation and Eq. (3–57), we see that

MẌ+KX = MUq̈+KUq = 0 (3–65)

Multiplying both sides of Eq. (3–65) by UT , we obtain

UTMUq̈+UTKUq = 0 (3–66)

Next, using the result of Eq. (3–64) gives

UTMUq̈+UTMUΛq = 0 (3–67)

Factoring out the quantity UTMU, we have

UTMU(q̈+Λq) = 0 (3–68)

Observing that UTMU ≠ 0, Eq. (3–68) implies that

q̈+Λq = 0 (3–69)

Finally, because Λ is diagonal, we can write Eq. (3–69) as a set of scalar equations of the form

q̈k + λkqk = 0, (k = 1, . . . , n) (3–70)

Now in order to solve Eq. (3–70), we need initial conditions. In general we will be given initial

conditions on Y of the form

Y(0) = Y0 =













y10

y20

...

yn0













(3–71)

Ẏ(0) = Ẏ0 =













ẏ10

ẏ20

...

ẏn0













(3–72)
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Then, from Eq. (3–57) and the fact that U is nonsingular,

q(0) = U−1Y(0) =













q10

q20

...

qn0













(3–73)

q̇(0) = U−1Y(0) =













q̇10

q̇20

...

q̇n0













(3–74)

3.1.3 Solution Procedure for Multiple Degree-of-Freedom Undamped System

Using the results of section 3.1.2, we now provide a procedure for determining the solution of

the two degree-of-freedom undamped system

MŸ+KY = 0 (3–75)

subject to the initial conditions

Y(0) = Y0 =













y10

y20

...

yn0













(3–76)

Ẏ(0) = Ẏ0 =













ẏ10

ẏ20

...

ẏn0













(3–77)

Step 1: Determine the Eigenvalues

The characteristic equation for the differential equation of Eq. (3–75) is given from the following

determinant:

det(λM−K) = 0 (3–78)

The determinant of Eq. (3–78) leads to a polynomial of degree n which has the general form

p(λ) =
n
∑

k=1

akλ
k (3–79)

The eigenvalues are then the roots of the characteristic polynomial of Eq. (3–79), It is impor-

tant to note that the eigenvalues of an undamped multiple degree-of-freedom problem should

be real and positive because otherwise the solution would not make physical sense. Finally,

the natural frequencies of the two degree of freedom system are then obtained by taking the

square-roots of the eigenvalues, i.e.,

ω2
1 = λ1

ω2
2 = λ2

...
...

...

ω2
n = λn

(3–80)
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Step 2: Determine the Eigenvectors

For each eigenvalue obtained in Step 1, we have from the weighted eigenvalue problem that

Kwk = λkMwk, (k = 1, . . . , n) (3–81)

Consequently,

(λiM−K)wi = 0, (k = 1, . . . , n) (3–82)

where w1, . . . ,wn are the eigenvectors.

Step 3: Normalization of Eigenvectors

In general, the eigenvectors obtained in Step 2 are not normalized. While it is not necessary to

normalize the eigenvectors, it is usually convenient to obtain a set of normalized eigenvectors.

The most common normalizations are either mass normalization or stiffness normalization. If

mass normalization is chosen, the each normalized eigenvector will have be given as

u1 = w1
√

wT1 Mw1

u2 = w2
√

wT2 Mw2

...
...

...

un = wn√
wTnMwn

(3–83)

If stiffness normalization is chosen, then each normalized eigenvector will be given as

u1 = w1
√

wT1 Kw1

u2 = w2
√

wT2 Kw2

...
...

...

un = wn√
wTnKwn

(3–84)

Step 4: Assemble the Eigenvector Matrix

Using the eigenvectors u1 and u2 obtained in Step 2 can then be assembled to give the eigen-

vector matrix

U =
[

u1 u2 · · · un
]

(3–85)

Step 5: Determine the Initial Conditions in Modal Coordinates

The initial conditions in modal coordinates are given as

q(0) = U−1Y(0) =













q10

q20

...

qn0













(3–86)

q̇(0) = U−1Ẏ(0) =













q̇10

q̇20

...

q̇n0













(3–87)
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Step 6: Determine the Solutions in Modal Coordinates

The differential equations in modal coordinates are given as

q̈k +ω2
kqk = 0, (k = 1, . . . , n) (3–88)

subject to the initial conditions given in Eqs. (3–86) and (3–87), i.e., the initial conditions for

each k = 1, . . . , n are given as

qk(0) = qk0

q̇k(0) = q̇k0
, (k = 1, . . . , n) (3–89)

The general solution to this differential equation is given as

qk(t) = c1k cos(ωkt)+ c2k sin(ωkt), (k = 1, . . . , n) (3–90)

where the constants c1k and c2k are given as

c1k = qk0

c2k = q̇k0/ωk
, (k = 1, . . . , n) (3–91)

Step 7: Transform the Modal Coordinate Solution to the Original Coordinates

In vector form, the result of Step 5 is

q(t) =













q1(t)
q2(t)

...

qn(t)













(3–92)

Then, recalling from Eq. (3–57) that X = Uq, we have

X(t) = Uq(t) (3–93)

where q(t) is the column vector assembled from the solution given in Step 5.

Example 3–1

Consider the undamped two degree-of-freedom system with the following mass and stiffness

matrices

M =
[

1 0

0 1

]

(3–94)

K =
[

2 −1

−1 2

]

(3–95)

Determine the solution to the undamped differential equation

MŸ+KY = 0

with the initial conditions

Y(0) =
[

−1

1

]

, Ẏ(0) =
[

2

−1

]
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Solution to Example 3–1

We will obtain the solution to this problem using the six-step procedure described in section

3.1.3. Following Step 1, we compute the eigenvalues of the weighted eigenvalue problem as

det(λM−K) = det

(

λ

[

1 0

0 1

]

−
[

2 −1

−1 2

])

= 0 (3–96)

Equation (3–96) can be rewritten as

det

([

λ− 2 1

1 λ− 2

])

= 0 (3–97)

Computing the determinant in Eq. (3–97), we have

det[λM−K] = (λ− 2)2 − 1 = 0 ⇐= (λ− 2)2 = 1 (3–98)

Solving for λ in Eq. (3–98), we obtain the eigenvalues as

λ1 = 1

λ2 = 3
(3–99)

Equation (3–99) implies that the natural frequencies are given as

ω1 =
√

λ1 = 1

ω2 =
√

λ2 =
√

3
(3–100)

Following Steps 2 and 3, the eigenvectors of the weighted eigenvalue problem are obtained

from the condition

[λiM−K]ui = 0, (i = 1,2) (3–101)

For the eigenvalue λ1 = 1, we have
[

λ1 − 2 1

1 λ1 − 2

]

u1 =
[

−1 1

1 −1

]

u1 = 0 (3–102)

Suppose that we denote the first unnormalized eigenvector by w1. Then

w1 =
[

w11

w12

]

(3–103)

We then have
[

−1 1

1 −1

][

w11

w12

]

=
[

0

0

]

(3–104)

It is seen that a set of values of w11 and w22 that satisfy Eq. (3–104) are

w11 = 1

w21 = 1
(3–105)

Therefore, the first eigenvector before normalization is given as

w1 =
[

1

1

]

(3–106)

Then, choosing a mass normalization of w1, we have

u1 =
w1

√

wT
1 Mw1

(3–107)
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Now we see that

wT
1 Mw1 =

[

1 1
]

[

1 0

0 1

][

1

1

]

= 2 (3–108)

which implies that
√

wT
1 Mw1 =

√
2 (3–109)

Therefore, the first normalized eigenvector is given as

u1 =
w1

√

wT
1 Mw1

=
[

1√
2

1√
2

]

(3–110)

The second eigenvector is obtained in a manner similar to that used to obtain the first eigen-

vector. In particular, for the eigenvalue λ2 = 3, we have
[

λ2 − 2 1

1 λ2 − 2

]

u1 =
[

1 1

1 1

]

u1 = 0 (3–111)

Suppose that we denote the unnormalized second eigenvector as w2. Then

w2 =
[

w21

w22

]

(3–112)

We then have
[

1 1

1 1

][

w21

w22

]

=
[

0

0

]

(3–113)

It is seen that a set of values of w21 and w22 that satisfy Eq. (3–113) are

w21 = 1

w22 = −1
(3–114)

Therefore, the second eigenvector before normalization is given as

w2 =
[

1

−1

]

(3–115)

Then, choosing a mass normalization of w1, we have

u2 =
w2

√

wT
2 Mw2

(3–116)

Now we see that

wT
2 Mw2 =

[

1 −1
]

[

1 0

0 1

][

1

−1

]

= 2 (3–117)

which implies that
√

wT
2 Mw2 =

√
2 (3–118)

Therefore, the first normalized eigenvector is given as

u2 =
w2

√

wT
2 Mw2

=
[

1√
2

− 1√
2

]

(3–119)

It is observed that u1 and u2 are unit vectors and are orthogonal with respect to both M and K,

i.e.,

uT1 Mu2 =
[

1√
2

1√
2

]

[

1 0

0 1

][

1√
2

− 1√
2

]

= 0 (3–120)

uT1 Ku2 =
[

1√
2

1√
2

]

[

2 −1

−1 2

][

1√
2

− 1√
2

]

= 0 (3–121)
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Following Step 4, the eigenvector matrix U is given as

U =
[

u1 u2

]

=
[

1√
2

1√
2

1√
2

− 1√
2

]

(3–122)

From Eq. (3–122) we see that the eigenvector matrix for this example is orthogonal, i.e.,

U−1 = UT =
[

1√
2

1√
2

1√
2

− 1√
2

]

(3–123)

Following Step 5, the initial conditions in modal coordinates are given as

q(0) = U−1Y(0) = UTY(0) =
[

q10

q20

]

(3–124)

q̇(0) = U−1Ẏ(0) = UT Ẏ(0) =
[

q̇10

q̇20

]

(3–125)

(3–126)

Using the initial conditions given in the problem statement, we have

q(0) = UTY(0) =
[

1√
2

1√
2

1√
2

− 1√
2

][

−1

1

]

=
[

0

−
√

2

]

=
[

q10

q20

]

(3–127)

q̇(0) = UT Ẏ(0) =
[

1√
2

1√
2

1√
2

− 1√
2

][

2

−1

]

=
[

1√
2

3√
2

]

=
[

q̇10

q̇20

]

(3–128)

Following Step 5, we can now solve the differential equations in modal coordinates, i.e., solve

q̈k +ω2
kqk = 0, (k = 1, . . . , n) (3–129)

subject to the initial conditions

(q1(0), q2(0) =
(

q10, q20

)

=
(

0,−
√

2
)

(3–130)

(q̇1(0), q̇2(0) =
(

q̇10, q̇20

)

=
(

1√
2
,

3√
2

)

(3–131)

where the initial conditions are reiterated from Eqs. (3–127 and (3–128). Solving the differential

equation corresponding to k = 1, we have

q1(t) = c11 cosω1t + c21 sinω1t (3–132)

where, from Eq. (3–91), we have

c11 = q10 = 0

c21 = q̇10/ω1 = (1/
√

2)/1 = 1/
√

2
(3–133)

Consequently,

q1(t) =
1√
2

sin t (3–134)

Next, solving the differential equation corresponding to i = 2, we have

q1(t) = c12 cosω1t + c22 sinω1t (3–135)

where, from Eq. (3–91), we have

c12 = q20 = −
√

2

c22 = q̇20/ω2 = (3/
√

2)/
√

3 =
√

3
2

(3–136)
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Consequently,

q2(t) = −
√

2 cos
√

3t +
√

3

2
sin

√

3t (3–137)

The vector solution in modal coordinates is then given from Eqs. (3–134) and (3–137) as

q(t) =
[

q1(t)
q2(t)

]

=




1√
2

sin t

−
√

2 cos
√

3t +
√

3
2

sin
√

3t



 (3–138)

Following Step 6, we can now transform the solution in modal coordinates to the original coor-

dinates (i.e., the variable Y) using Eq. (3–57), i.e., we can obtain Y(t) as

Y(t) = Uq(t) (3–139)

In particular, we can substitute U and q(t) from Eqs. (3–122) and (3–138) into Eq. (3–139) to

obtain

Y(t) =
[

1√
2

1√
2

1√
2

− 1√
2

]





1√
2

sin t

−
√

2 cos
√

3t +
√

3
2

sin
√

3t





=




1
2

sin t − cos
√

3t +
√

3
2

cos
√

3t
1
2

sin t + sin
√

3t −
√

3
2

cos
√

3t





(3–140)

It is important to understand the difference in behavior between the solution in modal

coordinates (i.e., q) as compared with the solution in the coordinates of interest (i.e., Y). First,

it is seen that each modal coordinate (i.e., the solutions q1(t) and q2(t)), contains only a single

frequency. Specifically, the modal coordinate q1(t) contains only the frequency ω1 = 1 while

the modal coordinate q2(t) contains only the frequencyω2 = sqrt3. This “purity” in the modal

coordinate solutions is shown in Fig. 3–2

q
1
(t
)

q
2
(t
)

t

t

0

0

0

0

Figure 3–2 Modal coordinate solutions q1(t) and q2(t) for Example 3–1.
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Contrariwise, each component of the solution Y(t) (which is the solution we care about) con-

tains both frequencies ω1 = 1 and ω2 =
√

3. This “impurity” in the non-modal coordinate

solutions is shown in Fig. 3–3

y
1
(t
)

y
2
(t
)

t

t

0

0

0

0

Figure 3–3 Non-modal coordinate solutions y1(t) and y2(t) for Example 3–1.

The pure behavior of the modal coordinate solution as opposed to the impure behavior of the

non-modal coordinate solution is characteristic of undamped multiple degree-of-freedom sys-

tems. Essentially, in modal coordinates the solution is being viewed as a system of uncoupled

harmonic oscillators whereas in non-modal coordinates the solution is being viewed as a set

of coupled oscillators. Since the original problem is coupled (through the stiffness matrix K)

we expect that the non-modal coordinate solution will exhibit mixed (i.e., impure) behavior. On

the other hand, because the eigenvector matrix decouples the mass and stiffness matrices, we

expect that each component of the modal coordinate solution will exhibit non-mixed (i.e., pure)

behavior.

�

Example 3–2

Consider the undamped two degree-of-freedom system with the following mass and stiffness

matrices

M =
[

1 0

0 2

]

(3–141)

K =
[

2 −1

−1 3

]

(3–142)
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Determine the solution to the undamped differential equation

MŸ+KY = 0

with the initial conditions

Y(0) =
[

1

1

]

, Ẏ(0) =
[

2

1

]

Solution to Example 3–2

We will obtain the solution to this problem using the seven-step procedure described in section

3.1.3. Following Step 1, we compute the eigenvalues of the weighted eigenvalue problem as

det(λM−K) = det

(

λ

[

1 0

0 2

]

−
[

2 −1

−1 3

])

= 0 (3–143)

Equation (3–143) can be rewritten as

det

([

λ− 2 1

1 2λ− 3

])

= 0 (3–144)

Computing the determinant in Eq. (3–144), we have

det[λM−K] = (λ− 2)(2λ− 3)− 1 = 0 (3–145)

Equation (3–145) implies that

det[λM−K] = 2λ2 − 7λ+ 5 = 0 (3–146)

Solving for λ in Eq. (3–146) by applying the quadratic formula, we obtain

λ1,2 =
7±

√

72 − 4(2)(5)

2(2)
= 7±

√
49− 40

4
= 7± 3

4
= 1,5/2 (3–147)

Therefore, the eigenvalues of the symmetric weighted eigenvalue problem are

λ1 = 1

λ2 = 5/2
(3–148)

Equation (3–148) implies that the natural frequencies are given as

ω1 =
√

λ1 = 1

ω2 =
√

λ2 =
√

5
2

(3–149)

Following Steps 2 and 3, the eigenvectors of the weighted eigenvalue problem are obtained

from the condition

[λiM−K]wi = 0, (i = 1,2) (3–150)

For the eigenvalue λ1 = 1, we have

[

λ1 − 2 1

1 2λ1 − 3

]

w1 = (3–151)

where w1 denotes the first unnormalized eigenvector. Now we can write w1 as

w1 =
[

w11

w12

]

(3–152)
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We then have
[

−1 1

1 −1

][

w11

w12

]

=
[

0

0

]

(3–153)

It is seen that a set of values of w11 and w22 that satisfy Eq. (3–153) are

w11 = 1

w21 = 1
(3–154)

Therefore, the first eigenvector before normalization is given as

w1 =
[

1

1

]

(3–155)

Then, choosing a mass normalization of w1, we have

u1 =
w1

√

wT
1 Mw1

(3–156)

Now we see that

wT
1 Mw1 =

[

1 1
]

[

1 0

0 2

][

1

1

]

= 3 (3–157)

which implies that
√

wT
1 Mw1 =

√

3 (3–158)

Therefore, the first normalized eigenvector is given as

u1 =
w1

√

wT
1 Mw1

=
[

1√
3

1√
3

]

(3–159)

The second eigenvector is obtained in a manner similar to that used to obtain the first eigen-

vector. In particular, for the eigenvalue λ2 = 5/2, we have
[

λ2 − 2 1

1 2λ2 − 3

]

u1 =
[

1
2

1

1 2

]

w2 = 0 (3–160)

where w2 denotes the unnormalized second eigenvector. Now we have

w2 =
[

w21

w22

]

(3–161)

We then have
[

1
2

1

1 2

][

w21

w22

]

=
[

0

0

]

(3–162)

It is seen that a set of values of w21 and w22 that satisfy Eq. (3–162) are

w21 = 1

w22 = − 1
2

(3–163)

Therefore, the second eigenvector before normalization is given as

w2 =
[

1

− 1
2

]

(3–164)

Then, choosing a mass normalization of w1, we have

u2 =
w2

√

wT
2 Mw2

(3–165)
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Now we see that

wT
2 Mw2 =

[

1 − 1
2

]

[

1 0

0 2

][

1

− 1
2

]

= 3

2
(3–166)

which implies that
√

wT
2 Mw2 =

√

3

2
(3–167)

Therefore, the first normalized eigenvector is given as

u2 =
w2

√

wT
2 Mw2

=




√

2
3

− 1√
6



 (3–168)

It is observed that u1 and u2 are unit vectors and are orthogonal with respect to both M and K,

i.e.,

uT1 Mu2 =
[

1√
3

1√
3

]

[

1 0

0 2

]





√

2
3

− 1√
6



 = 0 (3–169)

uT1 Ku2 =
[

1√
3

1√
3

]

[

2 −1

−1 3

]





√

2
3

− 1√
6



 = 0 (3–170)

Following Step 4, the eigenvector matrix U is given as

U =
[

u1 u2

]

=




1√
3

√

2
3

1√
3

− 1√
6



 (3–171)

It is seen for this example that the eigenvector matrix is not orthogonal because the eigenvec-

tors u1 and u2 are not orthogonal, i.e.,

uT1 u2 =
[

1√
3

1√
3

]





√

2
3

− 1√
6



 =
√

2

3
− 1√

18
=
√

2

3
− 1

3
√

2
≠ 0 (3–172)

Now, because we will need it shortly, we compute the inverse of U as

U−1 = −
√

2





− 1√
6

−
√

2
3

− 1√
3

1√
3



 =




1√
3

2√
3

√

2
3

−
√

2
3



 = 1√
3

[

1 2√
2 −

√
2

]

(3–173)

Following Step 5, the initial conditions in modal coordinates are given as

q(0) = U−1Y(0) =
[

q10

q20

]

(3–174)

q̇(0) = U−1Ẏ(0) =
[

q̇10

q̇20

]

(3–175)

(3–176)

Using the initial conditions given in the problem statement, we have

q(0) = U−1Y(0) = 1√
3

[

1 2√
2 −

√
2

][

1

1

]

=
[ √

3

0

]

=
[

q10

q20

]

(3–177)

q̇(0) = U−1Ẏ(0) = 1√
3

[

1 2√
2 −

√
2

][

2

1

]

=




4√
3

√

2
3



 =
[

q̇10

q̇20

]

(3–178)
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Following Step 5, we can now solve the differential equations in modal coordinates, i.e., solve

q̈ +ω2
iq = 0, (i = 1,2) (3–179)

subject to the initial conditions

(q1(0), q̇1(0)) =
(

q10, q̇10

)

=
(

√

3, 4√
3

)

(3–180)

(q2(0), q̇2(0)) =
(

q20, q̇20

)

=
(

0,
√

2
3

)

(3–181)

where the initial conditions are reiterated from Eqs. (3–177 and (3–178). Solving the differential

equation corresponding to i = 1, we have

q1(t) = c(1)1 cosω1t + c(1)2 sinω1t (3–182)

where, from Eq. (3–91), we have

c(1)1 = q10 =
√

3

c(1)2 = q̇10/ω1 = (4/
√

3)/1 = 4√
3

(3–183)

Consequently,

q1(t) =
√

3 cos t + 4√
3

sin t =
√

3 cos t + 4
√

3

3
sin t (3–184)

Next, solving the differential equation corresponding to i = 2, we have

q2(t) = c(2)1 cosω2t + c(2)2 sinω2t (3–185)

where, from Eq. (3–91), we have

c(2)1 = q20 = 0

c(2)2 = q̇20/ω2 = (
√

2/3)/
√

5/2 = 2√
15

(3–186)

Consequently,

q2(t) =
2√
15

sin

√

5

2
t = 2

√
15

15
sin

√

5

2
t (3–187)

The vector solution in modal coordinates is then given from Eqs. (3–184) and (3–187) as

q(t) =
[

q1(t)
q2(t)

]

=




√
3 cos t + 4

√
3

3
cos t

2
√

15
15

sin
√

5
2
t



 (3–188)

Following Step 6, we can now transform the solution in modal coordinates to the original coor-

dinates (i.e., the variable Y) using Eq. (3–57), i.e., we can obtain Y(t) as

Y(t) = Uq(t) (3–189)

In particular, we can substitute U and q(t) from Eqs. (3–171) and (3–188) into Eq. (3–189) to

obtain

Y(t) =




1√
3

√

2
3

1√
3

− 1√
6









√
3 cos t + 4

√
3

3
sin t

2
√

15
15

sin
√

5
2
t





=




cos t + 4
3

sin t + 2
√

10
15

sin
√

5
2
t

cos t + 4
3

sin t − 2
√

10
30

sin
√

5
2
t





(3–190)

As with Example 3–1, again we see the key difference between the solution in modal coordi-

nates (i.e., q) and the solution in the original coordinates (i.e., Y). First, it is seen from Fig. 3–4

that each modal coordinate contains only a single frequency.
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q
1
(t
)

q
2
(t
)

t

t

0

0

0

0

Figure 3–4 Modal coordinate solutions q1(t) and q2(t) for Example 3–2.

Contrariwise, examining Fig. 3–3 each component of the solution Y(t) contains both frequencies

ω1 = 1 and ω2 =
√

5/2.

y
1
(t
)

y
2
(t
)

t

t

0

0

0

0

Figure 3–5 Non-modal coordinate solutions y1(t) and y2(t) for Example 3–2.

�



74 Chapter 3. Response of Multiple Degree-of-Freedom Systems to Initial Conditions

3.2 Unforced Damped Multiple Degree-of-Freedom Systems

In section 3.1 we studied the response of undamped and unforced multiple degree-of-freedom

LTI systems. In the process of studying this class of systems, a key result was obtained that

the response was a linear combination of terms that involved the product of periodic functions

with the modal vectors where the frequencies and modal vectors were the eigenvalues and

eigenvectors, respectively, of the weighted eigenvalue problem Ku = λMu. Thus, the response

of an undamped multiple degree-of-freedom LTI system is characterized completely by mass

and stiffness matrices M and K.

We now turn our attention to unforced but damped multiple degree-of-freedom systems.

The key difference between damped and undamped systems is that the eigenvalues and eigen-

vectors of the weighted eigenvalue problem of the undamped system do not decouple the sys-

tem into modal coordinates. Instead, the presence of damping makes it such that no general

decoupling can be obtained. However, a particular class of damping exists called modal damp-

ing for which the differential equations can be transformed to a decoupled form. In this section

we develop the general model for a damped multiple degree-of-freedom system, show why the

equations cannot be decoupled in the case of general damping, and develop the results for the

case of modal damping.

3.2.1 Model Problem: Two Blocks with Linear Springs and Dampers

Consider the system shown in Fig. 3–1 of two blocks of mass m1 and m2 connected in tandem

to three linear springs with spring constants K1, K2, and K3 and corresponding unstretched

lengths ℓ10, ℓ20, and ℓ30, and three viscous dampers with damping coefficients c1, c2, and c3,

respectively.

ℓ

c1 c2 c3

K1 K2 K3m1 m2

x1

x2

O Q

Figure 3–6 Two blocks of mass m1 and m2 connected in tandem to three springs

with spring constants K1, K2, and K3 and corresponding unstretched lengths ℓ10, ℓ20,

and ℓ30, and three viscous dampers with damping coefficients c1, c2, and c3.

The blocks slide along a horizontal surface of length ℓ and the displacements of each collar,

denoted x1 and x2, respectively, are measured relative to the inertially fixed point O, where

O is located on a vertical wall located at the left end of the surface. Finally, assume that the

surface is frictionless. The objective of this part of this analysis is to derive a system of two

differential equations for the blocks in terms of x1 and x2.

First, taking the ground as an absolutely fixed inertial reference frame (denoted F ), the
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velocities and accelerations of the blocks in reference frame F are given, respectively, as

Fv1 = ẋ1Ex (3–191)
Fv2 = ẋ2Ex (3–192)
Fa1 = ẍ1Ex (3–193)
Fa2 = ẍ2Ex (3–194)

where Ex is the unit vector in the rightward direction. Next, the forces acting on each collar are

given, respectively, as

F1 = Fs1 + Fs2 + Ff1 + Ff2 (3–195)

F2 = −Fs2 + Fs3 − Ff2 + Ff3 (3–196)

where Fs1, Fs2, and Fs3 are the forces exerted by each of the three linear springs and Ff1, Ff2,

and Ff3 are the forces exerted by each of the three viscous dampers. Now we note that, because

spring 2 lies between the two blocks, the force exerted by spring 2 on m1 is equal and opposite

the force exerted by spring 2 on m2 (i.e., because Fs2 acts on m1, −Fs2 acts on m2). Similarly,

because the second damper lies between the two blocks, the force exerted by the second viscous

friction onm1 is equal and opposite the force exerted by the second damper onm2. The forces

exerted by each of the three springs are given, respectively, as

Fs1 = −K1(ℓ1 − ℓ10)us1 (3–197)

Fs2 = −K2(ℓ2 − ℓ20)us2 (3–198)

Fs3 = −K3(ℓ3 − ℓ30)us3 (3–199)

The lengths of each of the springs are given, respectively, as

ℓ1 = x1 (3–200)

ℓ2 = x2 − x1 (3–201)

ℓ3 = ℓ − x2 (3–202)

where ℓ is the length of the track. Next, the unit vectors in the directions from the attachment

points of each spring to the corresponding blocks are given, respectively, as

us1 = Ex (3–203)

us2 = −Ex (3–204)

us3 = −Ex (3–205)

We note that us2 = us3 = −Ex because the attachment points of springs 2 and 3 lie ahead of

the positions of the first and second block, respectively. Then the spring forces are given as

Fs1 = −K1(x1 − ℓ10)Ex (3–206)

Fs2 = K2(x2 − x1 − ℓ20)Ex (3–207)

Fs3 = K3(ℓ − x2 − ℓ30)Ex (3–208)

Next, the force exerted by each of the dampers is given as

Ff1 = −c1vrel,1 (3–209)

Ff2 = −c2vrel,2 (3–210)

Ff3 = −c3vrel,3 (3–211)

Now we have

vrel,1 = Fv1 − FvO (3–212)

vrel,2 = Fv2 − Fv1 (3–213)

vrel,3 = Fv2 − FvQ (3–214)
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where we have taken into account the velocity of each block relative to the attachment point of

the respective damper. Now because points O andQ are absolutely fixed, we have FvO = FvQ =
0. Furthermore, using the expressions for Fv1, Fv2, and Fv3 from Eqs. (3–191) and (3–192), we

obtain

vrel,1 = ẋ1Ex (3–215)

vrel,2 = ẋ2Ex − ẋ1Ex = (ẋ2 − ẋ1)Ex (3–216)

vrel,3 = ẋ2Ex (3–217)

We then obtain the force exert by each damper as

Ff1 = −c1ẋ1Ex (3–218)

Ff2 = −c2(ẋ2 − ẋ1)Ex (3–219)

Ff3 = −c3ẋ2Ex (3–220)

Newton’s 2nd law for the first block is then given as

F1 = Fs1 + Fs2 + Ff1 + Ff2 =m1
Fa1 (3–221)

which implies that

−K1(x1 − ℓ10)Ex +K2(x2 − x1 − ℓ20)Ex − c1ẋ1Ex − c2(ẋ2 − ẋ1)Ex =m1ẍ1Ex (3–222)

Dropping Ex from this last equation gives

−K1(x1 − ℓ10)+K2(x2 − x1 − ℓ20)− c1ẋ1 − c2(ẋ2 − ẋ1) =m1ẍ1 (3–223)

Rearranging, we obtain

m1ẍ1 + (c1 − c2)ẋ1 + c2ẋ2 +K1x1 −K2(x2 − x1) = K1ℓ10 −K2ℓ20 (3–224)

Equation (3–224) can be rewritten as

m1ẍ1 + (c1 + c2)ẋ1 + c2ẋ2 + (K1 +K2)x1 −K2x2 = K1ℓ10 −K2ℓ20 (3–225)

Newton’s 2nd law for the second collar is given as

F2 = −Fs2 + Fs3 − Ff2 + Ff3 =m2
Fa2 (3–226)

which implies that

−K2(x2 − x1 − ℓ20)Ex +K3(ℓ − x2 − ℓ30)Ex + c2(ẋ2 − ẋ1)Ex − c3ẋ2Ex =m2ẍ2Ex (3–227)

Dropping Ex from this last equation gives

−K2(x2 − x1 − ℓ20)+K3(ℓ − x2 − ℓ30)+ c2(ẋ2 − ẋ1)− c3ẋ2 =m2ẍ2 (3–228)

Rearranging, we obtain

m2ẍ2 + c2(ẋ1 − ẋ2)+ c3ẋ2 +K2(x2 − x1)+K3x2 = K2ℓ20 +K3(ℓ − ℓ30) (3–229)

Equation (3–229) can be rewritten as

m2ẍ2 + c2ẋ1 + (c3 − c2)ẋ2 −K2x1 + (K2 +K3)x2 = K2ℓ20 +K3(ℓ − ℓ30) (3–230)

The system of two differential equations describing the motion of the two collars is then given

as

m1ẍ1 + (c1 − c2)ẋ1 + c2ẋ2 + (K1 +K2)x1 −K2x2 = K1ℓ10 −K2ℓ20 (3–231)

m2ẍ2 + c2ẋ1 + (c3 − c2)ẋ2 −K2x1 + (K2 +K3)x2 = K2ℓ20 +K3(ℓ − ℓ30) (3–232)
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Equations (3–231) and (3–232) can be written in matrix form as

[

m1 0

0 m2

][

ẍ1

ẍ2

]

+
[

c1 − c2 c2

c2 c3 − c2

][

ẋ1

ẋ2

]

+
[

K1 +K2 −K2

−K2 K2 +K3

][

x1

x2

]

=
[

K1ℓ10 −K2ℓ20

−K2ℓ20 +K3(ℓ − ℓ30)

] (3–233)

which has the general matrix-vector form

MẌ+ CẊ+KX = b (3–234)

Now it is seen that the condition for static equilibrium of the system in Eq. (3–234) is given as

KXeq = b (3–235)

Now let

Y = X− Xeq (3–236)

We then have

Ẏ = Ẋ (3–237)

Ÿ = Ẍ (3–238)

Substituting the expression for b into Eq. (3–234), we obtain

MẌ+ CẊ+KX = KXeq (3–239)

This last equation can be rewritten as

MẌ+ CẊ+K(X− Xeq) = 0 (3–240)

Noting that Y = X− Xeq and Ẍ = Ÿ, Eq. (3–240) can be rewritten as

MŸ+ CẎ+KY = 0 (3–241)

It is seen that Eq. (3–241) has a similar mathematical form to the single degree-of-freedom

system, the difference being that in this case we have a matrix and column-vector differential

equation (or, alternatively, a system of differential equations) as opposed to a scalar differential

equation. Consequently, the solution to Eq. (3–241) will itself be a column vector.

3.2.2 Analysis of Unforced Damped Multiple Degree-of-Freedom Systems

Consider now a free damped multiple degree-of-freedom system relative to a static equilibrium

point given as

MŸ+ CẎ+KY = 0 (3–242)

It is seen that the difference betwen Eq. (3–241) and (3–37) on page 58 is that Eq. (3–241) has

the additional term CẎ. This addition term is due to the damping that may be part of some

two degree-of-freedom vibratory systems. Now, we recall from section 3.1.2 that two degree-

of-freedom systems without damping [i.e., systems that satisfy Eq. (3–37)] can be decoupled by

determining the eigenvectors of the weighted eigenvalues problem Ku = λMu. In particular,

using the fact that the eigenvectors are orthogonal to both the mass and stiffness matrices, we

can write

UTKU = UTMUΛ (3–243)

Then, using a mass-normalized eigenvector matrix U, we have

UTMU = I (3–244)
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which implies that

UTKU = Λ =
[

λ1 0

0 λ2

]

(3–245)

Then, in terms of modal coordinates we had

q̈+Λq = 0 (3–246)

Alternatively, in scalar form we had the system of two decoupled differential equations

q̈k + λkqk = 0, (k = 1, . . . , n) (3–247)

Now, in the case where the system is damped, it is seen in general that the eigenvector matrix

will not diagonalize the damping matrix, i.e., in general it is the case that

UTCU ≠ C̃ (3–248)

where C̃ would be a n × n diagonal matrix, i.e., if C were diagonalizable by the eigenvector

matrix then we would have

C̃ = I (3–249)

Then, if C was diagonalizable by U, we would be able to write

q̈+ C̃q̇+Λq = 0 (3–250)

As a result, in the case where U diagonalizes C, we would have n scalar equations of the form

q̈k + c̃kq̇+ λkqk = 0, (i = 1, . . . , n) (3–251)

However, because C is in general not diagonalizable by U, the second term in Eq. (3–250) will

not lead to the form of Eq. (3–251). In other words, when using the transformation

Y = Uq (3–252)

where U is the eigenvector matrix, Eq. (3–241) becomes

q̈+ Γ q̇+Λq = 0 (3–253)

where Γ is given as

Γ =













γ11 γ12 · · · γ1n

γ21 γ22 · · · γ2n

...
...

. . .
...

γn1 γn2 · · · γnn













(3–254)

Because the matrix Γ is not diagonal, the eigenvector U matrix cannot be used to obtain a modal

form for a multiple degree-of-freedom damped linear system.

3.2.3 Modal Damping (Proportional Damping)

Suppose now that we consider the special case where the damping matrix C is given as

C = αM+ βK (3–255)

Then Eq. (3–241) can be written as

MŸ+ (αM+ βK)Ẏ+KY = 0 (3–256)

Suppose now that we transform Eq. (3–256) using the eigenvector matrix U of the weighted

eigenvalue problem Ku = λMu, i.e., we let

Y = Uq (3–257)
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Then, we have

MUq̈+ (αM+ βK)Uq̇+KUq = 0 (3–258)

Multiplying on the left-hand side by UT gives

UTMUq̈+UT (αM+ βK)Uq̇+UTKUq = 0 (3–259)

Equation (3–259) can be rewritten as

UTMUq̈+ (αUTMU+ βUTKU)q̇+UTKUq = 0 (3–260)

Suppose now that we choose a mass-normalized eigenvector matrix, i.e., U has the property

that

UTMU = I (3–261)

UTKU = Λ (3–262)

Then Eq. (3–260) can be written as

q̈+ (αI+ βΛ)q̇+Λq = 0 (3–263)

Because Λ is diagonal, it is seen that the matrix I+ βΛ is also diagonal. In scalar form we have

the following two differential equations:

q̈k + (α+ βλk)q̇ + λkq = 0, (i = 1, . . . , n) (3–264)

Suppose now that we consider the case where α+ βλi > 0 for i = 1,2. Furthermore, using the

earlier notation, we can write Eq. (3–264) as

q̈k + γkq̇k + λkqk = 0, (i = 1, . . . , n) (3–265)

where

γk = α+ βλk, (i = 1, . . . , n) (3–266)

It is seen that Eq. (3–265) is a system of two decoupled second-order LTI differential equations,

each of which can be solved by the techniques for single degree-of-freedom systems. The form

of damping given in Eq. (3–255) is called modal damping because it is diagonalizable by the

eigenvector matrix of the weighted eigenvalue problem. Suppose now that we define

λk = ω2
k

γk = 2ζkωk
, (k = 1, . . . , n) (3–267)

The quantities ωk, (i = 1, . . . , n) and ζk, (i = 1, . . . , n) are the modal natural frequencies

and modal damping ratios, respectively. In terms of the modal natural frequencies and modal

damping ratios, we can write

q̈k + 2ζkωkq̇ +ω2
kq = 0, (k = 1, . . . , n) (3–268)

It can be seen that the each differential equation in Eq. (3–268) is in the standard form and thus

can be solved via the techniques for a single degree-of-freedom LTI.
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Example 3–3

Consider the free damped two degree-of-freedom system

MŸ+ CẎ+KY = 0

where the mass, damping, and stiffness matrices, are given, respectively, as follows

M =
[

1 0

0 2

]

C =
[

−3 2

2 −4

]

K =
[

2 −1

−1 3

]

Determine a system of two uncoupled differential equations of the form

q̈+ Γ q̇+Λq = 0

where the matrices Γ and Λ are diagonal.

Solution to Example 3–3

Using the mass, damping, and stiffness matrices given in the problem statement, it is seen that

C =
[

3 −2

−2 4

]

= −
[

1 0

0 2

]

+ 2

[

2 −1

−1 3

]

= −M+ 2K (3–269)

Consequently, C is a modal damping matrix for this problem. We can then use the eigenvector

matrix associated with the weighted eigenvalue problem to decouple the original differential

equations. Now recall that the matrices M and K are the same as those used in Example 3–2.

In particular, recall that the mass-normalized eigenvector matrix in Example 3–2 is given from

Eq. (3–171) on page 71 as

U =




1√
3

√

2
3

1√
3

− 1√
6



 (3–270)

Now we know from Example 3–2 that U decouples the undamped system, i.e.,

UTMU =
[

1 0

0 1

]

(3–271)

UTKU =
[

1 0

0
5
2

]

(3–272)

Furthermore, for this example it is seen that

UTCU =




1√
3

1√
3

√

2
3

− 1√
6





[

−1 1

1 −1

]





1√
3

√

2
3

1√
3

− 1√
6



 =
[

1 0

0 4

]

(3–273)

which implies that the eigenvector matrix also decouples the damping matrix C. Now let us

return to the original system. Applying the transformation Y = Uq, we obtain

MUq̈+ CUq̇+KUq = 0 (3–274)
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Then, pre-multiplying by UT gives

UTMUq̈+UTCUq̇+UTKUq = 0 (3–275)

Then, substituting the expressions for UTMU, UTKU, and UTCU from Eqs. (3–271), (3–271), and

(3–271), respectively, we obtain

[

1 0

0 1

]

q̈+
[

1 0

0 4

]

q̇+
[

1 0

0
5
2

]

q = 0 (3–276)

Then, setting (q1, q2) = q, Eq. (3–276) is equivalent to the following two scalar differential

equations:

q̈1 + q̇1 + q1 = 0 (3–277)

q̈2 + 4q̇2 + 5
2
q2 = 0 (3–278)

It can be seen that Eqs. (3–277) and (3–278) are decoupled, consistent with the fact that we

have a modally damped system. Finally, recall from Eq. (3–269) that the damping matrix for

this example is given as C = −M + 2K which implies that α = −1 and β = 2. Therefore, from

Eq. (3–266) we have

γ1 = α+ βλ1 (3–279)

γ1 = α+ βλ2 (3–280)

Now the eigenvalues of the undamped problem are the same as those given in Eq. (3–148) on

page 69 of Example 3–2, i.e., the eigenvalues are

λ1 = 1 (3–281)

λ2 = 5
2

(3–282)

Therefore,

γ1 = −1+ 2λ1 = −1+ 2(1) = 1 (3–283)

γ2 = −1+ 2λ2 = −1+ 2(5/2) = 4 (3–284)

Examining Eqs. (3–277) and (3–278) it is seen that the coefficients multiplying the q̇1 and q̇2

terms are 1 and 4, respectively. Consequently, because we have a modally damped system in

this example, determining the values γ1 and γ2 is equivalent to computing the transformation

UTCU.

�

Example 3–4

Consider the system of two nonlinear differential equations

(m1 +m2)ẍ + k1x +m2lθ̈ cosθ −m2lθ̇2 sinθ = 0

m2ẍ cosθ +m2lθ̈ +m2g sinθ = 0

Determine (a) the static equilibrium point for the system, (b) the differential equations of mo-

tion for values of x and θ near the static equilibrium point found in part (a), and (c) the differ-

ential equations in modal coordinates for the case m1 =m2 = 1, l = 1, and g = 1.
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Solution to Example 3–4

(a) Static Equilibrium Point

Let (xeq, θeq) be the static equilibrium point. Then we have

ẋeq = 0 , ẍeq = 0

θ̇eq = 0 , θ̈eq = 0

Substituting these results into the system of differential equations, we obtain

k1x = 0 =⇒ x = 0

m2g sinθ = 0 =⇒ sinθ = 0 =⇒ θeq = 0
(3–285)

Therefore, the equilibrium point for this system is (xeq, θeq) = (0,0).

(b) Linearization of Differential Equations Near Equilibrium Point

Then, we can linearize the differential equations of motion for values of x and θ near the

equilibrium values as follows. First, let

δx = x − xeq
δθ = θ − θeq (3–286)

Then,

δẋ = ẋ
δẍ = ẍ

δθ̇ = θ̇

δθ̈ = θ̈

(3–287)

Furthermore, we have

cosθ ≈ cosθ eq − sinθ eqδθ = cos(0) = 1

sinθ ≈ sinθ eq + cosθ eqδθ = sin(0)+ cos(0)δθ = δθ
θ̇2 ≈ 2θ̇eqδθ̇ = 0

(3–288)

Therefore, the differential equations near the equilibrium point are given as

(m1 +m2)δẍ + k1δx +m2lδθ̈ = 0

m2δẍ +m2lδθ̈ +m2gδθ = 0

Dividing the first differential equation by l (in order to make the system symmetric), we obtain

m1+m2
l δẍ + k1

l δx +m2δθ̈ = 0

m2δẍ +m2lδθ̈ +m2gδθ = 0

These last two equations can be written in vector-matrix form as

[

m1+m2
l m2

m2 m2l

][

δẍ

δθ̈

]

+
[

k1
l 0

0 m2g

][

δx
δθ

]

=
[

0

0

]

(3–289)
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(c) Differential Equations in Modal Coordinates

Let

X =
[

δx
δθ

]

(3–290)

M =
[

m1+m2
l m2

m2 m2l

]

(3–291)

K =
[

k1
l 0

0 m2g

]

(3–292)

Then, substituting the given values of m1 =m2 = 1, l = 1, k1 = 1, and g = 1, we obtain

M =
[

2 1

1 1

]

(3–293)

K =
[

2 0

0 1

]

(3–294)

We then can obtain the modal natural frequencies by solving the weighted eigenvalue problem

Ku = λMu. In particular, the eigenvalues are found as

det (λM−K) = 0 (3–295)

which for this problem implies that

det

(

λ

[

2 1

1 1

]

−
[

2 0

0 1

])

= det

[

2λ− 2 λ
λ λ− 1

]

= 0 (3–296)

We then obtain

(2λ− 2)(λ− 1)− λ2 = λ2 − 5λ+ 2 = 0 (3–297)

The eigenvalues are then given as

λ1,2 =
5±

√

25− 4(1)(2)

2
= 5±

√
17

2
(3–298)

It is noted that 5 >
√

17 which implies that both λ1 and λ2 are positive (which they should be

because this is an undamped oscillatory system). Then we know that the equations in modal

coordinates are given as

q̈1 + λ1q1 = 0 (3–299)

q̈2 + λ2q2 = 0 (3–300)

which for this problem implies that

q̈1 +
5+

√
17

2
q1 = 0 (3–301)

q̈2 +
5−

√
17

2
q2 = 0 (3–302)

(3–303)

�
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3.3 Non-Symmetric Mass and Stiffness Matrices

Until now all of the theory that we have been discussed has relied on the assumption that the

mass and stiffness matrices are symmetric. In particular, the weighted eigenvalue problem

Ku = λMu produces positive real eigenvalues and orthogonal eigenvectors only in the case

where M is symmetric and positive definite while K is symmetric and positive semi-definite.

Unfortunately, the ability to obtain symmetric mass and stiffness matrices depends upon the

approach used to derive the differential equations. In more advanced courses in vibrations the

differential equations are derived using advanced methods involving Lagrangian mechanics.

However, in our study we have focused on Newtonian formulations. When using Newtonian me-

chanics, it is often possible to obtain a system of differential equations which, when linearized

about the static equilibrium point, results in non-symmetric mass and stiffness matrices. In

order to demonstrate this point, we will now explore an example for which this lack of sym-

metry exists. Now, while no systematic procedure exists from which the system can be made

symmetric, we will proceed to discuss briefly through this example how a symmetric form can

be obtained.

Example 3–5

A collar of mass m1 is constrained to slide along a frictionless horizontal track as shown in

Fig. 3–7. Attached to the collar is a linear spring with spring constant K and unstretched length

ℓ0. The collar is attached to one end of a rigid massless arm of length l while a particle of mass

m2 is attached to the other end of the arm. Knowing that x describes the displacement of the

collar relative to the track, that the angle θ is measured from the downward direction, that the

spring is unstretched when x = 0, and that gravity acts downward, determine (a) a system of

two differential equations that describes the motion of the collar-particle system; (b) a system

of differential equations linearized about the static equilibrium point; (c) an alternate system

of differential equations via algebraic manipulation of the system obtained in part (a); and (d) a

system of differential equations from part (c) linearized about the static equilibrium point.

g

l

m1

m2

x

K

P

Q

θ

Figure 3–7 Particle on rigid massless arm attached to sliding collar on spring.

Solution to Example 3–5

Kinematics

First, let F be a reference frame fixed to the track. Then, choose the following coordinate

system fixed in reference frame F :

Origin at Q
when x = 0

Ex = To the right

Ez = Out of page

Ey = Ez × Ex
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Next, letA be a reference frame fixed to the arm. Then, choose the following coordinate system

fixed in reference frame A:

Origin at Q
er = Along QP
ez = Out of page

eθ = ez × er

The geometry of the bases {Ex ,Ey ,Ez} and {er ,eθ,ez} is shown in Fig. 3–8.

er

eθ

Ex

Ey

ez,Ez

θ

θ

Figure 3–8 Geometry of bases {Ex,Ey ,Ez} and {er ,eθ,ez} for Example 3–5.

Using Fig. 3–8, we have

er = sinθEx − cosθEy (3–304)

eθ = cosθEx + sinθEy (3–305)

Now, consistent with the discussion at the beginning of this problem, we establish the kinemat-

ics relevant to the system consisting of the collar and the system consisting of the collar and

the particle.

Kinematics of Collar

The position of the collar is given as

r1 = xEx (3–306)

Computing the rate of change of r1 in reference frame F , we obtain the velocity of the collar in

reference frame F as

Fv1 =
Fd

dt
(r1) = ẋEx (3–307)

Finally, computing the rate of change of Fv1 in reference frame F , we obtain the acceleration

of the collar in reference frame F as

Fa1 =
Fd

dt

(

Fv1

)

= ẍEx (3–308)
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Kinematics of Particle

The kinematics of the collar-particle system are governed by the motion of the center of mass

of the system. Consequently, in order to determine the kinematics of the center of mass of the

collar-particle system, it is first necessary to determine the position, velocity, and The position

of the particle is given as

r2 = r1 + r2/1 (3–309)

Now we have

r2/1 = ler (3–310)

Then, adding Eqs. (3–310) and (3–309), we obtain the position of the particle as

r2 = xEx + ler (3–311)

Next, the angular velocity of reference frame A in reference frame F is given as

F
ω
A = θ̇ez (3–312)

Consequently, the velocity of the particle in reference frame F is obtained as

Fv2 =
Fd

dt
(r2) =

Fd

dt
(r1)+

Fd

dt

(

r2/1

)

= Fv1 + Fv2/1 (3–313)

We already have Fv1 from Eq. (3–307). Applying the rate of change transport theorem to r2/1

between reference frames A and F gives

Fv2/1 =
Fd

dt

(

r2/1

)

=
Ad

dt

(

r2/1

)

+ F
ω
A × r2/1 (3–314)

Now we have

Ad

dt

(

r2/1

)

= 0 (3–315)

F
ω
A × r2/1 = θ̇ez × ler = lθ̇eθ (3–316)

Adding Eqs. (3–315) and (3–316), we obtain the velocity of the particle relative to the collar in

reference frame F as
Fv2/1 = lθ̇eθ (3–317)

Then, substituting the results of Eqs. (3–307) and (3–317) into Eq. (3–313), we obtain the velocity

of the particle in reference frame F as

Fv2 = ẋEx + lθ̇eθ (3–318)

Computing the rate of change of Fv2 in reference frame F using the general expression for Fv2

as given in Eq. (3–313), the acceleration of the particle in reference frame F is given as

Fa2 =
Fd

dt

(

Fv2

)

=
Fd

dt

(

Fv1

)

+
Fd

dt

(

Fv2/1

)

= Fa1 + Fa2/1 (3–319)

Now we already have Fa1 from Eq. (3–308). Applying the rate of change transport theorem

between reference frames A and F , we obtain Fa2/1 as

Fa2/1 =
Fd

dt

(

Fv2/1

)

=
Ad

dt

(

Fv2/1

)

+ F
ω
A × Fv2/1 (3–320)
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Now we have

Ad

dt

(

Fv2/1

)

= lθ̈eθ (3–321)

F
ω
A × Fv2/1 = θ̇ez × lθ̇eθ = −lθ̇2er (3–322)

Adding Eqs. (3–321) and (3–322), we obtain

Fa2/1 = −lθ̇2er + lθ̈eθ (3–323)

Finally, adding Eqs. (3–323) and (3–308), we obtain the acceleration of the particle in reference

frame F as
Fa2 = ẍEx − lθ̇2er + lθ̈eθ (3–324)

Kinematics of Center of Mass of Collar-Particle System

The position of the center of mass of the collar-particle system is given as

r̄ = m1r1 +m2r2

m1 +m2
(3–325)

Substituting the expressions for r1 and r2 from Eqs. (3–306) and (3–309), respectively, into

(3–325), we obtain r̄ as

r̄ = m1xEx +m2(xEx + ler )
m1 +m2

= xEx +
m2

m1 +m2
ler (3–326)

Next, the velocity of the center of mass of the collar-particle system in reference frame F is

given as

Fv̄ = m1
Fv1 +m2

Fv2

m1 +m2
(3–327)

Substituting the expression for Fv1 from Eq. (3–307) and the expression for Fv2 from

Eq. (3–318) into (3–327), we obtain Fv̄ as

Fv̄ = m1ẋEx +m2(ẋEx + lθ̇eθ)

m1 +m2
= ẋEx +

m2

m1 +m2
lθ̇eθ (3–328)

Finally, the acceleration of the center of mass of the collar-particle system in reference frame

F is given as

Fā = m1
Fa1 +m2

Fa2

m1 +m2
(3–329)

Substituting the expressions for Fa1 and Fa2 from Eqs. (3–308) and (3–324), respectively, into

(3–329), we obtain

Fā = m1ẍEx +m2(ẍEx − lθ̇2er + lθ̈eθ)

m1 +m2
= ẍEx +

m2

m1 +m2
(−lθ̇2er + lθ̈eθ) (3–330)

Kinetics

In order to solve this problem, it is convenient to analyze the following two systems: (1) the

collar and (2) the collar and the particle. The kinetic relationships for each of these two systems

is now established.
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Kinetics of Collar

The free body diagram of the collar is shown in Fig. 3–9.

Fs

N

R

m1g

Figure 3–9 Free body diagram of collar for Example 3–5.

Using Fig. 3–9, it is seen that the following forces act on the collar:

N = Reaction force of track on collar

R = Tension force in arm due to particle

Fs = Force of linear spring

m1g = Force of gravity

The forces acting on the collar are given in terms of the bases {Ex ,Ey ,Ez} and {er ,eθ,ez} as

N = NEy (3–331)

R = Rer (3–332)

Fs = −K(ℓ − ℓ0)us = −K(x + ℓ0 − ℓ0)Ex = −KxEx (3–333)

m1g = −m1gEy (3–334)

It is noted that, because the spring is unstretched when x = 0, the length of the spring is

ℓ = x + ℓ10. Furthermore, it is noted in Eq. (3–332) that, from the strong form of Newton’s 3rd

law, the force R must lie along the line of action connecting the collar and the particle. The

resultant force acting on the collar is then given as

F1 = N+ R+ Fs +m1g = NEy + Rer −KxEx −m1gEy (3–335)

Then, substituting the expression for er from Eq. (3–304) into (3–335), we have

F1 = NEy + R(sinθEx − cosθEy)−KxEx −m1gEy

= (R sinθ −Kx)Ex + (N − R cosθ −m1g)Ey
(3–336)

Applying Newton’s 2nd law to the collar by setting F1 in Eq. (3–336) equal to m1
Fa1 using the

expression for Fa1 from Eq. (3–308), we obtain

(R sinθ −Kx)Ex + (N − R cosθ −m1g)Ey =m1ẍEx (3–337)

Equation (3–337) yields the following two scalar equations:

R sinθ −Kx = m1ẍ (3–338)

N − R cosθ −m1g = 0 (3–339)
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Kinetics of Collar-Particle System

The free body diagram of the collar-particle system is shown in Fig. 3–10.

Fs

N

m1g

m2g

Figure 3–10 Free body diagram of collar-particle system for Example 3–5.

Using Fig. 3–10, it is seen that the following forces act on the collar-particle system:

N = Reaction force of track on collar

Fs = Force in linear spring

(m1 +m2)g = Force of gravity

We already have N and Fs from Eqs. (3–331) and (3–333), respectively. Furthermore, the force

of gravity acting on the collar-particle system is given as

(m1 +m2)g = −(m1 +m2)gEy (3–340)

Consequently, the resultant force acting on the collar is given as

F = N+ Fs + (m1 +m2)g

= NEy −KxEx − (m1 +m2)gEy

= −KxEx +
[

N − (m1 +m2)g
]

Ey

(3–341)

Applying Newton’s 2nd law to the collar-particle system by setting F in Eq. (3–341) equal to

(m1 +m2)
Fā using the expression for Fā from Eq. (3–330), we obtain

−KxEx +
[

N − (m1 +m2)g
]

Ey = (m1 +m2)

[

ẍEx +
m2

m1 +m2
(−lθ̇2er + lθ̈eθ)

]

(3–342)

Equation (3–342) can be rewritten as

−KxEx +
[

N − (m1 +m2)g
]

Ey = (m1 +m2)ẍEx −m2lθ̇
2er +m2lθ̈eθ (3–343)

Then, substituting the expressions for er and eθ from Eqs. (3–304) and (3–305), respectively,

into Eq. (3–343), we obtain

−KxEx +
[

N − (m1 +m2)g
]

Ey = (m1 +m2)ẍEx −m2lθ̇
2(sinθEx − cosθEy)

+m2lθ̈(cosθEx + sinθEy)
(3–344)
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Rearranging Eq. (3–344), we obtain

−KxEx +
[

N − (m1 +m2)g
]

Ey =
[

(m1 +m2)ẍ +m2lθ̈ cosθ −m2lθ̇
2 sinθ

]

Ex

+
[

m2lθ̈ sinθ +m2lθ̇
2 cosθ

]

Ey
(3–345)

Equation (3–345) yields the following two scalar equations:

−Kx = (m1 +m2)ẍ +m2lθ̈ cosθ −m2lθ̇
2 sinθ (3–346)

N − (m1 +m2)g = m2lθ̈ sinθ +m2lθ̇
2 cosθ (3–347)

(a) System of Two Differential Equations

Using the results of Eqs. (3–338), (3–339), (3–346), and (3–347), a system of two differential

equations is now determined. Because Eq. (3–346) has no unknown forces, it is the first differen-

tial equation. The second differential equation is obtained as follows. Multiplying Eqs. (3–338)

and (3–339) by cosθ and sinθ , respectively, we have

(R sinθ −Kx) cosθ = m1ẍ cosθ (3–348)

N sinθ − R cosθ sinθ −m1g sinθ = 0 (3–349)

Adding Eqs. (3–348) and (3–349), we obtain

−Kx cosθ +N sinθ −m1g sinθ =m1ẍ cosθ (3–350)

Next, multiplying Eq. (3–347) by sinθ gives

N sinθ − (m1 +m2)g sinθ =m2lθ̈ sin2θ +m2lθ̇
2 cosθ sinθ (3–351)

Then, subtracting Eq. (3–351) from (3–350), we obtain

m2g sinθ −Kx cosθ =m1ẍ cosθ −m2lθ̈ sin2θ −m2lθ̇
2 cosθ sinθ (3–352)

Rearranging Eq. (3–352), we obtain the second differential equation of motion as

m1ẍ cosθ −m2lθ̈ sin2θ −m2lθ̇
2 cosθ sinθ −m2g sinθ +Kx cosθ = 0 (3–353)

A system of two differential equations that describes the motion of the collar-particle system

is then given as

(m1 +m2)ẍ +m2lθ̈ cosθ −m2lθ̇
2 sinθ +Kx = 0 (3–354)

m1ẍ cosθ −m2lθ̈ sin2θ −m2lθ̇
2 cosθ sinθ −m2g sinθ +Kx cosθ = 0 (3–355)

(b) Linearization of Differential Equations About Static Equilibrium Point

Let (xeq, θeq) be the static equilibrium point. Then, substituting xeq and θeq, along with the

relationships ẋeq = ẍeq = 0 and θ̇eq = θ̈eq = 0, into Eq. (3–354) and (3–355), we obtain

Kxeq = 0 (3–356)

m2g sinθ eq +Kxeq cosθ eq = 0 (3–357)

It is seen from Eqs. (3–356) and (3–357) that the static equilibrium point is (xeq, θeq) = (0,0).
Next, let

δx = x − xeq ≡ x
δθ = θ − θeq ≡ θ (3–358)
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Then, assuming that δx and δθ are small, we know that all terms involving products of δx and

δθ (and products involving derivatives of δx and δθ) are negligible. Furthermor, we know that

cosθ = cosδθ ≈ 1 andsinθ = sinδθ ≈ δθ. The differential equations linearized relative to the

static equilibrium point are then given as

(m1 +m2)δẍ +m2lδθ̈ +Kδx = 0 (3–359)

m1δẍ −m2gδθ +Kδx = 0 (3–360)

Equations (3–359) and (3–360) can be written in matrix form as

[

m1 +m2 m2l
m1 0

][

δẍ

δθ̈

]

+
[

K 0

K −m2g

][

δx
δθ

]

=
[

0

0

]

(3–361)

It can be seen that the mass and stiffness matrices in Eq. (3–361) are not symmetric. Con-

sequently, this form of the linearized differential equations is not suitable for eigenvalue-

eigenvector analysis using the symmetric weighted eigenvalue problem. In order to use the

aforementioned techniques to decouple the differential equations, it is necessary to obtain a

symmetric form for the linearized dynamics. We now show how to obtain a symmetric form of

the linearized differential equations.

(c) Alternate System of Differential Equations

Multiplying Eq. (3–354) by cosθ , we have

(m1 +m2)ẍ cosθ +m2lθ̈ cos2θ −m2lθ̇
2 sinθ cosθ +Kx cosθ = 0 (3–362)

m1ẍ cosθ −m2lθ̈ sin2θ −m2lθ̇
2 cosθ sinθ −m2g sinθ +Kx cosθ = 0 (3–363)

Then, subtracting Eq. (3–363) from (3–362), we obtain

m2ẍ cosθ +m2lθ̈(cos2θ + sin2θ)+m2g sinθ = 0 (3–364)

Using the fact that cos2θ + sin2θ ≡ 1, Eq. (3–364) simplifies to

m2ẍ cosθ +m2lθ̈ +m2g sinθ = 0 (3–365)

Now, because the two differential equations in Eqs. (3–354) and (3–355) are independent and we

have obtained Eqs. (3–354) and (3–365) via a nonsingular transformation, the two differential

equations in Eqs. (3–354) and (3–365) are also independent. Consequently, an alternate system

of two differential equations describing the motion of the collar-particle system is given as

(m1 +m2)ẍ +m2lθ̈ cosθ −m2lθ̇
2 sinθ +Kx = 0 (3–366)

m2ẍ cosθ +m2lθ̈ +m2g sinθ = 0 (3–367)

(d) Linearization of Alternate System of Differential Equations

First, it is important to note that the static equilibrium point for the system obtain in

Eqs. (3–366) and (3–367) is the same as that which was obtained previously, i.e., the static

equilibrium point is (xeq, θeq) = (0,0). Then, the alternate system of differential equations

obtained in Eqs. (3–366) and (3–367) can be linearized in a manner similar to that which was

performed for the original system of differential equations. In particular, neglecting all higher

order terms involving products of δx and δθ and products of their derivatives, we obtain

(m1 +m2)δẍ +m2lδθ̈ +Kδx = 0 (3–368)

m2δẍ +m2lδθ̈ +m2gδθ = 0 (3–369)
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where we have again used the approximations cosθ = cosδθ ≈ 1 and sinθ = sinδθ ≈ δθ.

Next, dividing Eq. (3–368 by l yields the system

m1 +m2

l
δẍ +m2δθ̈ +

K

l
δx = 0 (3–370)

m2δẍ +m2lδθ̈ +m2gδθ = 0 (3–371)

Equations (3–370) and (3–371) can be written in matrix form as

[

(m1 +m2)/l m2

m2 m2l

][

δẍ

δθ̈

]

+
[

K/l 0

0 m2g

][

δx
δθ

]

=
[

0

0

]

(3–372)

Unlike the matrix differential equation that was obtain in Eq. (3–361), it is seen that the mass

and stiffness matrices in Eq. (3–372) are both symmetric. Furthermore (and equally important)

M is positive definite while K is positive semi-definite, thereby making it possible to analyze

the system in Eq. (3–372) using the eigenvalue-eigenvector techniques described previously.

�



Chapter 4

Forced Response of Multiple

Degree-of-Freedom Systems

In Chapter 3 we studied the response of a multiple degree-of-freedom system to initial con-

ditions. We now turn our attention to the response of multiple degree-of-freedom systems to

external time-varying forcing functions. In particular, in this chapter we start with a general

system of linear time-invariant second-order differential equations subject to a general forc-

ing function. We then divide the analysis into two parts. In the first part of this chapter we

study the response of a multiple degree-of-freedom system to nonperiodic inputs whereas in

the second part of this chapter we study the response of multiple degree-of-freedom systems

to periodic inputs.

4.1 Generic Model for Forced Multiple Degree-of-Freedom System

The general mathematical model for a forced multiple degree-of-freedom system subject to a

time-varying forcing function is given as

MŸ+ CẎ+KY = f(t) (4–1)

where f(t) is an external vector forcing function of time. Similar to a single degree-of-freedom

system, the function f(t) is not a function of Y and its derivatives, but is an explicit function of

time.

4.2 Response of Modally Damped Systems to Nonperiodic Inputs

Now consider the case of a modally damped system and an input function f(t) that is nonperi-

odic. Because C is a modal damping matrix, we know that

C = αM+ βK (4–2)

Then, from Eq. (3–263) we know that the eigenvector matrix U of the weighted eigenvalue

problem Ku = λMu can be used to decouple the homogeneous differential equation MŸ+CẎ+
KY = 0

q̈+ (αI+ βΛ)q̇+Λq = 0 (4–3)

where Y = Uq. However, in this case we have a nonhomogeneous differential equation. Then,

from Eq. (4–1) we have

MUq̈+ CUq̇+KUq = f(t) (4–4)
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Multiplying on the left-hand side by UT gives

UTMUq̈+UTCUq̇+UTKUq = UT f(t) (4–5)

Now assuming that U is mass-normalized, UTMU = I we obtain

q̈+ (αI+ βΛ)q̇+Λq = UT f(t) (4–6)

where we know for a mass normalized eigenvector matrix that UTKU = Λ. It is seen that the

system of differential equations given by Eq. (4–6) is also decoupled with the exception that the

right-hand side is not zero. However, as we will soon see, the fact that the right-hand side is

nonzero does not pose a computational problem for modally damped systems. In particular,

let

UT f =













F1

F2

...

Fn













(4–7)

Then in scalar form Eq. (4–6) can be written as

q̈k + (α+ βλk)q̇k + λkqk = Fk(t), (k = 1, . . . , n) (4–8)

It is seen that Eq. (4–8) is a system of n scalar uncoupled second-order LTI differential equa-

tions. Consequently, for nonperiodic inputs the differential equations of Eq. (4–8) can be solved

using the techniques in Chapter 2. In order to see more clearly how these differential equations

can be solved, suppose that each function fk(t), (k = 1, . . . , n) is a linear combination of fun-

damental nonperiodic function (e.g., linear combinations of functions such as the unit impulse

function, the unit step function, the unit ramp function, etc.). Then each differential equation

in Eq. (4–8) can be written as

q̈k + (α+ βλk)q̇k + λkqk =
m
∑

j=0

akjhj(t), (k = 1, . . . , n) (4–9)

where
h0(t) = δ(t)

h1(t) =
∫ t

0
h0(τ)dτ

h2(t) =
∫ t

0
h1(τ)dτ

...

hm(t) =
∫ t

0
hm(τ)dτ

(4–10)

In other words, each function hj(t), (j = 0, . . . , n) is a multiple integral of the unit impulse

function. Now suppose that we let gkj(t), (j = 0, . . . ,m) be the response of the kth differential

equation in Eq. (4–8) to the input hj(t), (j = 0, . . . ,m). Then the response of the kth differential

equation in Eq. (4–8) is given as

qk(t) =
m
∑

j=0

akjgkj(t) (4–11)
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Then, the response of the original system defined by Y(t) is given as

Y(t) = Uq(t) = U













q1(t)
q2(t)

...

qn(t)













= U

































m
∑

j=0

a1jg1j(t)

m
∑

j=0

a2jg2j(t)

...
m
∑

j=0

anjgnj(t)

































(4–12)

Now we know that the eigenvector matrix can be written in general form

U =













u11 u12 · · · u1n

u21 u22 · · · u2n

...
...

. . .
...

un1 un2 · · · unn













(4–13)

Consequently, Eq. (4–12) can be written as

Y(t) =













u11 u12 · · · u1n

u21 u22 · · · u2n

...
...

. . .
...

un1 un2 · · · unn













































m
∑

j=0

a1jg1j(t)

m
∑

j=0

a2jg2j(t)

...
m
∑

j=0

anjgnj(t)

































































n
∑

p=1

u1p

m
∑

j=0

apjgpj(t)

n
∑

p=1

u2p

m
∑

j=0

apjgpj(t)

...
n
∑

p=1

unp

m
∑

j=0

apjgpj(t)

































(4–14)

Finally, we can rewrite

Y(t) =

































n
∑

p=1

m
∑

j=0

u1papjgpj(t)

n
∑

p=1

m
∑

j=0

u2papjgpj(t)

...
n
∑

p=1

m
∑

j=0

unpapjgpj(t)

































(4–15)

In other words, not only is the response of the system in the original coordinates Y(t) a linear

combination of the responses to the input functions hj(t), (j = 0, . . . , n), but, due to the

fact that the elements of Y are themselves linear combinations of the elements of q (due to

the eigenvector matrix, U), this response is simultaneously a linear combination of these linear

combinations.

Example 4–1

Consider the forced damped two degree-of-freedom system

MŸ+ CẎ+KY = f(t)
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where the mass, damping, and stiffness matrices, are given, respectively, as follows

M =
[

1 0

0 2

]

C =
[

−3 2

2 −4

]

K =
[

2 −1

−1 3

]

Determine the response of the system to the input f(t) where f(t) is given as

f(t) =
[

δ(t)
u(t)

]

where δ(t) and u(t) are the unit impulse function and unit step function, respectively.

Solution to Example 4–1

Recall that the mass, damping, and stiffness matrices correspond to those of Example 4–1.

Furthermore, the mass-normalized eigenvector matrix of the weighted eigenvalue problem

Ku = λMu is given from Eq. (3–270) on page 80

U =




1√
3

√

2
3

1√
3

− 1√
6



 (4–16)

Furthermore, we know from Example 4–1 that the system for this problem is modally damped.

Consequently, the modal coordinate equations are obtained from Eq. (4–6) as

q̈+ (αI+ βΛ)q̇+Λq = UT f(t) (4–17)

Again, from Eqs. (3–272), and (3–273) we have, respectively,

UTKU ≡ Λ =
[

1 0

0
5
2

]

(4–18)

αI+ βΛ ≡ UTCU =
[

1 0

0 4

]

(4–19)

Finally, using U in Eq. (4–16), we have

UT f =




1√
3

1√
3

√

2
3

− 1√
6





[

δ(t)
u(t)

]

=




1√
3
δ(t)+ 1√

3
u(t)

√

2
3
δ(t)− 1√

6
u(t)



 (4–20)

Therefore, from Eq. (4–7) we have

F1(t) = 1√
3
δ(t)+ 1√

3
u(t) = a10h0(t)+ a11h1(t) ≡

1
∑

j=0

a1jhj(t) (4–21)

F2(t) =
√

2

3
δ(t)− 1√

6
u(t) = a20h0(t)+ a21h1(t) ≡

1
∑

j=0

a2jhj(t) (4–22)

where h0(t) = δ(t) and h1(t) = u(t). Furthermore, the coefficients akj , (k = 1,2), (j = 0,1)
are given as

a10 = 1√
3

, a11 = 1√
3

a20 =
√

2
3

, a21 = − 1√
6

(4–23)
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Suppose now that we let g10(t) and g11(t) be the response of the first modal coordinate, q1(t),
to the functions h0(t) = δ(t) and h1(t) = u(t), respectively. Then, from the principle of

superposition, the total response of the first modal coordinate is given as

q1(t) = a10g10(t)+ a11g11(t) =
1√
3
g10(t)+

1√
3
g11(t) (4–24)

Similarly, suppose that we let g20(t) and g21(t) be the response of the second modal coordinate,

q2(t), to the functions h0(t) = δ(t) and h1(t) = u(t), respectively. Then, from the principle of

superposition, the total response of the second modal coordinate is given as

q2(t) = a20g20(t)+ a21g21(t) =
√

2

3
g20(t)−

1√
6
g21(t) (4–25)

The modal coordinate response is then given in vector form as

q(t) =
[

q1(t)
q2(t)

]

=




1√
3
g10(t)+ 1√

3
g11(t)

√

2
3
g20(t)− 1√

6
g21(t)



 (4–26)

Then, using the fact that Y = Uq, we obtain the response of the original system as

Y = Uq =




1√
3

√

2
3

1√
3

− 1√
6





[

q1(t)
q2(t)

]

=




1√
3

√

2
3

1√
3

− 1√
6









1√
3
g10(t)+ 1√

3
g11(t)

√

2
3
g20(t)− 1√

6
g21(t)



 (4–27)

Multiplying out Eq. (4–27), we obtain

Y =
[

1
3
g10(t)+ 1

3
g11(t)+ 2

3
g20(t)− 1

3
g21(t)

1
3
g10(t)+ 1

3
g11(t)− 2

3
g20(t)− 1

6
g21(t)

]

(4–28)

It is important to observe that the solution obtained in Eq. (4–28) is identical to that given in

Eq. (4–15). In particular, for this example we have m = 1 and Eq. (4–15) reduces to

Y(t) =















2
∑

p=1

1
∑

j=0

u1papjgpj(t)

2
∑

p=1

1
∑

j=0

u2papjgpj(t)















(4–29)

Using the eigenvector matrix U in Eq. (4–16), we have

u11 = 1√
3

, u12 =
√

2
3

u21 = 1√
3

, u22 = − 1√
6

(4–30)

Then, combining Eq. (4–30) and (4–23) in Eq. (4–29), we have

Y(t) =









1√
3

(

1√
3
g10(t)+ 1√

3
g11(t)

)

+
√

2
3

(

√

2
3
g20(t)− 1√

6
g21(t)

)

1√
3

(

1√
3
g10(t)+ 1√

3
g11(t)

)

− 1√
6

(

√

2
3
g20(t)− 1√

6
g21(t)

)









(4–31)

Equation (4–31) simplifies to

Y =
[

1
3
g10(t)+ 1

3
g11(t)+ 2

3
g20(t)− 1

3
g21(t)

1
3
g10(t)+ 1

3
g11(t)− 2

3
g20(t)− 1

6
g21(t)

]

(4–32)

which is the same result as obtained in Eq. (4–28).

�
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4.3 Response of Modally Damped Systems to Periodic Inputs

Suppose now that the forcing function f(t) has the form

f(t) = Feiωt (4–33)

where F is a constant. It is seen that the form of f(t) given in Eq. (4–33) is a vector periodic

function of time with input frequency ω. Suppose now that the damping matrix C is assumed

to be modal, i.e.,

C = αM+ βK (4–34)

Suppose further that we transform the variable Y via the eigenvector matrix U as

Y = Uq (4–35)

We then obtain

MUq̈+ CUq̇+KUq = Feiωt (4–36)

which further implies

UTMUq̈+UTCUq̇+UTKUq = UTFeiωt (4–37)

Now, assume that U has been mass-normalized. Then, because we have assumed that the

system is modally damped, this last equation can be written as

q̈+ Γ q̇+Λq = UTFeiωt (4–38)

where Γ and Λ are diagonal, i.e.,

Γ =





















γ1 0 0 · · · 0

0 γ2 0 · · · 0
... 0

. . . · · ·
...

...
...

. . .
. . . 0

0 0 · · · 0 γn





















(4–39)

Λ =





















λ1 0 0 · · · 0

0 λ2 0 · · · 0
... 0

. . . · · ·
...

...
...

. . .
. . . 0

0 0 · · · 0 λn





















(4–40)

Suppose now that the matrix UTF is given as

UTF =













f1

f2

...

fn













(4–41)

Then each scalar equation can be written as

q̈k + γkq̇k + λkqk = fkeiωt , (k = 1, . . . , n) (4–42)

Now let

γk = 2ζkωk (4–43)

λk = ω2
k (4–44)
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where ζk, (k = 1, . . . , n) and ωk are the damping ratios and natural frequencies for the coordi-

nates qk, (k = 1, . . . , n). Then we can write

q̈k + 2ζkωkq̇k +ω2
kqk = fkeiωt , (k = 1, . . . , n) (4–45)

Finally, let

fk = Akω2
k, (k = 1, . . . , n) (4–46)

Then the system of differential equations in modal coordinates is given as

q̈k + 2ζkωkq̇k +ω2
kqk = Akω2

ke
iωt , (k = 1, . . . , n) (4–47)

It is seen that Eq. (4–47) is a system of decoupled equations (i.e., modal coordinate equations)

and are in the standard form as given in Eq. (2–50), i.e., each equation in Eq. (4–47) has the form

ẍ + 2ζωnẋ +ω2
nx =ω2

nAe
iωt (4–48)

Now we now that the solution to Eq. (4–48) is given as

x(t) = A|G(iω)|ei(ωt−φ) (4–49)

where G(iω) is the transfer function

G(iω) = 1

1−
(

ω

ωn

)2

+ i2ζ ω
ωn

(4–50)

and |G(iω)| and φ = φ(ω) are the magnitude and phase of G(iω), respectively. Then, for

each modal coordinate the solution is given as

qk(t) = Ak|Gk(iω)|ei(ωt−φk) (4–51)

where Gk(iω) is the transfer function associated with the kth modal coordinate, i.e.,

Gk(iω) =
1

1−
(

ω

ωk

)2

+ i2ζk
ω

ωk

(4–52)

and |Gk(iω)| and φk = φk(ω) are the magnitude and phase of Gk(iω), respectively. Then the

solution Y(t) is obtained as

Y = Uq (4–53)

where

q =













q1

q2

...

qn













=













A1|G1(iω)|ei(ωt−φ1)

A2|G2(iω)|ei(ωt−φ2)

...

An|Gn(iω)|ei(ωt−φn)













(4–54)

Consequently,

Y = Uq = U













q1

q2

...

qn













= U













A1|G1(iω)|ei(ωt−φ1)

A2|G2(iω)|ei(ωt−φ2)

...

An|Gn(iω)|ei(ωt−φn)













(4–55)
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Example 4–2

Consider the two degree-of-freedom system

MŸ+ CẎ+KY = F

where

F =
[

1

1

]

eiωt

where the mass, damping, and stiffness matrices, are given, respectively, as follows

M =
[

1 0

0 2

]

C =
[

−3 2

2 −4

]

K =
[

2 −1

−1 3

]

Determine the time response of the above system.

Solution to Example 4–2

Recall that M, C, and K correspond to those given in Example 3–3. Furthermore, recalling the

mass-normalized eigenvector matrix U from Eq. (3–270) on page 80 of Example 3–3, we have

U =




1√
3

√

2
3

1√
3

− 1√
6



 (4–56)

from which we obtain

UT =




1√
3

1√
3

√

2
3

− 1√
6



 (4–57)

Then, using the value of F given in the problem statement we have

UTF =




1√
3

1√
3

√

2
3

− 1√
6





[

1

1

]

=




2√
3

√

2
3
− 1√

6



 (4–58)

Now, recall that Example 3–3 was modally damped. Consequently, the unforced system can be

decoupled as given in Eqs. (3–277) and Eqs. (3–278). Then, using the result of Eq. (4–58), we

obtain the forced differential equations in modal coordinates as

q̈1 + q̇1 + q1 = 2√
3
eiωt (4–59)

q̈2 + 4q̇2 + 5
2
q2 =

(

√

2
3
− 1√

6

)

eiωt (4–60)

Also recall from Example 3–3 that the eigenvalues of the undamped system

λ1 = 1 (4–61)

λ2 = 5
2

(4–62)

which implies that the modal natural frequencies are given as

ω1 = 1 (4–63)

ω2 =
√

5
2

(4–64)
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Furthermore, the damping ratios are obtained as

2ζ1ω1 = γ1 = 1 (4–65)

2ζ2ω2 = γ2 = 4 (4–66)

where we recall that γ1 and γ2 are the coefficients associated with the terms involving q̇1 and

q̇2, respectively. We then obtain

ζ1 = 1

2
(4–67)

ζ2 = 4

2
√

5
2

= 2

√

2

5
(4–68)

We can now determine the values of A1 and A2 as follows:

A1ω
2
1 = f1 =

2√
3

(4–69)

A2ω
2
2 = f2 =

(

√

2
3
− 1√

6

)

(4–70)

Using the expressions for ω1 and ω2, we obtain

A1 = 2√
3

(4–71)

A2 = 2
5

(

√

2
3
− 1√

6

)

(4–72)

from which we obtain

A1 = 2√
3

(4–73)

A2 = 2
5

(

√

2
3
− 1√

6

)

(4–74)

Then the modal responses are given as

q1(t) = A1|G1(iω)|ei(ωt−φ1) (4–75)

q2(t) = A2|G2(iω)|ei(ωt−φ2) (4–76)

where G1(iω) and G2(iω) are given as

G1(iω) = 1

1−
(

ω

ω1

)2

+ i2ζ1
ω

ω1

(4–77)

G2(iω) = 1

1−
(

ω

ω2

)2

+ i2ζ2
ω

ω2

(4–78)

and ω1, ω2, ζ1, ζ2, A1, and A2 are as obtained earlier in the solution to this example. Finally,

the solution in the original coordinates defined by Y is given as

Y = Uq =




1√
3

√

2
3

1√
3

− 1√
6





[

q1(t)
q2(t)

]

(4–79)

�
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4.4 Response of Systems with General Damping to Periodic Inputs

Suppose now that we consider again a multiple degree-of-freedom LTI system subject to a

periodic forcing function, i.e.,

MŸ+ CẎ+KY = Feiωt (4–80)

Now because the input is periodic, we know that the steady-state output will also be periodic,

i.e., Y(t) will have the form

Y(t) = Ȳeiωt (4–81)

which implies that

Ẏ(t) = iωȲeiωt

Ÿ(t) = −ω2Ȳeiωt
(4–82)

Substiuting the expression for Y, Ẏ, and Ÿ into Eq. (4–80), we obtain

eiωt
[

−ω2M+ iωC+K
]

Ȳ = Feiωt (4–83)

Observing that eiωt is not zero as a function of time, we obtain

[

−ω2M+ iωC+K
]

Ȳ = F (4–84)

Suppose now that we define

Z(iω) ≡ Z = −ω2M+ iωC+K (4–85)

The quantity Z = Z(iω) is called the impedance matrix. In terms of the impedance matrix we

can write

Z(iω)Ȳ(iω) = F (4–86)

where we note that Ȳ is also a function of iω. Then, assuming that Z is nonsingular (otherwise

we would not have a unique solution), we obtain

Ȳ(iω) = Z−1(iω)F (4–87)

The time response is then given as

Y(t) = Z−1(iω)Feiωt (4–88)

4.4.1 Response of Two Degree-of-Freedom System to Periodic Input

Suppose now that we consider the special case of a two degree-of-freedom system with mass,

damping, and stiffness matrices given, respectively, as

M =
[

m11 m12

m12 m22

]

(4–89)

C =
[

c11 c12

m12 c22

]

(4–90)

K =
[

k11 k12

k12 k22

]

(4–91)

Furthermore, assume that M is positive definite and that C and K are positive semidefinite.

Then, the impedance matrix is given as

Z(iω) =
[

−ω2m11 + iωc11 + k11 −ω2m12 + iωc12 + k12

−ω2m12 + iωc12 + k12 −ω2m22 + iωc22 + k22

]

=
[

z11 z12

z12 z22

]

(4–92)



4.5 Undamped Vibration Absorbers 103

where it is noted that Z(iω) is symmetric because M, C, and K are symmetric. The inverse of

Z(iω) is then given as

Z−1(iω) = 1

det Z(iω)
=
[

z22 −z12

−z12 z11

]

= 1

z11z22 − z2
12

[

z22 −z12

−z12 z11

]

(4–93)

Multiplying Z−1(iω) by F where, we obtain Ȳ as

Ȳ = Z−1(iω)F = 1

z11z22 − z2
12

[

z22 −z12

−z12 z11

][

F1

F2

]

=
[

Ȳ1

Ȳ2

]

(4–94)

Consequently,

Ȳ1 = z22F1 − z12F2

z11z22 − z2
12

(4–95)

Ȳ2 = −z12F1 + z11F2

z11z22 − z2
12

(4–96)

4.4.2 Response of Undamped Two Degree-of-Freedom System to Periodic Input

Suppose now that we specialize further to the case of an undamped two degree-of-freedom

system. In this case we know that C is zero. Then, from Eq. (4–92) we obtain

[

z11 z12

z12 z22

]

=
[

−ω2m11 + k11 −ω2m12 + k12

−ω2m12 + k12 −ω2m22 + k22

]

(4–97)

Equations (4–95) and (4–96) then reduce to

Ȳ1 = (k22 −ω2m22)F1 − (k12 −ω2m12)F2

(k11 −ω2m11)(k22 −ω2m22)− (k12 −ω2m12)2
(4–98)

Ȳ2 = −(k12 −ω2m12)F1 + (k11 −ω2m11)F2

(k11 −ω2m11)(k22 −ω2m22)− (k12 −ω2m12)2
(4–99)

The time responses Y1(t) and Y2(t) are then given as

Y1(t) =
[

(k22 −ω2m22)F1 − (k12 −ω2m12)F2

(k11 −ω2m11)(k22 −ω2m22)− (k12 −ω2m12)2

]

eiωt (4–100)

Y2(t) =
[

−(k12 −ω2m12)F1 + (k11 −ω2m11)F2

(k11 −ω2m11)(k22 −ω2m22)− (k12 −ω2m12)2

]

eiωt (4–101)

4.5 Undamped Vibration Absorbers

Consider now the undamped system shown in Fig. 4–1 of a block of mass M attached to two

linear springs with spring constants K1 and K2 and a second block of mass m attached in

tandem connected to the second spring. Furthermore, assume that a force F(t) is applied to

the first block.

Assuming that the unstretched lengths of the springs are ℓ10 and ℓ20, the force applied to the

block of mass M is given as

F1 = F+ Fs1 + Fs2 = FEx −K1(ℓ1 − ℓ10)us1 −K2(ℓ2 − ℓ20)us2 (4–102)

Now we have

ℓ1 = ‖r1 − rO‖ = x1 (4–103)

ℓ2 = ‖r1 − r2‖ = x2 − x1 (4–104)
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F(t)

K1 K2

m

x1

x2

MO

Figure 4–1 Two masses on two springs representing a model for a vibration ab-

sorber.

Furthermore,

us1 = r1 − rO

‖r1 − rO‖
= Ex (4–105)

us2 = r1 − r2

‖r1 − r2‖
= −Ex (4–106)

Therefore,

F1 = FEx −K1(x1 − ℓ10)Ex −K2(x2 − x1 − ℓ20)(−Ex) =
[

−K1(x1 − ℓ10)+K2(x2 − x1 − ℓ20)
]

Ex
(4–107)

Then, because the inertial acceleration of the first block is Fa1 = ẍ1Ex , from Newton’s second

law we obtain
[

F −K1(x1 − ℓ10)+K2(x2 − x1 − ℓ20)
]

Ex = Mẍ1Ex (4–108)

which implies that the first differential equation is given as

Mẍ1 + (K1 +K2)x1 −K2x2 = F +K1ℓ10 −K2ℓ20 (4–109)

Similarly, the force exerted on the block of mass m is given as

F2 = −Fs2 = −K2(x2 − x1 − ℓ20)Ex (4–110)

Then, because the inertial acceleration of the second block is Fa2 = ẍ2Ex , from Newton’s second

law we obtain

−K2(x2 − x1 − ℓ20)Ex =mẍ2Ex (4–111)

which implies that the second differential equation is given as

mẍ2 +−K2x1 +K2x2 = K2ℓ20 (4–112)

It is noted that the system consisting of the block of mass M together with the first spring is

called the main system while the second system consisting of the block of mass m together

with the second spring is called the absorber. The objective of this analysis is to determine

the design that enables the absorber to absorb as much of the response of the main system as

possible.

Observing the form of the differential equations, it is seen that the differential equations

relative to the static equilibrium point are given as

Mÿ1(K1 +K2)y1 −K2y2 = F(t) (4–113)

mÿ2 −K2y1 +K2y2 = 0 (4–114)
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where x1 = y1 − y1,eq and x2 = y2 − y2,eq. Suppose now that we consider the case where F(t)
is periodic of the form F(t) = F1 sinωt. Then, because the system is undamped, we know that

the phase of the output will be zero which implies that

y1(t) = Ȳ1 sinωt (4–115)

y2(t) = Ȳ2 sinωt (4–116)

Then, using the results of Eqs. (4–100) and (4–101) we obtain y1(t) and y2(t) as

y1(t) =
[

(K2 −ω2m)F1

(K1 +K2 −ω2M)(K2 −ω2m)−K2
2

]

sinωt (4–117)

y2(t) =
[

K2F1

(K1 +K2 −ω2M)(K2 −ω2m)−K2
2

]

sinωt (4–118)

where

Ȳ1 =
[

(K2 −ω2m)F1

(K1 +K2 −ω2M)(K2 −ω2m)−K2
2

]

(4–119)

Ȳ2 =
[

K2F1

(K1 +K2 −ω2M)(K2 −ω2m)−K2
2

]

(4–120)

Suppose now that we introduce the following notation:

ωn =
√

K1/M = natural frequency of main system

ωa =
√

K2/m = natural frequency of absorber

yst = F1/K1 = static deflection of main system

γ = m/M = ratio of absorber to main system

Then Eqs. (4–119) and (4–120) can be written in terms of ωn, ωa, yst and γ as

Ȳ1 =
[

1− (ω/ωa)2
]

yst

[1+ γ(ωa/ωn)2 − (ω/ωn)2] [1− (ω/ωa)2]− γ(ωa/ωn)2
(4–121)

Ȳ2 = yst

[1+ γ(ωa/ωn)2 − (ω/ωn)2] [1− (ω/ωa)2]− γ(ωa/ωn)2
(4–122)

It can be seen that

Ȳ1(ωa) ≡ 0 (4–123)

Ȳ2(ωa) = − yst

γ(ωa/ωn)2
= −

(

ωn

ωa

)2 yst

γ
= − F1

K2
(4–124)

It is seen from Eq. (4–121) that the mass m (i.e., the absorber) will absorb the motion of the

main system if ω ≡ ωa, i.e., the best natural frequency for the absorber is ωa = ω. In other

words, the best design for the absorber is one where the natural frequency of the absorber is

the same as the frequency of the forcing function F(t).
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Appendix A

Review of Linear Algebra

A.1 Row Vectors, Column Vectors, and Matrices

Let C and R denote the set of complex and real numbers, respectively. Furthermore, let qi ∈
C, (i = 1, . . . , n) be complex-valued scalars. These scalars can be arranged in either a row

or a column as follows. When arranged in a row, we can write q =
[

q1 q2 . . . qn
]

. Then the

quantity q =
[

q1 q2 . . . qn
]

is called a row vector. Alternatively, a row vector can be written as

q =
(

q1, . . . , qn
)

,i.e.,

q =
(

q1, . . . , qn
)

≡
[

q1 q2 . . . qn
]

(A–1)

When arranged as a column, i.e., as

q =













q1

q2

...

qn













(A–2)

the quantity q is called a column vector. Suppose now that we consider a set of complex-valued

coefficients aij (i = 1, . . . ,m; j = 1, . . . , n). Also, suppose that we arrange these coefficients as

follows:

A =













a11 a12 · · · a1n

a21 a22 · · · a2n

...
...

. . .
...

am1 am2 · · · amn













(A–3)

The quantity A ∈ Cm×n is called an m × n matrix and the quantities aij (i = 1, . . . ,m; j =
1, . . . , n) are called the elements of A. Furthermore, because aij (i = 1, . . . ,m; j = 1, . . . , n)
are real numbers, the matrix A is more specifically referred to as a real matrix. We note that a

special case of an m×n real-valued matrix is a so called square matrix. A square matrix is one

where m = n, i.e., a square matrix is written in element form as

A =













a11 a12 · · · a1n

a21 a22 · · · a2n

...
...

. . .
...

an1 an2 · · · ann













(A–4)

Examining a row vector, a column vector, and a matrix, it is seen that the following are true.

First, an n-dimensional row vector is a matrix of size 1 × n, i.e., if q is a row vector, then

q ∈ C1×n. Next, an m-dimensional column vector is a matrix of size m× 1, i.e., if q is a column

vector, then q ∈ Cm×1.
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A.2 Types of Matrices

Identity Matrix

The most basic matrix is the identity matrix. The n × n identity matrix, denoted In, is defined

as

In =













1 0 · · · 0

0 1 · · · 0
...

...
. . .

...

0 0 · · · 1













(A–5)

In other words, In ∈ Rn×n and is such that its diagonal elements are unity while its off-diagonal

elements are zero. In index form, we can write the identity matrix as follows:

[In]ij = δij =
{

1 , i = j
0 , i ≠ j

(A–6)

where the quantity δ is the Kronecker delta function. We note that for any column vector q the

identity matrix satisfies the property that

Iq = q (A–7)

Transpose of a Matrix

Let A be an m×n complex-valued matrix. Then the transpose of A, denoted AT , is defined as

AT =













a11 a21 · · · am1

a12 a22 · · · am2

...
...

. . .
...

a1n a2n · · · amn













(A–8)

It is noted that AT is obtained from A by interchanging the elements of A, i.e., the element aij
in A is equal to the element aji in AT .

Complex Conjugate of a Matrix

Let A be an m × n complex-valued matrix. Then the complex conjugate of A, denoted Ā, is

defined as

Ā =













ā11 ā12 · · · ā1n

ā21 ā22 · · · ā2n

...
...

. . .
...

ām1 ām2 · · · āmn













(A–9)

where āij is the complex conjugate of aij .

Properties of Square Matrices

Because square matrices arise so frequently in linear algebra, we devote a separate section to

defining particular classes of square matrices. The remainder of this section deals specifically

with square matrices, i.e., matrices that have the same number of rows and columns.

A.2.1 Hermitian Matrix

Let A be an n × n square complex-valued matrix. Then A is said to be Hermitian if A = ĀT ,

i.e., a complex valued square matrix A is Hermitian if A is equal to the transpose of its complex

conjugate. In element form, a Hermitian matrix is one such that aij = āji, (i, j = 1, . . . , n).
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Skew-Hermitian Matrix

Let A be an n × n square complex-valued matrix. Then A is said to be skew-Hermitian if

A = −ĀT , i.e., a complex valued square matrix A is skew-Hermitian if A is equal to the negative

of the transpose of its complex conjugate. In element form, a Hermitian matrix is one such that

aij = −āji, (i, j = 1, . . . , n).

Symmetric Matrix

Let A be a square complex-valued n×n matrix, Then A is said to be symmetric if A = AT , i.e., a

square matrix is symmetric if it is equal to its transpose. In scalar form, a real-valued square

matrix is symmetric if aij = aji, (i, j = 1, . . . , n).

Skew-Symmetric Matrix

Let A be a square complex-valued matrix. Then A is said to be skew-symmetric A = −AT , i.e., a

square matrix is skew-symmetric if it is equal to the negative of its transpose. In scalar form, a

matrix is symmetric if aij = aji, (i, j = 1, . . . , n).

Inverse of a Matrix

Let A be a square complex-valued matrix. Then A is said to be invertible if there exists a matrix

A−1 such that

AA−1 = A−1A = I (A–10)

where I is the n×n identity matrix. Any invertible matrix is said to be nonsingular.

Orthogonal Matrix

Let A be a square complex-valued matrix. Then A is said to be orthogonal if A−1 = AT , i.e., a

matrix is orthogonal if its inverse is equal to its transpose. Because of the property of an

orthogonal matrix, we know that

A−1A = ATA = I (A–11)

where I is the n×n identity matrix. Suppose we write an orthogonal matrix in column form as

A =
[

a1 a2 · · · an
]

(A–12)

Then,

AT =













aT1
aT2
...

aTn













(A–13)

Multiplying AT by A gives

ATA =
[

a1 a2 · · · an
]













aT1
aT2
...

aTn













=













aT1 a1 aT1 a2 · · · aT1 an
aT2 a1 aT2 a2 · · · aT2 an

... · · ·
. . .

...

aTna1 aTna2 · · · aTnan













= I (A–14)

Then for an orthogonal matrix we obtain

aTi aj = δij =
{

1 , i = j
0 , i ≠ j

(A–15)

where δij is the Kronecker delta function.
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Determinant of a Matrix

Let A ∈ Rn×n be an n×n real-valued matrix. Then the determinant of A, denoted det A or |A|,
is defined as

det A = det













a11 a12 · · · a1n

a21 a22 · · · a2n

...
...

. . .
...

an1 an2 · · · ann













(A–16)

and is computed recursively as

det A = a11 det













a22 a23 · · · a2n

a32 a33 · · · a3n

...
...

. . .
...

an2 an3 · · · ann













− a12 det













a21 a23 · · · a2n

a22 a33 · · · a3n

...
...

. . .
...

an1 an3 · · · ann













± a1k det













a21 a23 · · · a2(n−1)

a22 a33 · · · a3(n−1)

...
...

. . .
...

an1 an3 · · · an(n−1)













(A–17)

As mentioned, it is seen that the determinant of a matrix is defined in terms of determinants of

smaller matrices. The most basic matrix for which a determinant must be computed is a 2× 2

matrix. Suppose that A ∈ R2×2 matrix. Then the determinant of a 2× 2 matrix is given as

det

[

a11 a12

a21 a22

]

= a11a22 − a12a21 (A–18)

Next, let A ∈ R3×3 matrix. Then the determinant of a 2× 2 matrix is given as

det







a11 a12 a13

a21 a22 a23

a31 a32 a33





 = a11(a22a33 −a23a32)−a12(a21a33 −a23a31)+a13(a21a32 −a22a31)

(A–19)

It is noted that the determinants of 2× 2 and 3× 3 matrices can be used as building blocks to

compute the determinant of an n×n matrix. Also, it is important to understand that a square

matrix is invertible if and only if its determinant is nonzero, i.e.,

A−1 exists ⇔ det A ≠ 0

A.3 Simple Algebra Associated with Matrices

Sum and Difference of Matrices

Let A and B be m × n real-valued matrices. Furthermore, denote A and B in element form,

respectively, as

A =













a11 a12 · · · a1n

a21 a22 · · · a2n

...
...

. . .
...

an1 an2 · · · ann













(A–20)
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B =













b11 b12 · · · b1n

b21 b22 · · · b2n

...
...

. . .
...

bm1 bm2 · · · bmn













(A–21)

Then the sum of A and B is defined as

A+ B =













a11 + b11 a12 + b12 · · · a1n + b1n

a21 + b21 a22 + b22 · · · a2n + b2n

...
...

. . .
...

am1 + bm1 am2 + bm2 · · · amn + bmn













(A–22)

It is seen from Eq. (A–22) that A+ B = B+A. Similar to the sum of two matrices, the difference

between A and B is defined as

A− B =













a11 − b11 a12 − b12 · · · a1n − b1n

a21 − b21 a22 − b22 · · · a2n − b2n

...
...

. . .
...

am1 − bm1 am2 − bm2 · · · amn − bmn













(A–23)

It is noted that matrices can only be added or subtracted if they are the same size.

Product of a Matrix with a Constant

Let A be an m × n real-valued matrix and let k be a scalar. Then the product of k with A is

defined as

kA =













ka11 ka12 · · · ka1n

ka21 ka22 · · · ka2n

...
...

. . .
...

kam1 kam2 · · · kamn













(A–24)

Product of Two Matrices of Conforming Size

Let A and B be m×p and p ×n real-valued matrices, respectively. Then the product of A with

B is defined as

AB =













a11 a12 · · · a1p

a21 a22 · · · a2p

...
...

. . .
...

am1 am2 · · · amp

























b11 b12 · · · b1n

b21 b22 · · · b2n

...
...

. . .
...

bp1 bp2 · · · bpn













=













∑p
k=1 a1kbk1

∑p
k=1 a1kbk2 · · ·

∑p
k=1 a1kbkn

∑p
k=1 a2kbk1

∑p
k=1 a2kbk2 · · ·

∑p
k=1 a2kbkn

...
...

. . .
...

∑p
k=1 apkbk1

∑p
k=1 apkbk2 · · ·

∑p
k=1 apkbkn













(A–25)

In other words, the (l,m)th element of AB is given as

[AB]l,m =
p
∑

k=1

alkbkm (A–26)

It is very important to note that two matrices can be multiplied only if the number of rows of A

must be the same as the number of columns of B (i.e., if A ∈ Rm,p and B ∈ Rq,n, then A and B
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can be multiplied only if p = q). This last requirement is called conformability, i.e., two matrices

can be multiplied only if their sizes are conforming. Due to the conformability requirement, the

only case in which both AB and BA are valid operations is if A and B are both square matrices.

Finally, we note that, even in the case of two square matrices A and B it is generally the case

that AB ≠ BA (i.e., the matrix product is not commutative).

Inner Product Between Row and Column Vectors

The standard inner product (or dot product) between two row vectors or column vectors p and

q is defined as

p · q =
n
∑

k=1

piqi (A–27)

where pi, (i = 1, . . . , n) and qi, (i = 1, . . . , n) are the elements of p and q, respectively. From

the definition of the product of two matrices, it is seen that if p and q are both column vectors

then the dot product between p and q can be written as

p · q = pTq =













p1

p2

...

pn













T 











q1

q2

...

qn













=
[

p1 p2 · · · pn
]













q1

q2

...

qn













=
n
∑

k=1

piqi (A–28)

Similarly, if p and q are both row vectors, then the dot product between p and q can be written

as

p · q = pTq =
[

p1 p2 · · · pn
] [

q1 q2 · · · qn
]T

=
[

p1 p2 · · · pn
]













q1

q2

...

qn













=
n
∑

k=1

piqi
(A–29)

We say that two vectors p and q are orthogonal with respect to the standard inner product

(i.e., dot product) if and only if p · q = 0, i.e.,

p and q are orthogonal with respect to the standard inner product ⇐⇒ pTq = 0 (A–30)

Next, the weighted inner product is defined as

p ·Wq = pTWq (A–31)

where W ∈ Rn×n is a weighting matrix. It is noted that two vectors p and q are orthogonal with

respect to the weighting matrix W if and only if pTWq = 0, i.e.,

p and q are orthogonal with respect to W ⇐⇒ pTWq = 0 (A–32)

A.4 Null Space and Range Space of a Real Matrix

Let A ∈ Rm×n be an m×n real-valued matrix. It is observed that A operates on column vectors

of length n and produces column vectors of length m. Then the null space of A is defined as

the set of all column vectors q ∈ Rn (where q ≠ 0) such that

Aq = 0 (A–33)
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The null space of A is denoted N (A). Any vector q that satisfies Eq. (A–33) is said to lie

in N (A). Moreover, we say that any vector q that lies in N (A) is annihilated by A (i.e., if

q ∈ N (A), then A annihilates q). It is noted that the null space of a square matrix is nonzero

if and only if the determinant of A is zero.

Next, the range space of A is the set of all vectors p ∈ Rm (where p ≠ 0) for which there

exists a vector q ∈ Rn such that

Aq = p (A–34)

The range space of a matrix is denoted R(A). Any vector p that satisfies Eq. (A–34) is said to

lie in R(A).

A.5 Eigenvalues and Eigenvectors of a Real Square Matrix

Let A ∈ Rn×n be an n×n real-valued square matrix. Then the scalar λ is said to be an eigenvalue

of A with eigenvector u if

Au = λu (A–35)

Rearranging Eq. (A–35), we obtain

λu−Au = 0 (A–36)

Now we know that q = Iq where I is the n × n identity matrix. Therefore, Eq. (A–36) can be

rewritten as

λIu−Au = 0 (A–37)

Eq. (A–37) can be rearranged as

(λI−A)u = 0 (A–38)

Eq. (A–38) implies one of two things. Either u = 0 or the vector q must lie in the null space

of the matrix λI−A (i.e., λI−A must annihilate u). The former case is the trivial solution and

hence is of no interest. Therefore, the latter case must be true. Now, in order for u to lie in the

null space of λI − A, the matrix λI − A must have a nonzero null space. Recall that λI − A has

a nonzero null space, it must be singular (i.e., λI−A does not have an inverse) and, therefore,

det(λI−A) = 0

det(λI−A) = 0 (A–39)

Therefore, the condition of Eq. (A–38) that leads to a nontrivial value of u is given by Eq. (A–39).

Examining Eq. (A–39) and using the general form for a determinant from Eq. (A–17), it is

seen that det(λI−A) = 0 is a polynomial in λ, i.e., det(λI−A) = 0 can be written as

det(λI−A) = λn + a1λ
n−1 + a2λ

n−2 + · · · + an−1λ+ an =
n
∑

k=1

an−kλ
k = 0 (A–40)

where we note that a0 ≡ 1. Eq. (A–40) is called the characteristic equation of the matrix A. Now,

because A is a real matrix, the coefficients (a0, . . . , an) must also be real.

Multiplicity of Eigenvalues and Eigenvectors

Because Eq. (A–40) is a polynomial of degree n with real coefficients, from the fundamental

theorem of algebra its roots (i.e., the eigenvalues of A) must either be real or occur in complex

conjugate pairs. Suppose we let λ, . . . , λn be the eigenvalues of A. Then the characteristic

equation can be written in factored form as

det(λI−A) = (λ− λ1)(λ− λ2) · · · (λ− λn) (A–41)

In general, the eigenvalues λ, . . . , λn will not be distinct [i.e., Eq. (A–41) may have repeated roots].

When an eigenvalue λi of Eq. (A–41) repeats itself k times (i.e., k roots of Eq. (A–40) are equal to

λi), we say that the eigenvalue λi has algebraic multiplicity k. For example, suppose that two of
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the roots of the characteristic equation are equal to µ. Then in factored form the characteristic

equation would have the factor λ− µ appear twice [i.e., we would have a factor (λ− µ)2 in the

characteristic equation]. In this case the algebraic multiplicity of the eigenvalue µ would be

two.

Suppose now that m ≤ n is the number of distinct eigenvalues of A and let λ1, . . . , λm
be the corresponding eigenvalues of A. Next, let k1, . . . , km be the algebraic multiplicities

of λ1, . . . , λm, respectively. Furthermore, let the set [1, . . . , n] be partitioned into sets Pi =
[

pi−1 + 1, . . . , pi
]

, (i = 1, . . . ,m) such that

pi =
i
∑

j=1

kj (A–42)

and p0 = 0. Then for each distinct eigenvalue λi, (i = 1, . . . , l) we have

Auri = λiuri , (ri ∈ Pi), (i = 1, . . . ,m) (A–43)

It is seen that the sum of the algebraic multiplicities must add to n, i.e.,

m
∑

j=1

kj = n (A–44)

Furthermore, the eigenvectors associated with each partition Pi need not be distinct. Suppose

that mi ≤ ki is the number of linearly independent eigenvectors associated with each partition

Pi. Then we say that the eigenvalue λi, (i = 1, . . . ,m) has geometric multiplicity mi ≤ ki. In the

case where mi = ki, the algebraic and geometric multiplicities of λi are the same.

Diagonalization of Square Matrices and Similarity Transformations

In the case where the geometric and algebraic multiplicities of every distinct eigenvalue λ1, . . . , λm
of a matrix A are the same (i.e.,mi = ki for all i = 1, . . . ,m), we say that the matrix A has a com-

plete set of eigenvectors. Moreover, when a matrix A has a complete set of eigenvectors, it is

seen that n linearly independent eigenvectors can be obtained, i.e., the eigenvectors u1, . . . ,un
form a basis form a basis for Rn. Stated somewhat more rigorously, we can write the following:

Eigenvectors of A complete ⇐⇒ The set {u1, . . . ,un} forms a basis for Rn

Then, for each eigenvector ui, (i = 1, . . . , n) we have

Aui = λiui, (i = 1, . . . , n) (A–45)

Eq. (A–45) implies that

A
[

u1 u2 · · · un
]

=
[

λ1u1 λ2u2 · · · λnun
]

(A–46)

Eq. (A–46) can be rewritten as

A
[

u1 u2 · · · un
]

=
[

u1 u2 · · · un
]













λ1 0 · · · 0

0 λ2 · · · 0
... · · ·

. . . 0

0 0 · · · λn













(A–47)

Now let

U =
[

u1 u2 · · · un
]

(A–48)

Λ =













λ1 0 · · · 0

0 λ2 · · · 0
... · · ·

. . . 0

0 0 · · · λn













(A–49)
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The matrix U is called the eigenvector matrix of the matrix A. In terms of U, Eq. (A–47) can then

be written as

AU = UΛ (A–50)

Now because the eigenvectors of A are complete and form a basis for Rn, it is known that the

matrix U is nonsingular (i.e., U−1 exists). Consequently, we can multiply both sides of Eq. (A–50)

on the left by U−1 to obtain

Λ = U−1AU (A–51)

The quantity U−1AU is a similarity transformation of the matrix A by the eigenvector matrix

U. It is seen that, for a matrix A that has a complete set of eigenvectors, using the similarity

transformation of Eq. (A–51) produces a diagonal matrix Λ.

Eigenvectors Associated with Complex Pairs of Eigenvectors

Let λi be an eigenvalue of a real-valued matrix A ∈ Rn×n. Furthermore, assume that λi is

complex. Then, because eigenvalues of a real-valued matrix must occur in complex conjugate

pairs, there must exist an eigenvalue λj such that λj = λ̄i, where λ̄i is the complex conjugate

of λi. Next, let ui be the eigenvector associated with λi. Then we have

Aui = λiui (A–52)

Taking the complex conjugate of Eq. (A–52) gives

Aui = λiui (A–53)

Now the right-hand and left-hand sides of Eq. (A–53) can be written, respectively, as

λiui = λ̄iūi (A–54)

Aui = Aūi (A–55)

where we note that Ā = A because A is a real-valued matrix. Therefore,

Aūi = λ̄iūi (A–56)

It is seen that Eq. (A–56) satisfies the eigenvalue equation of Eq. (A–35). Therefore, ūi is an

eigenvector of A with eigenvalue λ̄i

A.6 Eigenvalues and Eigenvectors of a Real Symmetric Matrix

Now consider the special case where A is real and symmetric, i.e., A = AT . Then for eigenvectors

ui and uj with corresponding eigenvalues λi and λj , respectively, we have

Aui = λiui (A–57)

Auj = λjuj (A–58)

Suppose now that we multiply both sides of Eq. (A–57) on the left-hand side by uTj and multiply

both sides of Eq. (A–58) on the left-hand side by uTi . We then obtain

uTj Aui = uTj λiui (A–59)

uTi Auj = uTj λjuj (A–60)

Now because λi and λj are scalars, we have

uTj λiui = λiu
T
j ui (A–61)

uTi λjuj = λju
T
i uj (A–62)
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Furthermore, we know that uTj ui = uj · ui and, thus, is a scalar. Consequently, uTj Aui is also a

scalar and we have
[

uTj Aui

]T
= uTi ATuj (A–63)

Now because A is symmetric, Eq. (A–63) implies

[

uTj Aui

]T
= uTi ATuj = uTi Auj (A–64)

Substituting the result of Eq. (A–64) into Eq. (A–59), placing it alongside Eq. (A–60), and using

the results of Eqs. (A–61) and (A–62) gives

uTi Auj = λiu
T
j ui (A–65)

uTi Auj = λju
T
j uj (A–66)

Subtracting Eq. (A–65) from (A–66), we obtain

λju
T
j ui − λiuTj ui = (λj − λi)uTj ui = 0 (A–67)

Then, because λi ≠ λj , it must be the case that

uTj ui = 0 (A–68)

Using the definition of orthogonality of vectors with respect to the standard inner product,

it is seen that Equation (A–68) implies that eigenvectors ui and uj corresponding to distinct

eigenvalues λi and λj of a real symmetric matrix are orthogonal.

Next, assume that two of the eigenvalues of a real symmetric matrix A are a complex con-

jugate pair, i.e., we consider two eigenvalues λi and λj such that λj = λ̄i. Now we know from

earlier in this section that the eigenvector uj associated with the complex conjugate of eigen-

value λj = λ̄i is the complex conjugate of ui (i.e., uj = ūi). Furthermore, from the definition of

an eigenvalue-eigenvector pair we have

Aui = λiui (A–69)

Aūi = λ̄iūi (A–70)

Multiplying Eqs. (A–69) and (A–70) by ūTi and uTi , respectively, we obtain

ūTi Aui = ūTi λiui = λiūTi ui (A–71)

uTi Aūi = uTi λ̄iūi = λ̄iuTi ūi (A–72)

Now because A is symmetric, we have

[

ūTi Aui

]T
= uTi AT ūi = uTi Aūi (A–73)

[

ūTi ui

]T
= uTi ūi (A–74)

Furthermore, because ūTi Aui and ūTi ui are scalars, we can substitute the results of Eqs. (A–73)

and (A–74) into Eqs. (A–75) from (A–76), respectively, we obtain

uTi Aūi = λiu
T
i ūi (A–75)

uTi Aūi = λ̄iu
T
i ūi (A–76)

Subtracting Eq. (A–75) from (A–76) gives

(λ̄i − λi)uTi ūi = 0 (A–77)

Now because uTi ūi ≠ 0, we have

λ̄i − λi = 0 (A–78)
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which implies that

λ̄i = λi (A–79)

Equation (A–79) states that a complex eigenvalue of a real symmetric matrix is equal to its

complex conjugate. The only possible way for a complex number to equal its complex conjugate

is if the number is itself real. Another way of looking at this is as follows. Suppose that

λi = α+ iβ (A–80)

It then follows that

λ̄i = α− iβ (A–81)

Consequently, the only way for λ̄i and λi to be equal is if β ≡ 0, i.e., λi ≡ α ∈ R. The key result

is that the eigenvalues of a real symmetric matrix are real.

Now suppose we let U be the eigenvector matrix associated with a real symmetric matrix.

Then we have

U =
[

u1 u2 · · · un
]

(A–82)

Now because the eigenvectors of a real symmetric matrix are orthogonal, we can normalize

each eigenvector to unit magnitude, i.e., we can say that

‖ui‖ = 1 (A–83)

Then the eigenvector matrix U is such that its columns are orthonormal which implies that U is

an orthogonal matrix, i.e.,

U−1 = UT (A–84)

Then because the eigenvectors are complete (by virtue of the fact that they are orthonormal),

we know that

AU = UΛ (A–85)

where Λ is a diagonal matrix with the eigenvalues on the diagonal. Finally, using the fact that

U is orthogonal, we know that

U−1AU = UTAU (A–86)

Consequently,

UTAU = Λ (A–87)

A.7 Symmetric Weighted Eigenvalue Problem

Consider now the eigenvalue problem

Au = λBu (A–88)

where the matrices A and B are both symmetric. Eq. (A–88) is called a symmetric weighted

eigenvalue problem or, simply, a weighted eigenvalue problem because the matrix B is not the

identity matrix. Rearranging Eq. (A–88), we obtain

= λBu−Au = (λB−A)u (A–89)

Orthogonality of Eigenvectors of Symmetric Weighted Eigenvalue Problem

As with the standard eigenvalue problem, consider two eigenvectors ui and uj corresponding

to distinct eigenvalues λi and λj , i.e., consider

Aui = λiBui (A–90)

Auj = λjBuj (A–91)
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Equations (A–90) and (A–91) together imply that

uTj Aui = λiu
T
j Bui (A–92)

uTi Auj = λju
T
i Buj (A–93)

Then, using the fact that A and B are symmetric, we know that

[

uTj Aui

]T
= uTi ATuj = uTi Auj (A–94)

[

uTi Buj

]T
= uTj BTui = uTj Bui (A–95)

Consequently,

uTi Auj = λiu
T
i Buj (A–96)

uTi Auj = λju
T
i Buj (A–97)

Subtracting Eqs. (A–97) and (A–97), we obtain

(λi − λj)uTi Buj = 0 (A–98)

This time, because λj ≠ λj , we have

uTi Buj = 0 (A–99)

Equation (A–99) implies that the eigenvectors ui and uj are orthogonal with respect to the matrix

B. Furthermore, by rewriting Eq. (A–88) in the form

Bu = µAu (A–100)

where µ = 1/λ, it can be seen that

uTi Auj = 0 (A–101)

Equation (A–101) implies that the eigenvectors ui and uj are orthogonal with respect to the

matrix A. In other words, for the weighted eigenvalue problem of Eq. (A–88), the eigenvectors

of distinct eigenvalues are orthogonal with respect to both the matrices A and B.

Eigenvalues of Symmetric Weighted Eigenvalue Problem

Now assume that λi and λj are two eigenvalues of the weighted eigenvalue problem of Eq. (A–88).

Furthermore, suppose that λj = λ̄i. Now we have

Aui = λiBui (A–102)

Auj = λjBuj (A–103)

Taking the complex conjugate of Eq. (A–102) gives

Aui = λiBui (A–104)

Equation (A–104) implies

Aūi = λ̄iBūi (A–105)

Observing that λj = λ̄i, we obtain

Aūi = λjBūi (A–106)

Consequently, ūj is an eigenvector of the weighted eigenvalue problem with eigenvalue λj . In

other words, if λi is a complex eigenvalue of the weighted eigenvalue problem with eigenvector

ui, then λ̄i is an eigenvalue of the weighted eigenvalue problem with eigenvalue ūi.
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Now suppose that λi and λj are eigenvalues of the weighted eigenvalue problem of Eq. (A–88).

Furthermore, let λj = λ̄i. Then, from the definition of the weighted eigenvalue problem of

Eq. (A–88), we have

Aui = λiBui (A–107)

Aūi = λ̄iBūi (A–108)

Multiplying Eqs. (A–107) and (A–108) by ūTi and uTi , respectively, we obtain

ūTi Aui = ūTi λiBui = λiūTi Bui (A–109)

uTi Aūi = uTi λ̄iBūi = λ̄iuTi Būi (A–110)

Now because both A and B are symmetric and we know that

[

ūTi Aui

]T
= uTi AT ūi = uTi Aūi (A–111)

[

ūTi Bui

]T
= uTi BT ūi = uTi Būi (A–112)

Then, because ūTi Aui and ūTi Bui are scalars, we can substitute the results of Eqs. (A–111) and

(A–112) into Eqs. (A–109) and (A–110), respectively, to obtain

uTi Aūi = λiu
T
i Būi (A–113)

uTi Aūi = λ̄iu
T
i Būi (A–114)

Subtracting Eq. (A–113) from (A–114), we obtain

(λ̄i − λi)uTi Būi = 0 (A–115)

Now because uTi Būi ≠ 0, we have

λ̄i − λi = 0 (A–116)

which implies that

λ̄i = λi (A–117)

Equation (A–117) states that a complex eigenvalue of the weighted eigenvalue problem of

Eq. (A–88) is equal to its complex conjugate. The only possible way for a complex number

to equal its complex conjugate is if the number is itself real. Another way of looking at this is

as follows. Suppose that

λi = α+ iβ (A–118)

It then follows that

λ̄i = α− iβ (A–119)

Consequently, the only way for λ̄i and λi to be equal is if β ≡ 0, i.e., λi ≡ α ∈ R. The key result

is that the eigenvalues of the weighted eigenvalue problem of Eq. (A–88) are real.

Suppose now that we let

U =
[

u1 u2 · · · un
]

(A–120)

Then we can write

A
[

u1 u2 · · · un
]

=
[

λ1Bu1 λ2Bu2 · · · λnBun
]

(A–121)

Using the expression for U from Eq. (A–120), it is seen that (A–121) can be rewritten as

AU =
[

Bu1 Bu2 · · · Bun
]





















λ1 0 · · · 0

0 λ2 · · · 0
... · · ·

. . .
...

... · · ·
. . .

...

0 · · · 0 λn





















(A–122)
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Then, defining

Λ =





















λ1 0 · · · 0

0 λ2 · · · 0
... · · ·

. . .
...

... · · ·
. . .

...

+0 · · · 0 λn





















(A–123)

Equation (A–122) can be written as

AU =
[

Bu1 Bu2 · · · Bun
]

Λ (A–124)

Factoring B on the left-hand side of Eq. (A–124), we obtain

AU = B
[

u1 u2 · · · un
]

Λ (A–125)

Again, using the expression for U from Eq. (A–120) gives

AU = BUΛ (A–126)

Multiplying both sides of Eq. (A–126) by UT gives

UTAU = UTBUΛ (A–127)

Normalization of Eigenvectors of Symmetric Weighted Eigenvalue Problem

Unlike the symmetric standard eigenvalue problem Au = λu (where A = AT ), the eigenvectors

of A are orthogonal (i.e., uTi uj = 0), in the symmetric weighted eigenvalue problem Au = λBu

(where A = AT and B = BT ) it was seen that the eigenvectors are orthogonal with respect to the

matrices A and B, i.e.,
uTi Auj = 0

uTi Buj = 0
, (i = 1, . . . , n) (A–128)

Consequently, in the symmetric weighted eigenvalue problem with B ≠ I it is not possible

to find a set of normalized eigenvectors u1, . . . ,un such that the eigenvector matrix U is an

orthogonal matrix (i.e., for the symmetric weighted eigenvalue problem it is generally the case

that U−1
≠ UT ). Instead, due to the fact that the eigenvector matrix is orthogonal with respect

to both A and B, the eigenvector matrix U is commonly normalized with respect to either

UTAU = I or UTBU = I. In the former case we say that U is normalized with respect to A

whereas in the latter case we say that U is normalized with respect to B. Suppose we choose to

normalize U with respect to A. To this end, let w1, . . . ,wn be the unnormalized eigenvectors of

the symmetric weighted eigenvalue problem, i.e.,

Awi = λiBwi (A–129)

Then, pre-multiplying by wT
i , we have

wT
i Awi = wT

i λiBwi = λiwT
i Bwi (A–130)

Suppose now that we choose the normalized eigenvectors ui, (i = 1, . . . , n) such that

ui =
wi

√

wT
i Awi

, (i = 1, . . . , n) (A–131)

Then it is seen that

uTi Aui =




wi
√

wT
i Awi





T

A





wi
√

wT
i Awi



 = wT
i Awi

wT
i Awi

= 1, (i = 1, . . . , n) (A–132)
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Consequently, normalizing with respect to the matrix A, we have

ui =
wi

√

wT
i Awi

, (i = 1, . . . , n) (A–133)

which implies that

UTAU = I ⇐⇒ Eigenvectors Are Normalized With Respect to A (A–134)

Next, suppose we choose to normalize the eigenvectors respect to the matrix B. Then in this

case we would choose the normalized eigenvectors such that

ui =
wi

√

wT
i Bwi

, (i = 1, . . . , n) (A–135)

Then it is seen that

uTi Bui =




wi
√

wT
i Bwi





T

B





wi
√

wT
i Bwi



 = wT
i Bwi

wT
i Bwi

= 1, (i = 1, . . . , n) (A–136)

Consequently, using a normalization

ui =
wi

√

wT
i Bwi

, (i = 1, . . . , n) (A–137)

we see that

UTBU = I ⇐⇒ Eigenvectors Are Normalized With Respect to B (A–138)

A.8 Definiteness of Matrices

Let A ∈ Rn×n be an n×n real-valued matrix. Then A is said to be positive definite if and only if

uTAu > 0 for all u ≠ 0, i.e.,

A positive definite ⇐⇒ uTAu > 0 ∀u ≠ 0 (A–139)

Similarly, the matrix A is said to be positive semi-definite if and only if uTAu ≥ 0 for all u ≠ 0,

i.e.,

A positive semi-definite ⇐⇒ uTAu ≥ 0 ∀u ≠ 0 (A–140)

Finally, the matrix A is said to be negative semi-definite if and only if uTAu ≤ 0 for all u ≠ 0,

i.e.,

A negative semi-definite ⇐⇒ uTAu ≤ 0 ∀u ≠ 0 (A–141)

Any matrix that can neither be classified as positive definite, positive-semi-definite, negative

definite, nor negative semi-definite, is called indefinite.
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