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Chapter 1

Response of Single Degree-of-Freedom
Systems to Initial Conditions

In this chapter we begin the study of vibrations of mechanical systems. Generally speaking a
vibration is a periodic or oscillatory motion of an object or a set of objects. Vibrating systems
are ubiquitous in engineering and thus the study of vibrations is extremely important.

The most basic problem of interest is the study of the vibration of a one degree-of-freedom
(i.e., a system whose motion can be described using a single scalar second-order ordinary dif-
ferential equation). The generic model for a one degree-of-freedom system is a mass connected
to a linear spring and a linear viscous damper (i.e., a mass-spring-damper system). Because of
its mathematical form, the mass-spring-damper system will be used as the baseline for analysis
of a one degree-of-freedom system. In particular, the differential equation of motion will be
derived for the mass-spring-damper system. It will then be shown that the time response of
this system is the sum of the zero input response and the zero initial condition response. In this
chapter we will focus attention on the zero input response, i.e., the response of the system to a
given set of initial conditions. Several examples of single degree-of-freedom systems will then
be given. In each of these examples the differential equation will be derived and will be shown
to have the same mathematical form as the generic mass-spring-damper system.

1.1 Mass-Spring-Damper System

The most basic system that is used as a model for vibrational analysis is a block of mass m
connected to a linear spring (with spring constant K and unstretched length #;) and a viscous
damper (with damping coefficient ¢). In addition, an external force P(t) is applied to the block
and the displacement of the block is measured from the inertially fixed point O, where O is the
point where the spring is unstretched. Finally, the spring and damper are both attached at the
inertially fixed point Q. This system is shown in Fig. 1-1 Denoting unit vector in the direction
from O to Q as E, and the inertial reference frame of the ground by F, the inertial acceleration
of the block is given as

Ta = XEy (1-1)

Next, the forces exerted by the spring and damper are given, respectively, as

F, ~K{ - Ly)ug (1-2)
Ff = —CVyel (1-3)

First, because the spring is attached at point Q, we have

= r—roll (1-4)
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Figure 1-1  Block of mass m sliding without friction along a horizontal surface con-
nected to a linear spring and a linear viscous damper.

where r and rg are the positions of the block and the attachment points of the spring, respec-
tively. Using a coordinate system with its origin at point O at E, as the first principal direction,
we have

r = xEx (1-5)
rq = &)Ex (1—6)
Therefore,
€ = |IXEx — LoEx |l = [[(x — £o)Ex|l = |x — Lo (1-7)
Then, because x < ¥y we have
lx — €| =Ly — x (1-8)

Finally, the unit vector in the direction from the attachment point of the spring to the position

of the block is
r-ro _ (x — 4o)Ey

S _ - _F (1-9)
e - gl by — x x
The force in the linear spring is then given as
Fs = —K(yp — x — o) (—Eyx) = —KxEx (1-10)

Next, because the ground is already assumed to be inertial, the relative velocity between the
block and the ground is simply the velocity of the block, i.e.,

Vil = Fv = XEy (1-11)
Therefore, the force exerted by the viscous damper is obtained as
Fp=—cxEy (1-12)
The resultant external force acting on the particle is then obtained as
F=P+F; +F;=PEy — KxEx —cxXEyx = (P - Kx — cx)E, (1-13)
Applying Newton’s second law to the particle, we obtain
(P — Kx — cx)Ex = mXEyx (1-14)
Dropping E, from Eq. (1-14) and rearranging, we obtain the differential equation of motion as

mx +cx +Kx =P (1-15)
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Now historically it has been the case that the differential equation has been written in a form
that is normalized by the mass, i.e., we divide Eq. (1-15) by m to obtain

5&+£>‘c+£x:£:v(t) (1-16)
m- m~ om

where p(t) = P(t)/m. Furthermore, it is common practice to define the quantities K/m and
c/m as follows:

w? =

2Cwy =

303 =

The quantities w, and C are called the natural frequency and damping ratio of the system,
respectively. In terms of the natural frequency and damping ratio, the differential equation of
motion for the mass-spring-damper system can be written in the so called standard form as

X +2CwnX + wix = p(t) (1-17)

It is seen that Eq. (1-17) is a second-order linear constant coefficient ordinary differential equa-
tion. Often, the term “constant coefficient” is replaced with the term time-invariant, i.e., we
say that Eq. (1-17) is a called a second-order linear time-invariant (LTI) ordinary differential
equation. The terminology “time invariant” stems from the fact that, for a given input p(t) and
a given set of initial conditions (x(tg), X (tg) = (x0,X0) at the initial time t = t; is the same as
the solution to the input p(t + T) for the initial conditions (x(to + T),X(to + T) = (X0, Xo) at
the (shifted) initial time t = ty + T. Because of this fact associated with an LTI system, without
loss of generality we can assume that the initial time is zero, i.e., ty = 0. Thus, when studying
the zero input response of an LTI system we can restrict our attention to initial conditions
(x(0),x(0) = (x0,X0).

1.2 General Solution of a Second-Order LTI Differential Equation

Eq. (1-17) can be written as

d?x dx
7t ZCwnE +w?x = p(t) (1-18)
which can be further written as
az d
(dtZ + ZCwHE + wi) x =p(t) (1-19)
Now let )
L= % + ZCwn% + w? (1-20)

Then we can view the system of Eq. (1-17) as a system of the form
Lx=f (1-21)

It is seen that the operator L defined in Eq. (1-20) is linear because
L(axx) + Bx2) = aL(x1) + BL(x2) (1-22)

for all constants « and B. Then it is seen that Eq. (1-21) is a linear system whose general
solution is of then form Eq. (1-17) is given as

x(t) = xp(t) + xp (1) (1-23)
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here xj, (t) is the homogeneous solution (i.e., the solution for a particular set of initial conditions
(x (o), x(tg) = (x0,%0) with a zero input function p(t) = 0) while x,(t) is the particular
solution (i.e., the solution for zero initial conditions (x(ty), x(to) = (0,0) and an arbitrary input
function p(t) # 0). The homogeneous solution and particular solutions are also called the zero
input response and zero initial condition response, respectively. The general solution x(t) to
a second-order LTI system is then given as the sum of the zero input response and the zero
initial condition response. Because the zero input response satisfies Eq. (1-17) when p(t) = 0,
we have

Xp + 2Cwpxp + wixp =0 (1-24)

Contrariwise, because the zero initial condition response satisfies Eq. (1-17) when p(t) = 0 and
the initial conditions are zero, we have

Xp +2CwnXp + 0ox, = p(t) (1-25)

From the preceding discussion, it is seen that studying the general response of a second-
order LTI system amounts to studying independently the zero input response and the zero
initial condition response. Consequently, the study of single degree-of-freedom vibrations
amounts to quantifying the zero input response and the zero initial condition response. In
this remainder of this chapter we study in detail the zero input response of a second-order LTI
system that arises in the study of mechanical vibrations.

1.3 General Solution to Second-Order Homogeneous LTI System

We now focus on the zero input response of the second-order LTI system of Eq. (1-17), i.e., we
focus on the system
Xn + 2CwpXp + wixp =0 (1-26)

Suppose that we guess the solution to Eq. (1-26) as
xp(t) = e (1-27)

where A is constant that has yet to be determined. Differentiating the assumed solution of
Eq. (1-27) twice, we have

xp(t) = AeM (1-28)
Xp(t) = AZeM (1-29)

Substituting the results of Egs. (1-28) and (1-29) into (1-26), we obtain
A%eM 4 2CwyAeM + wZe =0 (1-30)
Then, because e is not zero as a function of time, it can be dropped from Eq. (1-30) to give
A2 4+ 2Cwn + w2 =0 (1-31)

Equation (1-31) is called the characteristic equation whose roots give the behavior of the zero
input response of Eq. (1-17). Using the quadratic formula, the roots of Eq. (1-31) are given as

Al = —Cwy = 40205 — 45 = —Cwp + wny/C2 -1 (1-32)

It can be seen that the types of roots admitted by Eq. (1-31) depend upon the value of €. In
particular, the types of roots are governed by the quantity 2 — 1. We have three cases to
consider: (1) 0<C <1,(2) € =1,and (3) T > 1. We now consider each of these cases in turn.
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Case 1: 0 < € < 1 (Underdamping)

When 0 < € < 1 the zero input response is said to be underdamped. For an underdamped

system the quantity £2 — 1 < 0 which implies that \/Cz -1 = i\/l — C2. The roots of the
characteristic equation for an underdamped system are then given as

A2 = —Cwy = iwny1 — 2 (1-33)

It is seen from Eq. (1-33) that the roots of the characteristic equation for an underdamped
system are complex. Furthermore, the general zero input response for an underdamped system

is given as
xp(t) = e Cwnt [cl cos <wm/1 - C2t> + ¢y sin (wmll - §2t>] (1-34)

Eq. (1-34) can be written as

xp(t) = e Tt (¢; cos wat + ¢ sin wgyt) (1-35)

where the quantity w4 = wy+/1 — T2 is called the damped natural frequency of the system. The
constants ¢; and c» can be solved for by using the initial conditions (x(0),x(0)) = (xo, Xo) as
follows. First, substituting the initial condition x(0) = x, into Eq. (1-35), we obtain c¢; as

xp(0) =x0 =1 (1-36)

Next, differentiating x, (t) in Eq. (1-35), we obtain

Xn(t) = —Cwne 59 (¢y cos wgat + ¢» sin wgyt)
+ e CwWnl (_cy gy sinwgt + cowy cos wyt) (1-37)
Applying the initial condition x (0) = X, we obtain
Xn(0) = X9 = —Cwncy + wyc2 (1-38)
Substituting the result for ¢; from Eq. (1-36) into Eq. (1-38), we obtain
X0 = —X0C Wy + W4C2 (1-39)
Solving for ¢, we have
¢y = X0+ TWnXo (1-40)
Wa
The zero input response for an underdamped system is then given as
xp(t) = e~ Swnt (xo cos wgyt + %f"xo sin wdt) (1-41)

A schematic of the underdamped zero input response for various values of 0 < € < is shown
in Fig. 1-2.
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xXp(t)

t

Figure 1-2  Schematic of the zero input response of an underdamped second-order
linear time-invariant system.

Case 2: € = 1 (Critical Damping)

When € = 1 the zero input response is said to be critically damped. For critically damped

system the quantity £? — 1 = 0 which implies that \/Z2 — 1 = 0. The roots of the characteristic
equation for an underdamped system are then given as

A2 = —Cwy = —wy (1-42)

It is seen from Eq. (1-42) that the roots of the characteristic equation for a critically damped
system are real and repeated (i.e., the two roots are the same). Furthermore, the general zero
input response for a critically damped system is given as

xp(t) = e “nt (¢ + cot) (1-43)

The constants ¢; and ¢, can be solved for by using the initial conditions (x(0), x(0)) = (xq, Xo)
as follows. First, applying the initial condition x(0) = x¢ into Eq. (1-43), we have

xn(0) = x0 = C1 (1-44)
Next, differentiating Eq. (1-43), we obtain
Xn(t) = —wne (1 + cot) + cre~@nt (1-45)
Applying the initial condition x (0) = X, we obtain

xn(0) = xg = —wnc1 + 2 (1-46)
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Substituting the result for ¢; from Eq. (1-44), we have
Xn(0) = X0 = —wWnXxo + C2 (1-47)

Solving Eq. (1-47) for c» gives
Co = X0 + WnXo (1-48)

The zero input response for an critically damped system is then given as
xn(t) = et [xo + (X0 + WnXx0)t] (1-49)

A schematic of a critically damped zero input response is shown in Fig. 1-3.

xp(t)

t

Figure 1-3  Schematic of the zero input response of a critically damped second-order
linear time-invariant system.

Case 3: € > 1 (Overdamping)

When € > 1 the zero input response is said to be overdamped. For an overdamped system the

quantity £2 — 1 > 0 which implies that ,/C2 — 1 > 0. The roots of the characteristic equation for
an underdamped system are then given as

AI,Z = —;(Un + Wy gz -1 (1-50)

It is seen from Eq. (1-50) that the roots of an overdamped system are real and distinct. Further-
more, the general zero input response for an overdamped system is given as

At

xp(t) = creMt + cpelet (1-51)
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The constants ¢; and ¢, can be solved for by using the initial conditions (x(0), x(0)) = (xq, Xo)
as follows. First, applying the initial condition x (0) = x(, we obtain

xp(0) =x0=c1+¢2 (1-52)
Next, differentiating Eq. (1-51) gives
Xn(t) = —c1A1eMb + cpdpe™2t (1-53)
Then, applying the initial condition x (0) = X(, we obtain
Xn(0) = X0 = —C1A1 + C2A2 (1-54)

Equations (1-52) and (1-54) can then be solved simultaneously for ¢; and c; to give

_ X()/\z - )'C() _
= B (1-55)
_ Xo/\1 + X0 _
c = B (1-56)

The general zero input response for an overdamped system is then given as

XO)\Z - 5(0 At n XOAl + 5(0 e“t

/\1 + Az /\1 + 2\2 (1_57)

xp(t) =

A schematic of an overdamped zero input response for various values of ¢ > 1 is shown in
Fig. 1-4.

xn(t)

t

Figure 1-4  Schematic of the zero input response of an overdamped second-order
linear time-invariant system.



Chapter 2

Forced Response of Single
Degree-of-Freedom Systems

2.1 Response of Single Degree-of-Freedom Systems to Nonperiodic In-
puts

2.2 Physics of Impulsive Motion

Recall from dynamics that the principle of impulse and momentum for a particle states that
F="6¢ -"G (2-1)

where VG is the linear momentum of the particle as viewed by an observer in an inertial ref-
erence frame /N'. Suppose now that we consider the following system. A block of mass m is
connected to a linear spring with spring constant K and unstretched length £y and a viscous
linear damper with damping coefficient ¢ as shown in Fig. 2-1. The block is initially at rest
(i.e., its initial velocity is zero) at its static equilibrium position (i.e., the spring is initially un-
stressed) when a horizontal impulse P is applied. We are interested here in determining the
velocity of the block immediately after the application of the impulse P.

g

K
AW )

Q & m «——P

/77777777 777777777777 777777777777777

X

e————>
Yo

Figure 2-1 Block of mass m connected to linear spring and linear damper struck by
horizontal impulse P.

The solution of the above problem is found as follows. First, let F be the ground. Then,
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choose the following coordinate system fixed in F:

Origin at block
when x =0
E. = To the left
E. = Into page
E, = E. X Ey

Then, the position of the block is given in terms of the displacement x as
r = xE, (2-2)

Because {E,E, ,E.} is a fixed basis, the velocity of the block in reference frame ¥ is given as

v= — =xE, = VE, (2-3)

Now because we are going to apply the principle of linear impulse and momentum to this
problem, we do not need the acceleration of the block. Instead, we know that neither the spring
nor the damper can apply an instantaneous impulse. Therefore, the only impulse applied to
the system at t = 0 is that due to P. Consequently, the external impulse acting on the system
att =0is

F=P=PE, (2-4)
Furthermore, the linear momentum of the block the instant before the impulse is applied is
zero (i.e., the block is initially at rest) while the linear momentum of the block the instant after
the impulse is applied is given as

g =mtv = muv'Ey (2-5)

Setting F equal to F G’, we obtain
P=mv =mv(t =07 (2-6)
Solving for v (t = 07), we obtain A
p

v(t=0") = m (2-7)

The result of this analysis shows that the response of a resting second-order linear system to
an impulsive force F is equivalent to giving the system the initial velocity shown in Eq. (2-7).

2.3 Impulse Response of Second-Order Linear System

Suppose now that we consider the general motion of the system in Fig. 2-1, i.e., we consider
motion to a general force F(t). Then, recalling the result from earlier, the differential equation
of motion is given as

mx +cx + Kx = F(t) + K¥, (2-8)

It is noted that the equilibrium point of the system in Eq. (2-8) is x.; = o, we can define the
variable y = x — x4 and rewrite Eq. (2-8) in terms of y to give

my +cy +Ky =F(t) (2-9)
Now suppose that F(t) is the following function:
F(t) = F&(t) (2-10)
where 6(t) is defined as follows:

6(t—a)={80 : i;i 2-11)
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The function 6(t) is called the Dirac delta function or the unit impulse function. It is known
that the Dirac delta function satisfies the following properties:

Jw ot —a)dt =1 (2-12)

Jjo St —a)dt = f(a) (2-13)

where f(t) is an arbitrary function. For simplicity, consider the case where F =1, i.e., the case
of unit impulse being applied to the system. Also, let g(t) be the response to the input 6(t),
i.e., consider the system

mg+cg+Kg=96(t) (2-14)
Let T be a value of t such that T > 0. Then, integrating Eq. (2-14) from zero to T, we have
T T
J [mg+cg'+Kg]dt:J S(t)dt (2-15)
0 0
Now we have the following
T
J mgdt = mg(t)|] (2-16)
0
T
J cgdt = mg)} (2-17)
0

Taking the limit as T — 0 from above, we obtain

lim mg(t)|y = lim m[g(T)] - g(0)] =mg(0*) (2-18)
. T _ . _ _ _
Jim mg(t) o = lim m[g(T)-g(0)] =0 (2-19)

Furthermore, because the position of the mass cannot change during the application of an
instantaneous impulse, we see that

T
. s T _ T _ _
Tllr(r)1+ L Kg(t)dt = Thf(r)ﬂ Kg(0)t |y Th_rgKg(O) 0 (2-20)

Using the results of Egs. (2-18), (2-19) and (2-20) in Eqg. (2-15), we obtain
mg(0*) =1 (2-21)

Solving Eq. (2-21) for g(0*), we obtain
1
N .
g(0") = (2-22)

It is seen that, for the case where P = 1, the results of Eq. (2-7) and Eq. (2-22) are identical. More
specifically, as we saw above, the effect of a unit impulsive force on a resting particle of mass
m is to provide an initial velocity of magnitude 1/m while the response of a second-order linear
system to a unit impulse function (i.e., the Dirac delta function) is to provide an initial velocity
of magnitude 1/m. Consequently, the physics of an impulsive force on a resting particle is
identical to the mathematics of the impulse response of the system to a unit impulse.

Now that we know that the response of a second-order resting system is to change the
velocity (while leaving position unchanged), we can use this fact to obtain the impulse response
g(t). In particular, assuming an underdamped system, we know that the general form of the
free response is given as

g(t) = e 5@nt(Acos wyt + Bsinwgt) (2-23)
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where w, = +k/m is the natural frequency, € is the damping ratio, and wy = wy/1 — 2 is
the damped natural frequency. Differentiating this last equation, we have

g(t) = —Cwne E9n (A cos wyt + Bsinwyt) + e 59t (—Awy sin wat + Bwg cos wgt) (2-24)
Noting that g(0) = 0 and that g(0*) = 1/m, we have
A =0 (2-25)

! (2-26)
mawgy

B =

Therefore, the response of the system to a unit impulse at t = 0 is given as
1 —Cwnt o
e ntsinwgt , t>0
t) =4 Mwa 2-27
g { ; oo (2-27)

It is seen that, for an underdamped system, the impulse response is a decaying sinusoid with
a zero phase (i.e., the applied impulse did not result in a nonzero phase shift). A schematic of
the impulse response is shown in Fig. 2-2.

g(t)

| /\/\Af
o

t

Figure 2-2  Schematic of Impulse Response of Underdamped Second-Order Linear
System.

2.4 Step Response of Second-Order Linear System

After the unit impulse function, the next fundamental function of importance in the analysis
of vibratory systems is the unit step function. The unit step function, denoted 1(t), is defined
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as

u(t—a)={(1) : iig (2-28)

Recalling the unit impulse function 6 (t) from Eq. (2-11), it is seen that u(t) is related to 6(t)
as follows:

t
u(lt—a) = J o(T—a)dr (2-29)

where T is a dummy variable of integration. Now suppose we want to determine the response,
s(t), of the system of Eq. (2-9) to a unit step input at £ = 0. The function s(t) is called the step
response and, from Eq. (2-9), satisfies

ms +cs + Ks =u(t) (2-30)
It is noted that Eq. (2-30) can be written as

d?s ds
mW-l-Ca +Ks =u(t) (2-31)
We can obtain s(t) as follows. Consider again the relationship that holds between the unit
impulse and the impulse response, i.e.,

mg+cg+Kg =5(t) (2-32)
Then, from Eq. (2-29), we have
du(t —a) _
i =6(t—a) (2-33)
Therefore, for a unit step function at t = 0, we have
mg +cg+Kg = ‘% (2-34)

Integrating both sides of Eq. (2-34) gives

t 2 t
L |:0ding+CZ€ +Kg} dr=| dz;a)da:u(t) (2-35)
Now from the fundamental theorem of calculus we have
t d2
=2 - i J g(v)dr (2-36)
td
Therefore, Eq. (2-35) can be rewritten as
dZ
[d'rz + Cir +K} J gmdt =u(t) = J o(t)ydr (2-38)

Now if we compare Eq. (2-38) to Eq. (2-31), it is seen that

t
s(t) = Jl g(mdr (2-39)

In other words, the response of the system of Eq. (2-9) to a unit step function is the integral of
the response of the system to a unit impulse!. We can then use the result of Eq. (2-39) and the

IMore generally, it is the case that the response of any linear time-invariant system to the integral of a
function f(t) is equal to the integral of the response to the original function f(t).
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impulse response given in Eq. (2-27) as follows. First, for t < 0 we have s(t) = 0. For t > 0, we
have

t t
1
s(t) = J —— e fOnT gin wyTdT = J e SonT gin wyTdT (2-40)
0o mw mwg Jo
Now from DeMoivre’s theorem we have
iwgT _ p-iwgT
sinwyT = S8 (2-41)
21
Therefore,
t
s(t) = #J e twnT [ei‘“dT - e‘i‘”dT]
2imwyg Jo

t
_ 1 J [e—(Ewn—iwd)T _ e—(Cwn+iwd)T]
2imwyg Jo

1 o~ (Cwn—iwg)T . o~ Cwn+iwg)T ]!
Cwy —iwg Cwy +iwg

" 2imwy . (2-42)

_ e*gwn‘l’ t

C 2imwg | Cwy —iwg  Cwn + iwy |,

e T | (Twp + iwg)e'®dT — (Twp — iwg)e T '
2imwy C2wh + w3 0

eiwd‘r efiwd‘r

Now, noting that wy = wy+/1 — T2, we have

1 . ; . . t
s(t) = —5———— [ (Ceop + iwa)e” COr~ 0T — (Tew,, — iwg)e™ ContivaT|
2imwgwy 0
1 ) )
_ : _ ,—(Cwn—-iwg)t\ _ s _ ,—(Cwn+iwg)t
= Sl [(Cwn +iwa) (1-e ) — (Cwn — iwa) (1-e 1]
1 ) ) ) )
_ : _ ,—Cwnt iwgt _ ,—iwgt : iwgt —iwgt
= Yimegol [2wud e {zjwn (e at — g7Wa ) + 1wy (e at 4 g7'Wd )H
1 eiwdt _ e’iwdt eiwdt + e’iwdt
_ ~Cwnt S
= wyg—e w - + W
mwyws [ 4 <§ " 2i 4 2 )]
(2-43)
Now we have ot ot
twgq + —lwg
% = Ccoswgyt (2-44)
Using Eq. (2-44) together with Eq. (2-41), we have
1 —Cwnt ;
s(t) = p—— [wd—e n (Cwnsmwdt+wdcoswdt)]
. aton ‘o (2-45)
= : [1 — ¢ Cwnt (COS wgt + 21 sinwﬂ)]
mawn waq

It is noted that the expression in Eq. (2-45) is valid when t > 0. Therefore, the response of the
system of Eq. (2-9) to a unit step function is given as

0 , t=<0
s(t) = { #wﬁ [1 — e~Gwnt (cos wgat + %"—;‘ sinwdt)] , >0 (2-46)
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2.5 Response of Single Degree-of-Freedom Systems to Periodic Inputs

Recall the standard form of the differential equation that describes the motion of a damped
single degree-of-freedom system subject from Eq. (1-17) as

X 420X + wix = p(t) (2-47)
Suppose now that p(t) has the general form
p(t) = wif(t) (2-48)
Then Eq. (2-47) can be written as
%+ 2CwnX + wix = w2 f(t) (2-49)
Suppose further that f(t) is a periodic function of the form f(t) = Ae'®!. We then have
X+ 2CwaX + wix = w2 Ael®! (2-50)

The function f(t) = Aei®! will be called the normalized input function.

2.5.1 General Solution to Second-Order Linear Differential Equation

It is known that the general solution to Eq. (2-50) is the sum of the homogeneous and particular
solutions, i.e.,
x(t) = xp(t) + xp (1) (2-51)

where xj, (t) satisfies the equation
X +2CwpX + wix =0 (2-52)

and x, (t) is the particular solution that satisfies Eq. (2-50). In this analysis we are interested
in determining the particular solution of Eq. (2-50).

2.5.2 Particular Solution to Complex Periodic Input

Suppose now that we want to determine the particular solution to Eq. (2-50). Given that the
input F(t) = w2 f(t) = w3 Ae™®! is an exponential with exponent iwt, the particular solution
will itself have the form

Xp(t) = X(w)e®! (2-53)

where we note that the coefficient X is a function of the input frequency w. Differentiating
Xp (1) in Eq. (2-53), we obtain

Xp(t) = iwXe™! (2-54)
X,(t) = -—w?Xe®t (2-55)

Substituting x, (t), X, (t), and X, (t) from Egs. (2-53)-(2-55), respectively, into Eq. (2-50), we
have
—w2Xe™! + i2Cw,wXe®! + w? Xel®! = w? Ael®t (2-56)

Rearranging Eq. (2-56) gives
Xelwt [(wi —w?) + iZCwnw] = w2 Aei®t (2-57)
Observing that e'®! is not zero as a function of time, it can be dropped from Eq. (2-57) to give

[(w2 - w?) +i2Cwnw]| = wiA (2-58)
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Rearranging Eq. (2-58), we obtain

X(w) _ Wy

2-59
A w7 — w2 + 2Cw,w ( )
Suppose now that we let
. X(w) w?

G = = 2-60
(iw) A ws — w2 + 2Cw,w ( )

Finally, we can divide the numerator and denominator of Eq. (2-60) by w? to obtain
Gliw) = @) _ ! (2-61)

2
AL (ﬂ) Lig &
Wy Wy
The quantity G(iw) is called the transfer function of the system to the input Ae'®!, It is seen
that the transfer function is the ratio of the amplitude of the output to the amplitude of the
input. It is seen that the transfer function of the system of Eq. (2-50) is a function of the
frequency, w, of the input F(t) = w?Aeiw!
Now since the transfer function G(iw) is complex, it can be written as

G(iw) = x+if (2-62)
where

x = Re[G(iw)] (2-63)

B = Im[G(iw)] (2-64)

where Re[-] and Im[-] are the real and imaginary parts of G. From complex analysis, we know
that any complex number can be written as

z=a+iB =|zle® (2-65)

where
2l = VzZ=Jo2+p? (2-66)
¢ = tan! (%f) (2-67)

and Z = « — if is the complex conjugate of z. It is noted in Eq. (2-66) that Z is the complex
conjugate of z (i.e., Z = « — if) and the negative sign in Eq. (2-67) is associated with the
numerator. Using the result of Eq. (2-65), we can write G(iw) as

Gliw) = |G(iw) e 1P@) (2-68)
where

IGiw)| = +G(iw)G(iw) (2-69)

. —Im[G(iw)] )
@) = RelGlw)] (2-70)

Returning to the particular solution x, (t), we note that

Xp(t) = Xe'' = AG(iw)e'™" = A|G(iw)|e!@=P (2-71)
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2.5.3 Response of Second-Order System to Sine and Cosine Inputs

In section 2.5.2 we obtained the response of the second-order system of Eq. (2-47) to a complex
periodic input of the form p(t) = w?Aei®!. However, actual physical systems are real, not
complex. Consequently, it would never actually be the case that the input to a physical system
would be complex.

A question that arises from the fact that only a real function would be an input to a physical
system is, what is the particular solution of the system Eq. (2-47) to a real periodic input? This
question is answered as follows. We know that the two fundamental periodic functions are
cos wt and sin wt. Using the normalization Aw?, the real question being asked is, what are
the particular solutions of Eq. (2-47) to the inputs Aw? cos wt and Aw? sin wt? We can obtain
these two particular solutions as follows. First, from Eq. (2-71) we know from De’Moivre’s
theorem that

el @Wi=®) — cos(wt — ) + isin(wt — ¢p) (2-72)

Therefore, the particular solution x, (¢) in Eq. (2-71) can be written as Aw?e®! can be written
as
X, (1) = Xe'®! = AG(iw)e'™! = A|G(iw)| cos(wt — ¢) +iA|G(iw)|sin(wt — p)  (2-73)
Expanding Eq. (2-73), we obtain
Xp(t) = Xel®t = A|G(iw)| cos(wt — @) +iA|G(iw) | sin(wt — ¢) (2-74)

Now, by the principle of superposition we know that the particular solution of Eq. (2-47) to
the sum of two inputs pi(t) + p2(t) is the sum of the responses, i.e., if x;(t) is the particular
solution to the input p;(t) and x(t) is the particular solution to the input p»(t), then x; (t) +
x> (t) is the particular solution to the input p; () + p2(t). Now suppose we rewrite the general
complex input Aw?ei®! as

Aw?Z et = Aw? cos wt + iAw? sinwt = £, (t) + ifi(t) (2-75)

where
frt) = Aw?coswt (2-76)
fitt) = Aw?sinwt (2-77)

Now observe that f,(t) and fi(t) are the real and imaginary parts of Aw2ei®!, respectively.
Furthermore, observe from Eq. (2-73) that A|G(iw)|cos(wt — ¢) and A|G(iw)]| sin(wt — ¢)
are the real and complex parts, respectively, of the response x,(t) to Aw? et Then, by the
principle of superposition we know that the response of Eq. (2-47) to f;(t) must be the real
part of x,(t) in Eq. (2-73), i.e.,

xr(t) = Re JA|G(iw) e} = A|G(iw)| cos(wt — ) (2-78)
Similarly, the response of Eq. (2-47) to fi(t) is the imaginary part of x, (t) in Eq. (2-73), i.e,,

xi(t) = Im {A[G(iw) "] = A|G(iw) | sin(wt - ) (2-79)

2.5.4 Frequency Response to Periodic Input

We now turn to a more detailed analysis of the response of the system of Eq. (2-50) to a
periodic input. In particular, we are interested in the amplitude and phase of the output as a
function of input frequency. Generally speaking, the amplitude is determined as the ratio of the
output amplitude to the input amplitude. Recall that the transfer function G(iw) was defined
as G(iw) = X(w)/A where X(w) is the output amplitude (i.e., the amplitude of the particular
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solution) and A is the input amplitude of the normalized input function f(t) = Ae‘®!. The
frequency response to a periodic input is defined as the combination of the magnitude and
phase of the ratio of the output to the input. Recall the magnitude and phase of G(iw) from

Egs. (2-69) and (2-70). Furthermore, recall from Eq. (2-61) that
X(w) 1

A 2
1- (ﬂ> +i20 =
Wy Wy

G(iw) =

Then the magnitude of G(iw) is given as

(2-80)

1/2

G(iw)| = [G(iw)G(iw)]"* =

where

Eq. (2-81) can be simplified to give

IG(iw)| =

([-(2)] 2T}

Next, the phase of G(iw) can be obtained as follows. First, we know that

Gliw) 1G(iw)|?
Gliw)  G(iw)

G(iw) = G(iw)
Substituting |G (iw)| and G (iw) from Egs. (2-61) and (2-82), we obtain
2
w w
1-(—) —i2zg—
() —eea,
272 2
[1 B (g) } . [ch]
Wy Wy
Extracting the real and imaginary parts of G(iw) from Eq. (2-85), we have

()

G(iw) =

T ey ey
o @

Im[G(iw)] = — - 2_2‘*’” "

(o) | +2ga]

The phase is then obtained as

r &
¢(w) = tan Re[CGw)] = tan 1_(w >2
Wn

Wn

(2-81)

(2-82)

(2-83)

(2-84)

(2-85)

(2-86)

(2-87)

(2-88)
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5]

—oLoo

Figure 2-3  Magnitude of Frequency Response of a Single Degree-of-Freedom Linear
System to an Input f(t) = Aei®t,

The magnitude and phase of G(iw) are shown in Figs. 2-3 and 2-4, respectively, for various
values of the damping ratio €. It is seen from Fig. 2-3 that the amplitude of the response
approaches o~ as C — 0, i.e,,

lgir% |G(iw)]| = o (2-89)

In general, it can be shown that the maximum value of |G (iw)| is given as
B S
2C\/1 -C?

Furthermore, it is seen that as ¢ approaches zero, the value at which |G(iw)| is maximum
approaches unity, i.e.,

|G(iw)|max = (2—90)

lgin(l)argmaXIG(iw)I =1 (2-91)

Turning attention to the phase of G(iw) (i.e., ¢ (w)), it is seen that all of the curves pass
through the point w/w, = 1 and ¢ = 17/2. Furthermore, it is seen that ¢ approaches zero and
o0 as w/wy, approaches zero and w/w, approaches o, respectively, i.e.,

w/hi)mq d(w) = 0 (2-92)
w/gmﬁ Plw) = 1 (2-93)

It is noted that, for the special case of € = 0, the phase has a discontinuity at w/w, = 1 (this
is not shown in Fig. 2-4). Finally, for the case where € = 0 and w/w, = 1 the system is at
resonance with a phase angle of /2.
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Figure 2-4  Phase of Frequency Response of a Single Degree-of-Freedom Linear Sys-
tem to an Input f(t) = Ael®t,
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2.5.5 Transfer Functions of Second-Order System to Sine and Cosine Inputs

In section 2.5.4 the transfer function of the second-order differential equation given in Eq. (2-47)
to the input Aw?ei®! was derived. In this section we determine the transfer functions of
Eq. (2-47) to the inputs Aw2 cos wt and Aw? sinwt. First, the response of Eq. (2-47) to the
input Aw? cos wt is given from Eq. (2-78) as

x,(t) = A|G(iw)]| cos(wt — ¢p) (2-94)
Now we know that x, (t) can be written as
X, (t) = Xy cos(wt — B) (2-95)

where X, and S are the amplitude and phase, respectively, of x, (t). Comparing Eq. (2-94) and
(2-95) it is seen that

X, = AlG(iw)| (2-96)
B = ¢ (2-97)

Therefore, the magnitude and phase of x,(t) is the same as the magnitude and phase x, ()
where x,(t) is given from Eq. (2-71). Now because a complex number is defined completely
from its magnitude and phase, we have

Gr(iw) = G(iw) (2-98)

In other words, the transfer function of that the Aw? cos wt is identical to the transfer function
of Eq. (2-98) to the input Aw?Ze'®t, Next, the response of Eq. (2-47) to the input Aw? sin wt is
given from Eq. (2-79) as

xi(t) = A|G(iw)|sin(wt — ¢) (2-99)

Now we know that x;(t) can be written as
xi(t) = Xjsin(wt —y) (2-100)

where X; and y are the amplitude and phase, respectively, of x;(t). Comparing Eq. (2-99) and
(2-100) it is seen that

X; AlG(iw)] (2-101)
y = ¢ (2-102)

Therefore, the magnitude and phase of x;(t) is the same as the magnitude and phase x, ()
where x, (t) is given from Eq. (2-71). Again, because a complex number is defined completely
from its magnitude and phase, we have

Gi(iw) = G(iw) (2-103)

In other words, the transfer functjon of that the Aw? sin wt is identical to the transfer function
of Eq. (2-103) to the input Aw?2ei®t.

2.5.6 Comments on Complex Periodic Input vs. Real Periodic Input

The results of section 2.5.5 demonstrate an important fact. The transfer function (i.e., the
magnitude and phase of the output x(t) over the input p(t) where p(t) is a periodic function
of time) to the input Aw?2e®! is the same as the transfer function to the inputs Aw? cos wt
and Aw? sin wt. The reason the transfer function is the same regardless of whether complex
or real periodic inputs are used is because the responses to Aw? cos wt and Aw? sin wt have
the same magnitude and phase as does the response to Aw2e®!. This was the reason that
we studied the response to the complex periodic input in the first place. Therefore, it is not
necessary to analyze the response to the sine and cosine functions separately; they can be
combined into a single analysis using a complex periodic input.
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Example 2-1

A collar of mass m slides without friction along a circular arc portion of a rigid massless
structure as shown in Fig. 2-5. The structure consists of two arms, one oriented horizontally
and the other oriented at a constant angle « from the downward direction. The entire structure,
centered at point Q, translates with known horizontal displacement g(t) along a rod, where g
is measured from a track-fixed point O. A collar of mass m slides along the arc of the structure
circular part of the structure. The position of the collar relative to the structure is measured
by the angle 6, where 0 is measured from the downward direction. Attached to the collar is
a curvilinear spring with spring constant K and unstretched length £, = Rx. Also, a viscous
friction force with viscous friction coefficient ¢ is exerted by the circular arc on the collar. The
spring and friction forces are given, respectively, as

F, = —-KW{—-4¥ye;
Ff = —CVre]

where e, is the tangent vector to the track at the location of the collar and vy is the velocity of
the collar relative to the track. Assuming no gravity, determine (a) the differential equation of
motion; (b) the static equilibrium value 8., for the system; (c) the differential equation of motion
relative to the static equilibrium point found in (b); (d) the standard form of the differential
equation obtained in part (c); (e) the transfer function for ®/Q where © is the amplitude of the
output(.e., the amplitude of 0) q(t) = (QK/w?)el®t; (f) the time response of the system to the
sinusoidal input g given in part (e).

a(t) . .
I > Viscous Friction, ¢

Figure 2-5 Collar of mass m moving on circular part of a structure, where the
structure slides with horizontal displacement g(t).

Solution to Example 2-1

(a) Differential Equation of Motion
Kinematics

Let ‘F be fixed to the track. Then choose the following coordinate system fixed in F:

Origin at Q wheng =0
Ex = to the right
E. = out of page
E, = E. x Eyx
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Next, let A be fixed to the structure. Then choose the following coordinate system fixed in A:

Origin at Q
ey = to the right
e, = out of page
e, = e, X ex

Finally, let B be fixed to the direction Qm. Then choose the following coordinate system fixed
in B:

Origin at Q
e, = along Qm
e, = out of page
ey = e, xe,

Then the position of point Q is given as
rg = qEx = qex (2-104)
Furthermore, the position of the collar relative to point Q is given as
I'm/q = Re, (2-105)
Then the position of the collar is obtained as
I=TIyu =Yg +Im/Q = qex + Re, (2-106)
Next, the angular velocity of reference frame B in reference frame F is
Tw?® = fe; (2-107)
Now the velocity and acceleration of point Q in reference frame F are

Fvg = qex (2-108)
Fag = dey (2-109)

The velocity of the collar relative to point Q in reference frame F is obtained from the transport
theorem as

ra 3a
FVmiq = T (tmsq) = o (tmiq) + Fw® X1/ (2-110)
where
2a
¢ (tma) =0 (2-111)
Fw® xrmiq = 0Oe,xRe, = Rley (2-112)
Consequently, .
Fmq = ROeg (2-113)

The acceleration of the collar relative to point Q in reference frame F is obtained from the
transport theorem as

, Fa . Ba ..
fam/Q = at (fam/Q) = ar (fVm/Q) +Tw® x fVm/Q (2-114)
where
Bd .
= (fvm/Q) — Rley (2-115)

Tw® xIvyq = 0Oe,xROey = —RO%e, (2-116)
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Consequently, ) .
Famiq = —RO%e, + ROey

Finally, the acceleration of the collar in reference frame 7 is

Ta=7ag + Tamq = Gex — RO%e, + Rbeg

Kinetics

The free body diagram of the collar is shown in Fig. 2-6.

Figure 2-6  Free body diagram for Example 2-1.

Now the forces acting on the particle are

N = Reaction force of track on collar
F; = Force of curvilinear spring
Fy = Force of viscous friction

Resolving these forces, we have

N = Ne,
By = *K(‘g 790)et
Fr = —cvia
Now

e = €p

{ = R(x+0)

#0 = R«

Via = Fv- fVQ = fVm/Q = R0ey

Then the spring and friction forces are given as

F; —K(R(x+ 0) —Rx)eg = —KROey
F, = —CRéee

The resultant force acting on the particle is then given as
F=N+F; +F; = Ne, - KROeg — cROey
Applying Newton’s second law, we obtain
Ne, — KROey — cROey = m(jex — RO%e, + ROey) = mie, — mRO%e, + mROey
Now it is convenient to substitute e, in terms of e, and ey as

e, =sinfe, + cosOey

(2-117)

(2-118)

(2-119)
(2-120)
(2-121)

(2-122)
(2-123)
(2-124)
(2-125)

(2-126)
(2-127)

(2-128)

(2-129)

(2-130)
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Therefore,
Ne, — (KRO + cRO)ey = mie, — mRO%e, + mROey

= md(sinOe, + cosOeg) — mRO%e, + mROey

. . (2-131)
= mdgsinfe, + mdcosOeys — mRO%e, + mROey
= (mgsin® — mRO?)e, + (mdcosO + +mR0O)egy
Setting the e,, and ey components equal, we obtain
N = mgsin® — mRO? (2-132)
—(KRO +cRO) = midcosO + +mR0O (2-133)

It is seen that the second of these equation is the differential equation of motion. Rearranging,
we obtain ) )
MRO + cRO + KRO = —md cosO (2-134)

(b) Static Equilibrium Point

Let 6,4 be the static equilibrium value of 6. Setting Qeq, 0.4, and g (t) equal to zero, we see that
the static equilibrium point is given as

KROey =0 (2-135)
Equation (2-135) implies that
Ooq = 0 (2-136)
(c) Differential Equation Linearized Relative to 6.,

It is seen that it is not necessary to change 0 and 0 because the static equilibrium point is
0.q = 0. Now the linearized value of cos is

cosO =~ 1 (2-137)
for values of 0 near zero. Therefore, the linearized differential equation for values of 6 near
Oeq is

MRO + cRO + KRO = —mg (2-138)
(d) Standard Form of Differential Equation

Dividing the linearized differential equation by mR, we obtain

b+ Cos Kp__d (2-139)
m m R
(e) Transfer Function for Input q(t) = QKe®! /w?
Differentiating q(t), we obtain
q(t) = iQKe™'/w (2-140)
4ty = -QKe™* (2-141)
Then the differential equation is
a) i A £ _ % iwt _ QL(U% iwt _ Q7m 2 jiwt _
9+m0+m97 Re = R e = ane (2-142)
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where, because w? = K/m, we have K = mw?. Now let

_Qm _
A= = (2-143)
Furthermore, let ‘
O(t) = @e'! (2-144)
which implies
0 = iwBel™! (2-145)
0 = -—-w’@e®t (2-146)
Therefore,
Qei®t [—wz +i2Cwpw + wi] = Aw?eiwt (2-147)
Therefore,
¢} w?
— = 2-148
A wih-w?+i2Cwaw ( )
which implies that
0 8‘0% m w? m 1 (2-149)
- 2 B . - 5 2 - B = 5 2 -
Q wp—-w?2+i2Cwuw R wj — w? +i2Cww Rl_(u%) +i2Cu%
Consequently,
% - 26(iw) (2-150)
where "
G(iw) = 5 (2-151)
1- (&) +i2g e
(f) Time Response to Input Given in Part (e)
The time response for the standard system
X +2CwpX + wix = Aw?e'! (2-152)
is given as '
x(t) = AlG(iw)|e!@t=P) (2-153)
where |G(iw)| and ¢ are the magnitude and phase of G(iw). Now our input amplitude is
Qm
A=— 2-154
R (2-154)
Therefore, the time response for this problem is
o(t) = Qle\G(iw)le”“’t"i’) (2-155)
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Example 2-2

A collar of mass m slides along an inertially fixed circular track of radius R as shown in Fig. 2-
7. Attached to the collar is a curvilinear spring with spring constant K and unstretched length
{o = ROy. The position of the collar on the track is measured by the angle 0, where 0 is
measured from the inertially fixed downward direction. Furthermore, the contact between the
track and the collar creates a viscous friction force with friction coefficient c. The forces exerted
by the curvilinear spring and the viscous damper are given, respectively, as

F, -K( - ty)e;
F, = —CVrel

where e; is the tangent vector to the track at the location of the collar and v, is the velocity
of the collar relative to the track. Finally, attached to the other end of the spring is a massless
collar that moves with specified displacement described the angle ¢ (t), where, like 0, ¢ is also
measured from inertially fixed downward direction. Assuming no gravity, determine (a) the
differential equation of motion; (b) the value 0., for which the system is in static equilibrium;
(c) the differential equation of motion relative to the static equilibrium found in part (b); (d)
the standard form of the differential equation obtained in part (d); (e) the natural frequency,
damping ratio, and damped natural frequency of the system (assuming that the system is
underdamped); (f) the transfer function &/P where & is the amplitude of the output of x(t)
and ¢(t) = PK sin wt; (g) the time response of the system to the sinusoidal input ¢ given in
part (f).

Viscous Friction, ¢

Figure 2-7  Collar sliding on fixed circular track attached to a linear spring with
moving attachment point and viscous friction.
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Solution to Example 2-2

(a) Differential Equation of Motion
Kinematics

Let ‘F be fixed to the circular track. Then choose the following coordinate system fixed in F:

Origin at O
E. = along Om when 6 = 0
E. = out of page
E, = E. x Ey

Next, let A be fixed to the direction Om. Then choose the following coordinate system fixed in
A:

Origin at O
e, = along Om
e, = out of page
e, = e, xe,

Then the position of the collar is given as
r = Re, (2-156)

which implies that
For Far B Adr

= = = 2 4 F _
V= o dt+ w” Xr (2-157)
where Fw? = Oe,. Now we have
A
dr
e 0 (2-158)
Fw?r xr = 0Oe,xRe, = Rley (2-159)
which implies that .
Fv = ROey (2-160)
The acceleration of the collar as viewed by an observer fixed to the track is then given as
F A
-d a ;
Fa= 2 (Fy) = Z (5 FuyAr x T _
a= dt<v>_dt(v)+w xXIv (2-161)
Now we have
Ad = }
o (Fv) = Roey (2-162)
Fw? xTv = 0Oe, x ROeg = —RO%e, (2-163)
which implies that N )
Fa = —R0%e, + Rley (2-164)

Kinetics
From the free body diagram, the following forces act on the collar:

N = Reaction force of track
F; = Force of curvilinear spring
Fy Force of viscous friction
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Now we have

N = Ne, (2-165)
F, = —-K({-4{)e (2-166)
Ff = —CVia (2-167)

Using the fact that e; = eg and that the surface is absolutely fixed, we obtain v, = 7v. Conse-
quently,

N = Ne, (2-168)
F, = —-KW{—-4yep (2-169)
Fr = —cROey (2-170)
Finally, we know that
£ =R(0 - ) (2-171)
and that £y = RO, which implies
F; = —K(R(0 — ¢) — ROp)eg = —KR(6 — p — Op)eq (2-172)
The resultant force acting on the collar is then obtained as
F = Ne, — KR(0 — ¢ — 0y)eg — cROey (2-173)
Applying Newton’s second law to the collar, we obtain
Ne, — KR(0 — ¢ — 0g)eo — cROey = m [—RO%e, + Rley | (2-174)
which yields the following two scalar equations:
-mRO> = N (2-175)
mRO = —KR(O0—- ¢ —0p) —cRO (2-176)

It is seen that the second of these last two equations has no unknown reaction forces and, thus,
is the differential equation. Rearranging this equation, we obtain

mRO + cRO + KRO = KRO + KR¢p (2-177)
Dropping the common factor of R gives

mo +cO+KO=K0+Ko (2-178)

(b) Static Equilibrium Point

Let 0,4 be the static equilibrium point. Then we have 0,, = 0., = 0. Also, setting ¢ = 0, we
obtain
K0eq = K0y (2-179)

which implies
Ocq = 6o (2-180)
(c) Differential Equation Relative to Equilibrium Point
Let & = 6 — Oy. Then & = 6 and & = 6 which implies that
ma+cx+ K(x+ 0p) = KOy + K¢p (2-181)
Simplifying this last equation gives

m&+ck+Kx =Ko (2-182)
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(d) Standard Form of Differential Equation
Dividing the last differential equation by m gives
&+ i(5( + Eo( = 5(1)
m m m
(e) Natural Frequency, Damping Ratio, and Damped Natural Frequency

The natural frequency is given as

wy =+VK/m
The damping ratio is found by solving
c
ZCwn = %

which implies that the damping ratio is given as
c c

6= 2mw,  2vmK

The damped natural frequency is given as
wg =+1-C%wy

where € and w,, are as computed above.

(f) Transfer Function for Periodic Input ¢ (t) = PK sin wt

(2-183)

(2-184)

(2-185)

(2-186)

(2-187)

We know that the transfer function for an input of the form sin wt is the same as the transfer
function for an input e*®t. Therefore, for this part of the problem let ¢(t) = PKe'®t, Also, let

x(t) = xel®!
Then

&(t) = iwbarne®t
&(t) = —w’baroxe’®!

Substituting into the differential equation, we obtain
~plwt 2 g 2 K iwt 2 ,iwt
xe [—w +i2Cwnw + wn] = %PKe = PKwyje
Now let

A =PK

Then,
xelwt [w2 —w?+i2Cw w] = Aw? et
n n = n
Rearranging gives

2 1
e - : - Gliw)
win — w? + 20wy, w 1_(&) +i2CL
wn Wn

2| R

Therefore,
& A )
= Zf = KG(l(U)

N R

(2-188)

(2-189)
(2-190)

(2-191)

(2-192)

(2-193)

(2-194)

(2-195)
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(g) Time Response to ¢ (t) = AK sin wt

We know that the time response to the standard system

X +2CwnX + wix = Aw?e'®t (2-196)
is given as '
x(t) = AlG(iw) el @t=® (2-197)
Now in our case we have
A =PK (2-198)
which implies that '
a(t) = PK|G(iw) el @ =#) (2-199)

Therefore, the response of the system to the input AK sin wt is the imaginary part of x(t), i.e.,
oy (t) =Im[x(t)] = PK|G(iw)]| sin(wt — ¢p) (2-200)

Example 2-3

A massless cart moves horizontally along the ground with a known displacement g (t), where g
is measured from a point O fixed to the ground as shown in Fig. 2-8. A block of mass m slides
along the surface of the cart. Attached to the block are a linear spring with spring constant
K and unstretched length £, and a viscous damper with damping coefficient c. The spring
and damper are attached at point Q, where Q is located on the vertical support of the cart.
Knowing that x describes the displacement of the block relative to the cart and that gravity
acts downward, determine (a)the differential equation of motion for the system; (b) (b) the
static equilibrium value x,, for the differential equation given in part (a); (c) the differential
equation of motion relative to the static equilibrium found in part (b); (d) the standard form
of the differential equation obtained in part (c); (e) the natural frequency, damping ratio, and
damped natural frequency of the system in terms of the parameters K and ¢ (assuming that
the system is underdamped); (f) the transfer function associated with the ratio of the amplitude
Y /Q where Y is the amplitude of the output y(t) and q(t) = QKe®; (g) the time response,
denoted z(t), of the system to the periodic input q(t) = QK(cosawt).

7/

Figure 2-8 Block sliding on horizontally moving cart with linear spring and viscous
damper.
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Solution to Example 2-3

(a) Differential Equation of Motion
Kinematics

Let F be fixed to the ground. Then choose the following coordinate system fixed in reference
frame F:

Origin at O
E. = to the right
E, = into page
E, = 185 X 18,

Next, A be fixed to the block. Then choose the following coordinate system fixed in reference
frame A:

Origin at Q
€y = along Qm
e, = E.
e, = e, X ey

Now, because the block is in pure translation, the position of the support Q is given as
ro = qEx (2-201)
Next, the position of the block relative to the upper support is given as
I'p;Q = Xex (2-202)
Therefore, the position of the block relative to the ground is obtained as
r=rp=rg +rpg =qEx + xey = (q + x)ey (2-203)

where we note that E, = e,. Then the velocity and acceleration of the block in reference frame
F are given as block are given, respectively, as
Tv
Ta

(g +x)ex (2-204)
(4 +x)ex (2-205)

Kinetics

The free body diagram of the block is shown in Fig. 2-9.

TN
lmg

Figure 2-9  Free body diagram for block sliding on horizontally moving cart with
linear spring and viscous damper.

F;
<_
Fgq

where
F; = Force exerted by spring
F; = Force exerted by damper
mg = Force of gravity

N = Reaction force of cart on block
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Now we have

F;, = —-K({-{p)u; (2-206)
Fi = —cVia (2-207)
mg = -mge, (2-208)
N = Ne, (2-209)

Observing that the spring is attached at point Q, we have
r-rqo = gEx+xex—qEy = Xxey (2-210)
H = lr—roll = x (2-211)
u, = ﬁ = XTG" — e, (2-212)
(2-213)

Therefore,

F, = —K(x —¥y)ey (2-214)

Next, the relative velocity vye is computed as
via = v = Fvg = (g + X)ex — dex = %o, (2-215)
where it is noted that 7vy = gE, = gey. Therefore, the force of the damper is given as
Fi = —Cvie = —CX€y (2-216)
The resultant force acting on the particle is then given as
F=F; ++F; + mg+N = —K(x — {y)ex — cxe, — mge, + Ne,, (2-217)
Then, applying Newton’s second law (i.e., F = m7a), we have
—-K(x —{lp)ex — cxex —mge, + Ne, = m(§ + X)ey (2-218)

Separating this last equation into e, and e, components gives

—[K(x —€p) + cx]ex + [N —mgle, = m(G + X)ey (2-219)

Equating e, and e, components gives
—[K(x =4y +cx] = m(g+%) (2-220)
N-mg = 0 (2-221)

It is seen that Eq. (2-220) has no unknown reaction forces and, thus, is the differential equation
of motion. Rearranging Eq. (2-220), we obtain

mx +cx + Kx = Kby — mdg (2-222)

(b) Static Equilibrium Point

Let x.4 be the static equilibrium point. Then
Xeq = 0 (2-223)
Xeq = O (2-224)

Furthermore, in order to find the static equilibrium point, we need to set g(t) = 0. Substituting
the equilibrium conditions into Eq. (2-222) gives

Kxeq = Klo (2-225)

Solving for x4, we obtain
Xeq = o (2-226)
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(c) Differential Equation Relative to Static Equilibrium Point

Suppose we define
Y=X—Xeqg=>X=Y+Xeq=y+4o

We then have
y = X
y = X
Then the differential equation can be written in terms of 7 as
my +cy +K(y +4Ly) =Ky —mg
Simplifying this last equation gives

my +cy+Ky=-mg

(d) Standard Form of Differential Equation

Dividing Eq. (2-231) by m, we obtain the standard form of the differential equation as
oLy K .
Yoyt y=-4

(e) Natural Frequency, Damping Ratio, and Damped Natural Frequency

K
Wn =4/ —
m

@
chn = %

The natural frequency is given as

The damping ratio is found by solving

for . We have

K c
2§wn:2C %:E

Solving for C gives

g_L jm_ ¢
“2mV K 2ymK

Finally, the damped natural frequency is given as
W4 = Wpy/1 - C?

(f) Transfer Function for Periodic Input g(t) = QKelawt

Differentiating q(t) = QKe! ! twice gives

q(t) iawQKeawt
q(t) _ _aZwZQKeiawt

(2-227)

(2-228)
(2-229)

(2-230)

(2-231)

(2-232)

(2-233)

(2-234)

(2-235)

(2-236)

(2-237)

(2-238)
(2-239)

Substituting ¢ (t) into Eq. (2-232) and using the generic expressions for w, and ¢, we obtain

P+ 2C0wny + wiy = a’w?QKeld®!

(2-240)
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Now let the output y (t) be given as ‘
Y(t) = Ye'awt (2-241)
Then
y = iawYe!®! (2-242)
3"/ _ _uZwZYeiwt (2_243)
Substituting v, 7, and ¥ into Eq. (2-240) gives
[—a2w2 +i2alwnw + wfl] Yela®t — g2w?QKelawt (2-244)
Observing that K = mw%l, we have
[a)fl - a’w?+ ia2§wnw] Yela®t = a2?QKe'a®t = (Qmazwz) w32 ei®t (2-245)
Now let
A = Qma’w? (2-246)

Then, dropping the common factor of ¢! and dividing through by —a?w? + i2alw,w + w2

gives
2
Awy,

= ;
Wz — a?w? + i2alw,w

Then, dividing numerator and denominator by w? gives

A

2
1-(52)" +i2gae

w

Y =

Dividing both sides by Q, we obtain the transfer function Y /A as

Y AlQ
- 2
Q1 (2e) 4 iopae
Now let
Q=aw
Then, in terms of Q) we can let
. 1
G(iQ) = -
1- (a) + IZCE
Then '
— = 2G>Q) = mO?G(iQ)
Q Q

(g) Time Response z(t) to q(t) = QK cosawt
We know that for a system in the standard form
X +2CwaX + wix = Aw?e'®t

The time response is '
x(t) = AlG(iw)|e!@t=¢)

In our case we have the amplitude A from Eq. (2-246) as

A= Qma’w? = QmQ?

(2-247)

(2-248)

(2-249)

(2-250)

(2-251)

(2-252)

(2-253)

(2-254)

(2-255)
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where we recall that Q = aw. Therefore, the time response to the input QKe®! js
y(t) = QmQO?|G(iQ)|e' P (2-256)
Then the response to the input QK cos awt is the real part of y(t), i.e.,
z(t) = Re[QmQ?|G(i0) e/~ |
= QmO?|G(iQ)| cos(Qt — ¢p) (2-257)

= Qma’w?|G(iaw)| cos(awt — ¢p)

Example 2-4

A collar of mass m; slides along an inertially fixed track. The displacement of the collar is
measured relative to the fixed point O by the variable x. The collar is attached to a linear
spring with spring constant K, a linear damper with damping coefficient ¢, and a rigid massless
arm of length L. Attached to the other end of the arm is a particle of mass m,. Knowing that
the arm rotates with a constant angular rate €, (a) derive the differential equation of motion for
the system in terms of the displacement x; (b) determine the equilibrium point of the system;
(c) write the differential equation in part (a) relative to the equilibrium point found in part (b);
and (d) determine the time response of the collar.

K

VWA ™
0 7

Figure 2-10  Collar on Spring and Damper with Imbalanced Mass.

Solution to Example 2-4

(a) Differential Equation of Motion
Kinematics

First, let ‘F be the track. Then, choose the following coordinate system fixed in reference frame
F:
Origin at point O
E,. = Along OP
E. = Out of page
E, = E. x Eyx
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Next, let R be a reference frame fixed to the arm. Then, choose the following coordinate system
fixed in reference frame R:

Origin at O
e, = Along mym;
e, = Out of page
€ = e, X e,

Then the angular velocity of arm as viewed by an observer fixed to the track is given as
Fw® = Qe, (2-258)

Next, the position of the collar is given as

r; = xE, (2-259)

The velocity and acceleration of the collar in reference frame f are given, respectively, as
Fvi = XEx (2-260)
Fa, = XEy (2-261)

Now in order to solve this problem, we also need the acceleration of the particle attached to
the arm. The position of the particle is given as

I, =T +I2/1 (2-262)

where 17, is the position of the particle relative to the collar. Now we know that ry,; is given
as

I = Ley (2-263)

Then, the velocity and acceleration of the particle are given, respectively, as
Fvo = Fvi+Fvop (2-264)
fVZ = fal P fazﬂ (2—265)

Now we already have v, and 7a; from Egs. (2-260) and (2-261), respectively. Computing the
velocity of the particle relative to the collar, we have

, Td Rd ®
fVZ/l = E (1‘2/1) = E (I‘z/l) +fw X T2/ (2—266)
Now we have
R
¢ () =0 (2-267)
Fow® xr1 = Qe, xLe, = LOey (2-268)
Adding the expressions in Egs. (2-267) and (2-268), we obtain
Fvan = LQey (2-269)
Next, the acceleration of the particle relative to the collar in reference frame F is given as
Td *d
F - Z(F - = FwR <« T -
n = o ( V2/1) SPT: ( V2/1> W™ X v (2-270)
Noting that L and Q are constant, we have
R
a
= (Fv2n) = © (2-271)

FoR xFvyy = Qe, xLQey = —LO%e, (2-272)
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Adding Egs. (2-271) and (2-272), we obtain the acceleration of the particle relative to the collar
in reference frame F as ,
Faz = —LQ%e, (2-273)

Adding Egs. (2-261) and (2-273), the acceleration of the particle is given as
Fay = XEyx — LO%e, (2-274)
Then the acceleration of the center of mass of the collar-particle system is obtained as

_ mTa; +my7a . m
Fg o Ml 2% _ g 2

- —< _1Q%, (2-275)
m; + mop m; +m;

Kinetics

The free body diagram of the system consisting of the collar and the particle is shown in Fig. 2-
11.

N

Fy
F;
Figure 2-11 Free body diagram for collar attached to spring, damper, and rotating
arm with particle.

It is noted explicitly that the reaction force exerted by the arm on the collar is not included in
the free body diagram of the collar-particle system because this reaction force is internal to the
system. Consequently, the forces acting on the collar particle system are

F; = Spring force
Ff = Force of viscous friction
N = Reaction force of track on system

Now we know that the reaction force N must act in the direction orthogonal to the track.
Furthermore, because the motion is planar, the force N must lie in the plane of motion. Conse-
quently, N must lie in the direction of E, and can be expressed as

N = NE, (2-276)
Next, because the friction force is viscous, we have
Fr=—cvia (2-277)

wherev, is the velocity of the collar relative to the track (because the track is the surface on
which the particle slides and the attachment point of the spring and damper is fixed to the
track). Therefore,

Vel = Tvi = XEx (2-278)

which implies that the force of viscous friction is given as
Fr= —cXEy (2-279)

Next, the spring force is given as
F, = - K — ¥p)uy (2-280)
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Now from the geometry we have £ = ||bfr; —roll = [[XEx|| = x. Next,
— E
u, = 1 —To _ XEx _ E, (2-281)
lry —Toll X

Therefore, the spring force is given as
Fs = —K(x — {y)Ey (2-282)

Adding Egs. (2-276), (2-279), and (2-282), the force acting on the collar-particle system is given
as

F=N+Fs+F; = NEy — cXEx — K(x — 9)Ex = — [cX + K(x — o) |Ex + NE,,  (2-283)

Setting F in Eq. (2-283) equal to (m; + m»)”7a using the expression for 7a from Eq. (2-275), we
obtain ’
—[ex + K(x — £o)| Ex + NE,, = (m; + m2)XEx — moLQ%e, (2-284)

Now we note that e, is given in terms of E, and E,, as
e, = sinQtE, — cos QtE, (2-285)
Substituting the expression for e, into Eq. (2-284), we have
— [ex + K(x — £o) ] Ex + NE,, = (m; + mp)XEx — mpLQ?(sin QtE, — cos QLE,) (2-286)
Eq. (2-286) simplifies to
— [ex + K(x = £0) | Ex + NEy = [ (m1 + m2)% - mpLO? sinQt | Ex + mpLQ? cos QLE,, (2-287)
Equating E, and E, components in Eq. (2-287), we obtain the following two scalar equations:

(my + ma)x% —meLQO?sinQt = —[cx + K(x —€o)]Ex (2-288)
maLQ?cosQt = N (2-289)

Observing that Eq. (2-288) has no unknown reaction forces and all other quantities (with the
exception of x) are known, the differential equation of motion is given as

(my + m2)x% — mpLO? sinQt = — [cx + K(x — o) ] (2-290)
Rearranging Eq. (2-290), we obtain

@ K moL Q02 K
%+ X+ x=—2 sinQt + ———¥&, (2-291)
mi + mp mi + mp my + mp mi + mp

Suppose now that we define M = m; + m,. Then the differential equation of Eq. (2-291) can be

written as
SRt T,
M M®T T M

K
inQt + — 2-292
sin Qt M{’o (2-292)

(b) Static Equilibrium Point of System

Setting x and X to zero and shutting off the input (in this case the rotation of the arm), the
condition for static equilibrium of the collar is given as
K K
Mxeq = M€0 (2-293)
which implies that
Xeq = 4o (2-294)
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(c) Differential Equation Relative to Equilibrium Point

Setting z = x — X¢q = x — ¥y, the differential equation becomes

K mzLQZ

i+ %z’ + 9z = T sinQt (2-295)
(d) Time Response of Collar
It is seen that the input applied to the system is
F(t) = i iy sin Qt (2-296)
Recall that the standard form of the input is given as
f(t) = w? Aei®t (2-297)
Now for this problem we have
w3 = % (2-298)
Therefore,
W2A = %A - mz}\Lf]'Z (2-299)

Solving for A, we obtain

moLQ? mo ( Q )2
A= = —= =<\ I 2-30
K M \wy (2-300)
Next, recall the standard second-order linear time-invariant system
X+ 2CwpX + wix = f(t) = w3 Ae’®t (2-301)
where
f(t) = w3 Aei®t (2-302)

is the normalized input function. The transfer function G(iw) = X/A for the system of
Eqg. (2-301) is given as

G(iw) = i (2-303)
1- (ﬂ) + 20—
Wy Wn
where the magnitude and phase of G(iw) are given, respectively, as
1/2
. 1 1
IG(iw)| = o \2 © o2 © (2-304)
- () +2z | [1- (o) 22 |
w
. 20—
1 ~Im[G(iw)] - w
_ 1 _ 1 n -
PO RefGwn | (ﬂ)z o0
wy/ |

Also, recall the time response for the system of Eq. (2-301) is given as

x(t) = A|G(iw)|el@t=# (2-306)
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Suppose now that we let F(t) be defined as
_mlQ? o @(&)2 it _ m(&)z
F(t) = M = Wh| 3y w, L|e™ = o @, L|f(t) (2-307)
Therefore, the response of the system
. ¢. K
d+ g+ 4=, (2-308)
to the input f(t) from Eq. (2-307) is given as
_|me &)2 [O) [oiQt-) i
q(t) = [M (wn L] |G (iQ) e (2-309)
Finally, we are interested in the response to the input
moLQ? _@(&)2 .
i sinQt = [M - sin Qt (2-310)
Observing that ‘
e =P = cos (i(Qt — b)) +isin (QL — P) (2-311)
The time response of the system in Eq. (2-292) is the imaginary part of g(t), i.e.,
mp Q 2 . q
z(t) =Im[q(t)]=|—(—) L|IG(HQ)]|sin(Qt — ¢) (2-312)
M \wy
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2.6 Base Motion Isolation

An important problem in vibratory systems is base motion isolation. The problem of base
motion isolation is as follows. Consider an object in vibratory (i.e., connected to a linear spring
and a viscous damper) such that the spring and damper are connected at the other end to a
system that is itself vibrating. The objective is to isolate the motion of the mass from this other
system. A good example of a base motion isolation system is the suspension of an automobile
where it is desired to isolate the vibration of the automobile from undulations in the road. In
this section we derive the frequency response of a base motion isolation system.

The basic model for a base isolation system is shown in Fig. 2-12. The primary object is a
collar of mass m. The collar slides along an inertially fixed horizontal track. The displacement
of the collar is given by x(t) and is measured relative to a point O, where O is fixed to the track.
Attached to the collar is a linear spring with spring constant K and unstretched length £, and a
viscous damper with damping coefficient c. Attached to the other end of the spring and damper
is a base that slides with known displacement g (t) (again, measured from the inertially fixed
point O) where g (t) is assumed to be a periodic function of the form

q(t) = Ae'®t

The objective of this study is to determine the frequency response of the system to the motion
of the base and to understand how this frequency response can be used to isolate the motion
of the base from the collar.

Moving Base

t
|—q£| : System of Interest
? ? K /
o Q. m
2 /
Figure 2-12

We begin by deriving the differential equation of motion for the system. Choosing the hori-
zontal shaft and an inertial reference frame (denoted ¥), we can define the following coordinate
system fixed in reference frame F:

Origin at O
E,. = To the right
E. = Out of page
E, = E. X Ey

The positions of the base and collar are then given as

ro = qEs (2-313)
r = xE, (2-314)

The corresponding velocities and accelerations in reference frame F are then given, respec-
tively, as

Fvg = GEx (2-315)
v = XE, (2-316)
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Fag = GEx (2-317)
Fa = XE, (2-318)

Next, the free body diagram of the collar is shown in Fig. 2-13 (where we assume that all motion
takes place in the horizontal plane and thus there is no gravity). It is seen that the forces acting

Fy

O

s
Figure 2-13  Free Body Diagram of Base Motion Isolation System.
on the collar are due to the spring and gravity. The spring force is given as

F; = —-K({ — {p)u, (2-319)

In this case the length of the spring and the direction along which the spring acts are obtained,
respectively, as

£ = lr-rqll =lIxEx —gEx|l =[x —ql =x —q (2-320)
w - fofe  (xXZdEe g (2-321)
llr —rqll xX-q
Therefore,
Fs = -K(x —q — £o)Ey (2-322)
Next, the force exerted by the viscous damper is given as
Fr=—CVpel (2-323)
In this case vy¢ is obtained as
Viel = 7v = Fvg = XEx — gEx = (X — §)Ex (2-324)
Therefore,
Fr=—c(x - q)Ex (2-325)

The resultant force acting on the particle is then given as
F=F,+Fr=—-K(x—q—4o)Ex—c(x—qEx (2-326)
Setting F equal to m7a, we obtain
—K(x —q —40)Ex — c(x — q)Ex = mXEy (2-327)
which leads to the scalar equation
-K(x—q -4y —c(x—q) =mx (2-328)
Rearranging Eq. (2-328) gives
mx +cx +Kx =cq+K(q+4¥p) (2-329)
Finally, defining y = x — fy, we can rewrite Eq. (2-329) in terms of 7y to give
my +cy+Ky=cq+Kq (2-330)

It is seen that the motion of the base affects the motion of the collar through both the spring
and the damper. Rewriting Eq. (2-330) in standard form, we have

P +2Cwny + w3y = 2Cwnd + wiq (2-331)



44 Chapter 2. Forced Response of Single Degree-of-Freedom Systems

Now assume that the input to the system is given as

at) = Qe™*
Furthermore, assume that the output has the form

y(t) = Yel®!
Substituting g(t) and y(t) into Eq. (2-331) gives

—w?Ye®! 4 i2Cw,wYe ! + w?Yel®! = i2Cw,wQe’t + w2 Qel®!
Noting that e®! is not zero, Eq. (2-334) simplifies to
[—wz +i2Cwnw + wi] Y = [iZCwnw + wfl] Q

Rearranging Eq. (2-335) gives

Y 1+i20 -
- 2
Q1 (&) vicge

Now, using the expression for G(iw) from Eq. (2-61), Y/Q can be written as

g - (1 + i2§§n> G(iw)
Now since y (t) is complex, we know that

() =Y (iw)|e @
Where we can obtain the magnitude and phase of y(t) as follows. First, we have
G(iw)
G(iw)

o Gliw) e W]
Y(iw) = Y(lw)G(iw) = [1 + lZCwn] G(iw)

Eq. (2-339) can be rewritten as

o . w 1 1GGw)[?
Y(iw) = [1 + LZCw ] 76_(1'0\))

n

Q

Then, using the expression for G (iw) from Eq. (2-61), we have

Y(iw) = [1 ; izgwﬂ] [1 - (wﬂ)z - iZCa(j:J G (iw)2Q

n n

Expanding Eq. (2-341) gives

Y(iw) = [1 - (%)2 . (zgw%)z e (&)3} G (iw)|2Q

Using Eq. (2-342), the magnitude and phase of y (t) are given as

1/2

2
1Y (i) | = [1 + (20 ) } 1G(iw)|Q

w0 \3
¢(w) =tan™! [ 2 (‘T”) ]

1- () + (2z2)

(2-332)

(2-333)

(2-334)

(2-335)

(2-336)

(2-337)

(2-338)

(2-339)

(2-340)

(2-341)

(2-342)

(2-343)

(2-344)
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where it is noted that ¢(w) is obtained as

L T-Im(H(iw)) i
¢(w) = tan [ Re (H(iw)) ] (2-345)
where ) ) ,
H(iw) =1 - (w%) + (2@%) 2t (w%) (2-346)
and
2 2
Re (H(iw)) = 1- (wﬂ) + (2§wﬂ> (2-347)
3
Im (H(iw)) = fzc(wﬂ) (2-348)
Therefore,
Y (i) w\2 1%
o= [1 + (2§w—n) } 1G(iw)| (2-349)
Substituting |G (iw)| from Eq. (2-69), we obtain
1/2
; 1+ (zgi)2
T(iw) = YU _ n (2-350)

Q 272 2
()] e ()]
[ Wn
The quantity T (iw) is called the transmittibility and gives a measure of the amount of the input

(i.e., the motion of the base) that is transmitted to the output. We note several features of the
transmittibility function. First, it is seen that

>1 , w/wy<1
TAiw)=1 =1 , w/w,=1 (2-351)
{ <1l , w/wy,>1

In other words, the motion transmitted by the base to the system is ampilified for low frequen-
cies and it attenuated for high frequencies. Therefore, when designing a base motion isolation
system the parameters ¢ and w, must be chosen correctly in order to attenuate the input sig-
nal. Finally, it is seen that the phase ¢(w) is zero for low frequencies and all values of C, and
approach rr for large values of w/w, (although it approach 7 very slowly when C is close to
unity). Therefore, the response is in phase with the input when w/w, is small and is out of
phase with the input when w/w, is large.
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Figure 2-14 Magnitude of Transmittibility Function for a System Under the Influence
of a Base Motion Input q(t) = Qe'®t,
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Figure 2-15 Phase of Transmittibility Function for a System Under the Influence of
a Base Motion Input q(t) = Qe'®t,
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2.7 Fourier Series Representation of an Arbitrary Periodic Function
Consider now an arbitrary periodic function f (t) with period T, i.e., f(t) satisfies the property
St +nT) = f(t), Vna (2-352)

where 1 is the set of integers. Examples of arbitrary periodic functions include a square-wave
(see Fig. 2-16) and a sawtooth (see Fig. 2-17). It is known that any arbitrary periodic function

Square Wave
-
i

Figure 2-16  Square-Wave Function.

can be expressed as an infinite series of sines and cosines. This infinite series is called a
Fourier series. Suppose now that we consider a function f(t) that is periodic with period T on
the interval from zero to T. Then, in terms of a Fourier series expansion, the periodic function
f(t) can be written as

ft)= > cpet (2-353)
k=—0c0
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Sawtooth
(@)

Figure 2-17  Sawtooth Function.

where Q = 2m/T is the fundamental frequency. It is known that the functions e*®?t (k =
0,+1,+2,...) are orthogonal over the time interval t € [0, T], i.e

T T
J kO Hil0t gp _ J i kDOt gt
0 0

_ L(k+l)Qt]
i(k+DQ l)Q

eitk+hOT _ ]

1(k+ 1319)

le
[

- [ezm(k+l>T ]
[

(2-354)
T ik+DQ l)Q

e2milk+DT _ ]

ik +DQ l)Q
1
B i(k+l)Q[1_1] =0
The coefficients ¢k, (k = 0,+1,+2,...) are obtained as follows. Suppose we multiply both
sides of Eq. (2-353) by e 2 (where | € ) and integrate over the period of the function
(i.e., from zero to T). We then obtain

T T
J f(t)e*”ﬂfdtzj {Z cke"‘m] ot — Z ckJ kDOt g (2-355)
0 0 Jk=—w k=—o0
where .
. 1 . T
i(k-DQt 34 _ i(k-DQt _
Joe dt = o5 e I, (2-356)
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Noting that Q = 27t/T, we have

T
J oik-D0t gy _ [ei(kfl)ZTr _ 1] (2-357)
0

_r
itk-1Q
Suppose now that we let m = k — L (we note that, because k and [ are integers, m is also an
integer). Then when m = 0 we have

ﬁ [e?mm—1] =0, (m=0) (2-358)

Furthermore, for the case that m = 0, we need to take the limit as m — 0O as

lim

lim [e2imm —1] (2-359)

Because both the numerator and denominator approach zero as m — 0, we can use L’'Hopital’s
rule to obtain
2imm 1 2imm
e -1 2iTre 21T ; 21
lim ————— =lim ~———— =~ lime?™" = — =T 2-360
mob imQ omeo iQ Q mo® 2T (2-360)

Noting that the condition m = 0 is equivalent to the condition that k = [, we have
T
j F(t)e kLGt = Tcy, (2-361)
0
which implies
T
cx = %J f(t)e *kotgg, (k=0,+1,+2,...) (2-362)
0

The expression for cx from Eq. (2-362) can then be used in Eq. (2-353) to obtain the Fourier
series expansion of the periodic function f(t).
It is noted that a Fourier series can be written in real form as follows. First, we note that

T
Cc_y = %J f()ektge (2-363)
0
Then, we have
T
Cox +Cx = %J f(t) [ekat 4 ethat] gy (2-364)
0
Now we have » »
1 =1
cosf = % (2-365)
from which we obtain .
C_x+cCx= %J f(t) cos(kQt) (2-366)
0
Similarly,
1 (T ) )
cck—ck===| f@ [elkm - e”km] dt (2-367)
T Jo
i0 _ ,—i0
sing = &—% — (2-368)
21
from which we obtain -
C_k—Ck = % J f(t)sin(kQt)dt (2-369)
0
Then we can define
ax = C_g+Ck (2-370)

ibk = C_k—Ck (2—371)
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Solving for ¢y and c_j in terms of ay and by, we obtain

ok = %‘b" (2-372)
o W — bk (2-373)
2
We can then write
o0 -1
f(t) _ Z Ckei,th _ z CkeLth +co+ z Ckelet
k=—o N k=—o0 . k=1 (2_374)
—co+ Z c_pe kot 4 Z cpetkot
k=1 k=1
Substituting the expressions for cx and c_y into this last equation, we obtain
Ft) = Ao Z ag + lbke—ith " z ay — ibg pikat (2-375)
2 2 2
k=1 k=1
Rearranging, we have
ag & oikQt 4 p-ikQt oikQt _ p—ikot
f<t>:7 D
. o . (2-376)
* elet +e —ikQt © elet _ e—let
-G St St
k=1 k=1 L
Then, using Egs. (2-365) and (2-368), we obtain
f(t) = 70 + > axcos(kQt) + > by sin(kQt) (2-377)
_ k=1

Eq. (2-377) is a real form of a Fourier series for an arbitrary periodic function f(t).

Example 2-5

Consider the following function:

1 , kT<t+kT <kT+T/2

f(t+kT)={—1 . KT +T/2<t+kTleqtk+1)T » (k=0.21,%2,..)  (2-378)

Determine both the complex and real form of the Fourier series expansion of f(t)

Solution to Example 2-5

From Eq. (2-362), the coefficients of a Fourier expansion of a periodic function are given in
complex form as

T
Ck = %J f(t)e kotgg, (k=0,+1,%2,...) (2-379)
0

Now because the square-wave takes on values of 1 and -1 on the intervals t € [0,T/2) and
t €[T/2,T), respectively, we need to compute the integral in two parts, i.e.,

1 [tz . T , 1 [tz . T ]
Ck = — J e kOt gy +J —e kKQtgy | = — J e kOt gy 7J e kOt gy (2-380)
T 1Jo T/2 T 1Jo T/2
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Computing the first integral in Eq. (2-380), we have

T2 1 L aT)2 1 .
—ikQt — —ikQt _ -ikQT/2 _ _
L ehatgy = —— o R G [e 1] (2-381)
Noting that Q = 27t/T, we have
T/2 . 1 .
—ikQt _ —ikmm _ _
L e hOtgL = —— o e 1] (2-382)
Now we note that
. -1 k=1,3,5,...
—ikm _ ’ 3y Iy Iy _
2 ‘{ 1, k=2,4,6,... (2-228)
Therefore,
e = k=1,3,5
—ikQt _ ikQ y gy Dgooa B
Jo et { Y0, k=2,46,.. s
Computing the second integral, we have
T ) 1 ) T 1 ) )
—ikQt - = —ikQt - = —ikQT _ ,—ikQT/2 _
L/Ze dt %0 [e ]m %0 [e e ] (2-385)
Again, using the fact that Q = 277/T, we obtain
! kOt 1 2ik ik
=0 - = =2ikm _ ,—ikTT 2_
jT/Z e dat %0 [e e ] (2-386)

Now we know that e=2%k™ = 1. Furthermore, we can apply the result of Eq. (2-383) to obtain

r 2
' ~kq k=1,3,5,...

—ikQt = kQ ’ 3y Jy Iy ~

Jr/ze at { ' 0 , k=2,4,6,... (2-387)
Substituting the result of Egs. (2-384) and (2-387) into Eq. (2-380), we obtain
4
kQT l1=1,3,5,...

= kQT ’ 3y Iy Jdy _

o { l 0 , k=2,4,6,... (2-388)

Now we consider the special case of k = 0 (which was not easily done earlier because k appears
in the denominator of the anti-derivative of e~ *©t_In the case where k = 0, we have

T T/2 T
co = J fdt = dat + J —dt =0 (2-389)
0 0 T/2
It is noted that the value of ¢y could have been deduced from the fact that the function is
odd. Now in order to obtain only the odd values of [ in the Fourier series, we can make the
substitution

k=2m-1 (2-390)
where m = 0, +1, +2,.... Then, using the fact that Q = 277/T, the Fourier series representation
of the square-wave function of Eq. (2-378) is given as

Fit) = = > efemmnat (2-391)

i,

Next, using Egs. (2-370) and (2-371), we can write the Fourier series of Eq. (2-391) in real form
as follows. First, we have

4 4 4ikQT — 4ikQT
SikoT T ikar - —keqere 0 (2-392)

ax = C—_x + Ck =
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Next,
. 4 4 8
the = C-k— k= T OT ~ kaT ~ kAT (2-393)
which implies that
1 8 4
e = e 2-394
b i[ ikQT] kT (2-394)
Then, using the real form of the Fourier series as given in Eq. (2-377), we obtain
(o] 4 )
f(t) = > —sin(kQt) (2-395)
o kTt
|

2.8 Response of a Single Degree-of-Freedom System to an Arbitrary
Periodic Input

Using the results of Section 2.7, we can now obtain the response of the second-order differential
equation
X +2CwaX + wix = f(t) (2-396)

to a general periodic input f(t). First, recall the response of the system of Eq. (2-71) [i.e., the
particular solution] to the complex periodic input Aw?e®! as

x(t) = AG(iw)e't = A|G (iw)|e!@i=¢) (2-397)

where |G (iw)| and ¢ (w) were the magnitude and phase of the transfer function G(iw), where
G(iw) was given from Eq. (2-61) as

1
1- () +i2g e

Gliw) = (2-398)

Correspondingly, |G(iw) and ¢ (w) were given from Egs. (2-83) and (2-88), respectively, as
1

IG(iw)| = - 172 (2-399)
w w
Hl ~(on) } “le] }

r &

$(w) =tan! | ——Ln_ (2-400)
1- (ﬂ)
Wn
Suppose now that we let f(t) be a periodic function

f&)= > cre (2-401)

k=—00

Then, because the system of Eq. (2-396) is linear, the principal of superposition applies, i.e., the
particular solution to the input of Eq. (2-401) is the sum of the terms in the infinite series. First,
let us determine the response of the system of Eq. (2-396) to the input

Si(t) = cpet (2-402)
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In order to obtain the response to f(t), it is convenient to write Eq. (2-402) as
Sr(t) = cre™ M = w? Apetkt (2-403)
Then, the response of the system of Eq. (2-396) to the input of Eq. (2-403) is given as
Xk (1) = Ax|G (iwy) | 'K P kD (2-404)

where |G(ikQ)| and ¢ (kQ) are obtained from Egs. (2-399) and (2-400), respectively, as

G(ikQ)| = 1 (2-405)
k021 ka2
-y 2] ]
Wy Wy
2k
P(kQ) = tan’! ‘]fél 5 (2-406)
1‘(@)
Now for simplicity we can write
wr = kQ=¥ (2-407)
b = PkQ) (2-408)

Then, applying the principal of superposition and using the Fourier series representation of an
arbitrary periodic input f(t) with period T [where f(t) is given by Eq. (2-353)], the response is
given as

x(t) = D xi(t) = > ArlG(iwp) e @kt=9u) (2-409)
k=0 k=0

In other words, the response of the system of Eq. (2-396) to the periodic input f(t) is the sum
of the responses of Eq. (2-396) to the individual periodic inputs ce™®? = w2 Age/*®! that are
the terms in the Fourier series expansion of f(t).



Chapter 3

Response of Multiple Degree-of-Freedom
Systems to Initial Conditions

We now turn our attention to vibrating systems with more than one degree-of-freedom. As
opposed to single degree-of-freedoms systems, whose dynamics are described by a single dif-
ferential equation, systems with n degrees of freedom systems are described by a system of n
differential equations. Moreover, this system of differential equations is, in general, coupled
(meaning that the dynamics of each object in the system depend on one another). In this chap-
ter we will begin the study of vibrations of multiple degree-of-freedom systems by studying sys-
tems without any time-varying external forcing. The study of unforced two degree-of-freedom
systems will itself be divided into two parts: (1) systems without damping and (2) systems with
damping.

3.1 Unforced Undamped Multiple Degree-of-Freedom Systems

The most basic class of systems in the study of multiple degree-of-freedom vibratory systems
is the class of undamped and unforced systems. In particular, in this section we develop a
generic mathematical model for linear time-invariant (LTI) undamped and unforced multiple
degree-of-freedom systems and develop the mathematics associated with characterizing the
response of these systems.

3.1.1 Model Problem: Blocks with Attached to Linear Springs

Consider the system shown in Fig. 3-1 of two blocks of mass m; and m, is connected in tandem
to three linear springs with spring constants K;, K>, and K3 and corresponding unstretched
lengths 19, 20, and £30.
The blocks slide without friction along a horizontal surface of length £ and the displacements
of each collar, denoted x; and x>, respectively, are measured relative to the inertially fixed point
O, where O is located on a vertical wall located at the left end of the surface. The objective of
this part of this analysis is to derive a system of two differential equations for the blocks in
terms of x; and x».

First, taking the ground as an inertial reference frame (denoted F), we note that the accel-
erations of the blocks in reference frame F are given, respectively, as

Jay = xEx (3-1)
Jap = xEy (3-2)
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Figure 3-1 Two blocks of mass m; and m, connected in tandem to three springs
with spring constants K, K», and K3 with corresponding unstretched lengths €19, €20,
and 930.

where E is the unit vector in the rightward direction. Next, the forces acting on each collar are
given, respectively, as
Fy
F>

Fsl + FSZ (3—3)
_FSZ + FS3 (3_4)

where we note that, because spring 2 lies between the two blocks, the force exerted by spring 2
on m; is equal and opposite the force exerted by spring 2 on m. (i.e., because Fs, acts on my,
—F;> acts on my). Now the forces exerted by each of the three springs are given, respectively,
as

Fa = —-Ki(di —{ioun (3-5)
Fpo = —Ko(f» —{r)up (3-6)
F3 = —K3(f3—4{30)ug (3-7)

First, the lengths of each of the springs are given, respectively, as

gl = X1 (3_8)
€2 = X2 — X1 (3_9)
€3 = €7X2 (3—10)

where £ is the length of the track. Next, the unit vectors in the directions from the attachment
points of each spring to the corresponding blocks are given, respectively, as

ug; = Ey (3-11)
u, = -Ey (3—12)
us3 = -—Ey (3-13)
We note that uy» = ug3 = —E, because the attachment points of springs 2 and 3 lie ahead of

the positions of the first and second block, respectively. Then the spring forces are given as
Fq = -Ki(x1 —410)Ex (3-14)

Ko (x2 — x1 —420)Ex (3-15)
K3(f — xp — £30)Ex (3-16)

Leo Bl |
von
W

Il |
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Then, Newton’s 24 law for the first block is given as
Fi = Fg +Fp = m7a (3-17)
which implies that
=K1 (x1 = 410)Ex + Ko (X2 — X1 = ¥20)Ex = m1X1Ex (3-18)
Dropping E, from this last equation gives
—K1(x1 = 410) + Ka2(x2 — x1 = £20) = M1 X (3-19)
Rearranging, we obtain
miX; + Kix1 — Ka(x2 — x1) = K110 — Kol (3-20)
Equation 3-20) can be rewritten as
mix) + (K1 + K2)x1 — Kaxo = K110 — Kotz (3-21)
Newton’s 2”4 law for the second collar is given as
F, = —Fy, + F3 = mo7a, (3-22)
which implies that
Ko (x2 — x1 — £20)Ex + K3(£ — X2 — £30)Ex = MmaXEy (3-23)
Dropping E, from this last equation gives
—Kz(x2 = x1 —420) + K3(£ — x2 — £30) = maXo (3-24)
Rearranging, we obtain
MmaXo + Ko (x2 — x1) + K3x2 = Kalag + K3 (£ = £30) (3-25)
Equation 3-25) can be rewritten as
maXy — Koxy + (Ko + K3)x2 = Koo + K3 (€ — £30) (3-26)

The system of two differential equations describing the motion of the two collars is then given
as

miX1 + (K1 + Kz2)x1 — Kaxo = K110 — Koo (3-27)
moXo — Koxy + (Ko + K3)x2 = Kooo + K3 (€ — €30) (3-28)

The system of differential equations given in Eqgs. (3-27) and (3-28) can be written in matrix
form as

m; 0 X1 Ki+K, -k x| _ K110 — Kol (3-29)
0 mo X0 + —-K> K> + K3 X2 n —Kz#zo +K3(€—€30)
MX+KX=b (3-30)
Now it is seen that the condition for static equilibrium of the system in Eq. (3-30) is given as
KX.q=b (3-31)

Now let
Y=X-Xy (3-32)
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We then have
Y = X (3-33)
Y = X (3-34)
Substituting the expression for b into Eq. (3-30), we obtain
MX + KX = KX,, (3-35)
This last equation can be rewritten as
MX +K(X—X,q) =0 (3-36)
Noting that Y = X — X,; and X =Y, Eq. (3-36) can be rewritten as
MY +KY =0 (3-37)

It is seen that Eq. (3-37) has a similar mathematical form to the single degree-of-freedom sys-
tem, the difference being that in this case we have a matrix and column-vector differential
equation (or, alternatively, a system of differential equations) as opposed to a scalar differen-
tial equation. Consequently, the solution to Eq. (3-37) will itself be a column vector. For the
general case of n degrees of freedom the quantities M, K, and Y are given as follows:

myp M2 - Map
mzr M2 -+ Mpp
M = . . . . (3-38)
L Mn1 Mp2 e Mun
[ ki1 k2 -+ K
ko1 koo -+ kon
M = . . . . (3-39)
L knl an et knn
(3-40)
3.1.2 General Solution to Undamped Multiple Degree-of-Freedom System
In a manner analogous to the single degree-of-freedom system, suppose we let
Y = qu (3-41)
where u is a constant vector. Differentiating Y(t) in Eq. (3-41), we obtain
Y(t) = qu (3-42)
Y(t) = du (3-43)
Substituting the expressions from Egs. (3-41) and (3-43) into Eq. (3-37) gives
Mgu +Kqu =0 (3-44)
Noting that g is a scalar, Eq. (3-44) can be rewritten as
Mug + Kug =0 (3-45)

Multiplying both sides of Eq. (3-44) by u”, we obtain

u"Mug + u’Kug = 0 (3-46)
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Now because u is a column vector, we see that the quantities u’Mu and u’Mu are scalars.

Suppose now that we let
u’Ku T T
A= T = u'Ku=A(u'Mu) (3-47)
u/Mu
Now it can be shown that the matrices M and K are symmetric and positive definite (see Ap-
pendix A for the definition of a positive definite matrix). Consequently, we have

u'Ku > 0Vu=0 (3-48)
u'Mu > OVu=0 (3-49)

Consequently, A > 0. We then obtain
u"Mug + Au"Mug =0 (3-50)

Factoring out u’ Mu in Eq. (3-50) gives

u"Mu(g +Aq) =0 (3-51)
Equation (3-51) implies that
d+Aq=0=4=-Aq (3-52)
Substituting the result of Eq. (3-52) into Eq. (3-37), we obtain
—AMu + Ku =0 (3-53)
Rearranging Eq. (3-53) gives
Ku = AMu (3-54)

Equation (3-54) is a weighted eigenvalue problem (see Appendix A) in the matrices K and M.
whose eigenvalues are obtained from the condition

det (AM-K) =0 (3-55)

Furthermore, because the eigenvalues must be positive, the general solution of Eq. (3-52) is

given as
n

a(t) = > Cixcos wit + Cox sin wit = Ci cos(wit — py) (3-56)
k=1
where wﬁ = Ay and the constants Cyx and Cyy (equivalently, Cy and ¢y ) are determined from the
initial conditions. Observing that there will be two eigenvalues and eigenvectors in Eq. (3-54),
we obtain

n
Y(t) = > qimUq (3-57)
k=1
where
U = [ul u - un] (3-58)
q1
a2
q = . (3-59)
an

Suppose now that we return to Eq. (3-41). Then for each eigenvector of Eq. (3-54) we have

Kuk = AkMuk, (k =1,..., n) (3—60)
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which implies that

A1 O 0 0
0 A O 0
KU=MU| : 0
0
0 O 0 An
Now let
A1 O 0 0
0 A O 0
A= 0
0
0 0 0 An
We then obtain
KU = MUA

Multiplying both sides by U7 gives
UTKU = UTMUA

Returning to the original differential equation and Eq. (3-57), we see that
MX + KX = MUq + KUq = 0
Multiplying both sides of Eq. (3-65) by U, we obtain
U'MUg + U'KUq = 0
Next, using the result of Eq. (3-64) gives
U'™UG + U'MUAq = 0
Factoring out the quantity U'MU, we have
U'™U(G + Aq) =0
Observing that U'MU = 0, Eq. (3-68) implies that

G+Aq=0

(3-61)

(3-62)

(3-63)

(3-64)

(3-65)

(3-66)

(3-67)

(3-68)

(3-69)

Finally, because A is diagonal, we can write Eq. (3-69) as a set of scalar equations of the form

dr + Axqr = 0, (k=1,...,n)

(3-70)

Now in order to solve Eq. (3-70), we need initial conditions. In general we will be given initial

conditions on Y of the form

[ 10
Y20
Y(0) Yy = .

L Yno |
[ Yo
V20

Y(0) Yo =

_j’no_

(3-71)

(3-72)
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Then, from Eq. (3-57) and the fact that U is nonsingular,
aio
az20

q(0) =U'Y(0) = (3-73)

ano
dio
d20
q(0) =U'Y(0) = . (3-74)
6-1710
3.1.3 Solution Procedure for Multiple Degree-of-Freedom Undamped System

Using the results of section 3.1.2, we now provide a procedure for determining the solution of
the two degree-of-freedom undamped system

MY +KY =0 (3-75)

subject to the initial conditions
[ Yio
Y20

YO0 = Yo= (3-76)

Yno |
Y10
V20

. (3-77)

L J"no _
Step 1: Determine the Eigenvalues

The characteristic equation for the differential equation of Eq. (3-75) is given from the following
determinant:
det(AM-K) =0 (3-78)

The determinant of Eq. (3-78) leads to a polynomial of degree n which has the general form
n
p(A) = > axAk (3-79)
k=1

The eigenvalues are then the roots of the characteristic polynomial of Eq. (3-79), It is impor-
tant to note that the eigenvalues of an undamped multiple degree-of-freedom problem should
be real and positive because otherwise the solution would not make physical sense. Finally,
the natural frequencies of the two degree of freedom system are then obtained by taking the
square-roots of the eigenvalues, i.e.,

wf = Al
UJ% = ]\2

(3-80)

w% = A
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Step 2: Determine the Eigenvectors

For each eigenvalue obtained in Step 1, we have from the weighted eigenvalue problem that

Kwy = AxMwy, (k=1,...,n) (3-81)
Consequently,
(AAM - K)w; =0, (k=1,...,n) (3-82)
where wi,...,w, are the eigenvectors.

Step 3: Normalization of Eigenvectors

In general, the eigenvectors obtained in Step 2 are not normalized. While it is not necessary to
normalize the eigenvectors, it is usually convenient to obtain a set of normalized eigenvectors.
The most common normalizations are either mass normalization or stiffness normalization. If
mass normalization is chosen, the each normalized eigenvector will have be given as

h = A\ wlTMwl

U = e

(3-83)

u =
n «/w%Mwn
If stiffness normalization is chosen, then each normalized eigenvector will be given as

w1

u; =

7

T
wi Kwy
w2

U =

W

v WZTKWZ

(3-84)

Wn
wpKwy

u, =

i

Step 4: Assemble the Eigenvector Matrix

Using the eigenvectors u; and u, obtained in Step 2 can then be assembled to give the eigen-
vector matrix
U:[u1 u - un] (3-85)

Step 5: Determine the Initial Conditions in Modal Coordinates

The initial conditions in modal coordinates are given as

ai0
a20

a(0) U y(0) = (3-86)

L dno
dio
d20

q(0) U 'Y(0) = (3-87)

_q.no_
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Step 6: Determine the Solutions in Modal Coordinates

The differential equations in modal coordinates are given as
dx + wiqx = 0, (k=1,...,n) (3-88)

subject to the initial conditions given in Egs. (3-86) and (3-87), i.e., the initial conditions for
each k = 1,...,n are given as

ak(0) = dxo _ _
@0 = g k=L (3-89)
The general solution to this differential equation is given as

qr(t) = cix cos(wyt) + cop sin(wyt), (k=1,...,n) (3-90)

where the constants ¢ and cyy are given as

Cik = dko _ _
Cot dro/ Wk (k=1,...,n) (3-91)

Step 7: Transform the Modal Coordinate Solution to the Original Coordinates

In vector form, the result of Step 5 is

q1(t)
q>(t)
q(t) = : (3-92)
an(t)
Then, recalling from Eq. (3-57) that X = Uq, we have
X(t) = Uq(t) (3-93)

where q(t) is the column vector assembled from the solution given in Step 5.

Example 3-1

Consider the undamped two degree-of-freedom system with the following mass and stiffness
matrices

1 0
w10 B

2 -1
K = [ 1 0 } (3-95)
Determine the solution to the undamped differential equation

MY +KY =0

with the initial conditions

w <[] - [
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Solution to Example 3-1

We will obtain the solution to this problem using the six-step procedure described in section
3.1.3. Following Step 1, we compute the eigenvalues of the weighted eigenvalue problem as

1 0 2 -1
om0 =ae(3] § O] [ 4 2])-s 500

Equation (3-96) can be rewritten as

A-2 1
wl[ M5 11, )= 5o

Computing the determinant in Eq. (3-97), we have
det[AM-K]=(A-2)>-1=0<= A-2)2=1 (3-98)

Solving for A in Eqg. (3-98), we obtain the eigenvalues as

A= 1
N = 3 (3-99)
Equation (3-99) implies that the natural frequencies are given as
w1 = JA=1
wr = JA =3 (3-100)

Following Steps 2 and 3, the eigenvectors of the weighted eigenvalue problem are obtained
from the condition

[AM —K]u; =0, (i=1,2) (3-101)
For the eigenvalue A; = 1, we have
A —2 1 -1 1

[ g /\12]111:[ ] 1}m:o (3-102)

Suppose that we denote the first unnormalized eigenvector by w;. Then

Wi

= 3-103
w1 [ W ] ( )

We then have
-1 1 w 0
o[l
It is seen that a set of values of wy; and wy, that satisfy Eq. (3-104) are

w11 = 1

o = T (3-105)

Therefore, the first eigenvector before normalization is given as
1
wy = [ 1 ] (3-106)

Then, choosing a mass normalization of w;, we have

Wi

JwWiMw,

u = (3-107)
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Now we see that
wiMw, = [ 1 1}[(1)(1)””_2 (3-108)

JWiMw, =2 (3-109)

Therefore, the first normalized eigenvector is given as

W1 |:
U = — =
JwiMw, 7z
The second eigenvector is obtained in a manner similar to that used to obtain the first eigen-
vector. In particular, for the eigenvalue A, = 3, we have

which implies that

._.sy‘w

} (3-110)

Apr =2 1 1 1
|: 1 )\2_2 :|ll1 |: 1 1 :|U10 (3—111)
Suppose that we denote the unnormalized second eigenvector as w». Then
_ | wa _
Wy = [ W ] (3-112)

We then have

1 1 w21 0
ol ][]

It is seen that a set of values of w»; and wy, that satisfy Eq. (3-113) are

— L (3-114)
Therefore, the second eigenvector before normalization is given as
Wy = [ _} } (3-115)
Then, choosing a mass normalization of w;, we have
up = —2 (3-116)

Wi Mw,

0 1
0 1[ 1] -

WiMw, = V2 (3-118)

Therefore, the first normalized eigenvector is given as

W2
[

JWIMw,

It is observed that u; and u are unit vectors and are orthogonal with respect to both M and K,

Now we see that

S =

wZTszz[ 1 -1 }[

which implies that

N ”E‘ -

} (3-119)

N,

i.e.,
10 7
uMw, = [ % ﬁ][o 1”_{}:0 (3-120)
2 -1 Co
uku, = | % V,g][_l 2”@}:0 (3-121)
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Following Step 4, the eigenvector matrix U is given as

1

U= [ u w ] = [ @

%

From Eq. (3-122) we see that the eigenvector matrix for this example is orthogonal, i.e.,

] (3-122)

iﬂ‘“ﬁ“ﬂ‘“

»-ﬁ,‘»a

1

ul=-1uT - [ 2

V2 T2

Following Step 5, the initial conditions in modal coordinates are given as

] (3-123)

q0) = U'Y(0) =UTY(0) = [ Z;g ] (3-124)
q0) = U Y =UTY(0) = [ 2;2 ] (3-125)
(3-126)

Using the initial conditions given in the problem statement, we have

1 1
7 7 -1 0 dio0
q0) = UTY(0) = [ A2 } [ ] = [ ] = [ ] (3-127)
5 5 1 -2 d20
q0) = UTY(O)=[*“1§ %H 2]:[?}:[?’10} (3-128)
7 —z 1L 7 420
Following Step 5, we can now solve the differential equations in modal coordinates, i.e., solve
ik + wiqr =0, (k=1,...,n) (3-129)
subject to the initial conditions
(@1(0),a2(0) = (410, 420) = (0,~2) (3-130)
i . .. 1 3
(4100),q2(0) = (d10,420) = <ﬁ’ﬁ> (3-131)

where the initial conditions are reiterated from Egs. (3-127 and (3-128). Solving the differential
equation corresponding to k = 1, we have

qi1(t) = c11cosw it + o1 Sinwit (3-132)

where, from Eq. (3-91), we have

ci1 = quo=0
= do/wr = (1/v2)/1=1/42 (38-133)
Consequently,
q:(t) = % sint (3-134)
Next, solving the differential equation corresponding to i = 2, we have
q1(t) = cr1pcoswit + cop Sinwq t (3-135)
where, from Eq. (3-91), we have
c2 = an=-V2
12 qaz20 (3-136)

G20/ w2 = 3/v2) /3 =2

C22
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Consequently,
a»(t) = —ﬁcosﬁt+\/§sin\/§t (3-137)
The vector solution in modal coordinates is then given from Egs. (3-134) and (3-137) as
1 .
a1 (t) 7z sint
t) = = : 3-138
a(®) [ q»(t) ] [ —ﬁcos\/?t+\/gsin\/§t ( )

Following Step 6, we can now transform the solution in modal coordinates to the original coor-
dinates (i.e., the variable Y) using Eq. (3-57), i.e., we can obtain Y(t) as

Y(t) = Uq(t) (3-139)

In particular, we can substitute U and q(t) from Egs. (3-122) and (3-138) into Eq. (3-139) to
obtain

1
Y(t)=[ N

/2

%sint
—/2cos /3t + \/gsinﬁt

| isint - cosv3t + L2 cos /3t
LIsint + sin~/3t — ¥ cos /3t

sl

<.

(3-140)

—

It is important to understand the difference in behavior between the solution in modal
coordinates (i.e., q) as compared with the solution in the coordinates of interest (i.e., Y). First,
it is seen that each modal coordinate (i.e., the solutions g, (t) and g»(t)), contains only a single
frequency. Specifically, the modal coordinate g, (t) contains only the frequency w; = 1 while
the modal coordinate g»(t) contains only the frequency w> = sqvt3. This “purity” in the modal
coordinate solutions is shown in Fig. 3-2

q:(t)
o

q»(t)

Figure 3-2 Modal coordinate solutions q; (t) and g»(t) for Example 3-1.
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Contrariwise, each component of the solution Y(t) (which is the solution we care about) con-
tains both frequencies w; = 1 and w»> = /3. This “impurity” in the non-modal coordinate
solutions is shown in Fig. 3-3

»i(t)

0
t
<o ]
=Y
0
t

Figure 3-3 Non-modal coordinate solutions y; (t) and 7y (t) for Example 3-1.

The pure behavior of the modal coordinate solution as opposed to the impure behavior of the
non-modal coordinate solution is characteristic of undamped multiple degree-of-freedom sys-
tems. Essentially, in modal coordinates the solution is being viewed as a system of uncoupled
harmonic oscillators whereas in non-modal coordinates the solution is being viewed as a set
of coupled oscillators. Since the original problem is coupled (through the stiffness matrix K)
we expect that the non-modal coordinate solution will exhibit mixed (i.e., impure) behavior. On
the other hand, because the eigenvector matrix decouples the mass and stiffness matrices, we
expect that each component of the modal coordinate solution will exhibit non-mixed (i.e., pure)
behavior.

Example 3-2

Consider the undamped two degree-of-freedom system with the following mass and stiffness

matrices
1 0
M = [0 2} (3-141)

2 -1
K = [_1 ; } (3-142)
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Determine the solution to the undamped differential equation

MY +KY =0
with the initial conditions

Y0) - [}] oY) = [H

Solution to Example 3-2

We will obtain the solution to this problem using the seven-step procedure described in section
3.1.3. Following Step 1, we compute the eigenvalues of the weighted eigenvalue problem as

det(AM - K) = det ()\[ é g } —[ _21 ;1 D =0 (3-143)

Equation (3-143) can be rewritten as

A—=2 1
[ M52 by ])-s 5

Computing the determinant in Eq. (3-144), we have
det[AM-K]=(A-2)(2A-3)-1=0 (3-145)
Equation (3-145) implies that
det[AM—K] =2A2 - 72 +5=0 (3-146)
Solving for A in Eq. (3-146) by applying the quadratic formula, we obtain

777 -4()(5) 7+49-40 7+3
B 2(2) B 4 T4

A1z =1,5/2 (3-147)

Therefore, the eigenvalues of the symmetric weighted eigenvalue problem are

A= 1

A, = 5/2 (3-148)
Equation (3-148) implies that the natural frequencies are given as
w; = JA=1
(3-149)
w2 = V=43

Following Steps 2 and 3, the eigenvectors of the weighted eigenvalue problem are obtained
from the condition
[AM —K]w; =0, (i=1,2) (3-150)

For the eigenvalue A; = 1, we have
A =2 1
[ E 22, -3 }wlz (3-151)

where w; denotes the first unnormalized eigenvector. Now we can write w as

wy = [ VL ] (3-152)

wi2
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We then have
-1 1 w11 . 0
1 -1 wi2 N 0
It is seen that a set of values of wy; and wy, that satisfy Eq. (3-153) are

w11 = 1
W»1 = 1

Therefore, the first eigenvector before normalization is given as

oe[1]

Then, choosing a mass normalization of w;, we have

u; =

Now we see that

which implies that

\JWIMw, = /3

Therefore, the first normalized eigenvector is given as

W1
U = ————
Wi Mw,

)

Sl

(3-153)

(3-154)

(3-155)

(3-156)

(3-157)

(3-158)

(3-159)

The second eigenvector is obtained in a manner similar to that used to obtain the first eigen-

vector. In particular, for the eigenvalue A, = 5/2, we have

A -2 1 31 B
[ 1 22\2—3}“1‘[1 2 |W2=0

where w; denotes the unnormalized second eigenvector. Now we have

We then have

= N[ =

HAEH

It is seen that a set of values of w»; and wy, that satisfy Eq. (3-162) are

Therefore, the second eigenvector before normalization is given as

o[ 4]

Then, choosing a mass normalization of w;, we have

W

JWIMw,

Uy =

(3-160)

(3-161)

(3-162)

(3-163)

(3-164)

(3-165)
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Now we see that

wiMw, :[ 1 =

N[ =
| S—
—
oS =

0 1 3
2 } [ -1 } "2 (37100

JywiMw, = \E (3-167)

Therefore, the first normalized eigenvector is given as

which implies that

W2 a
T e |: 13 :|
W Mw, -5

It is observed that u; and u, are unit vectors and are orthogonal with respect to both M and K,

(3-168)

e
T™Mu, = L 10 ; =0 3-169
uluz_[ﬁﬁ]oz U (1)
NG
2 -1 z
uku, = [ % 33][_1 3][_\@}—0 (3-170)
/6
Following Step 4, the eigenvector matrix U is given as
1 2
U=[w w |=| ¥ V3 (3-171)
IERN

It is seen for this example that the eigenvector matrix is not orthogonal because the eigenvec-
tors u; and u; are not orthogonal, i.e.,

2
T [ 1 1 sl V2 1 2 1
wiee=| & \@][_i]_3m_3mio e

Now, because we will need it shortly, we compute the inverse of U as

—1 7,17'6 7\/% % % 1 1 2
Ul=-2 _% % = \/g _\/g =ﬂ[ﬁ ﬁ} (3-173)

Following Step 5, the initial conditions in modal coordinates are given as

q0) = U'Y(0) = [ Z;g } (3-174)
a0) = UY(0) = [ Z;g } (3-175)
(3-176)

Using the initial conditions given in the problem statement, we have

q0) = UlY(O)—\/lg[\/% _é”}}—[@}—[gig} (3-177)
4 )
a0) = UlY(O)—\lﬁ[\/% _é“ﬂ_[ é}_[gig} (3-178)
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Following Step 5, we can now solve the differential equations in modal coordinates, i.e., solve
d+wiq=0, (i=1,2) (3-179)
subject to the initial conditions

(q1(0),41(0))

(q2(0),42(0))

(@10, d10) = (V3. %) (3-180)

(420, 420) = (0, %) (3-181)

where the initial conditions are reiterated from Egs. (3-177 and (3-178). Solving the differential
equation corresponding to i = 1, we have

q1(t) = cl ) cos w1t + cé” sincw;t (3-182)

where, from Eq. (3-91), we have

(1)
= =3
e Qo = 3 ;s (3-183)
¢’ = qo/wi=4/V3)/1="7
Consequently,
q(t) =x/§cost+%sint=\/§cost+¥smt (3-184)
Next, solving the differential equation corresponding to i = 2, we have
qq(t) = C{Z) cos wol + céZ) sin wot (3-185)
where, from Eq. (3-91), we have
()
1 = =0
) (3-186)
o = duo/wr = (273512 = F=
Consequently,
q2(t) = F sin 5t = 217515 sin gt (3-187)
The vector solution in modal coordinates is then given from Egs. (3-184) and (3-187) as
a1 (t) V3cost + 28 cost
t) = = 3-188
a(t) [ qz(t) ] { ZV“ sm\/7t ( )

Following Step 6, we can now transform the solution in modal coordinates to the original coor-
dinates (i.e., the variable Y) using Eq. (3-57), i.e., we can obtain Y(t) as

Y(t) = Uq(t) (3-189)
In particular, we can substitute U and q(t) from Egs. (3-171) and (3-188) into Eq. (3-189) to

obtain
J3cost + 4f sint
Y(t) = 2» 15
, -7 Sln\/7t

_[Cost+3smt+ sm\/»t]

cost + 4 sint — 2400 sin,[3t

=Sl
W
“wiro

%]

(3-190)

As with Example 3-1, again we see the key difference between the solution in modal coordi-
nates (i.e., q) and the solution in the original coordinates (i.e., Y). First, it is seen from Fig. 3-4
that each modal coordinate contains only a single frequency.
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qi1(t)
=

q»(t)

Figure 3-4 Modal coordinate solutions q; (t) and g (t) for Example 3-2.

Contrariwise, examining Fig. 3-3 each component of the solution Y(t) contains both frequencies
w; =1 and w» = +/5/2.

yi(t)

o (t)
o

t

Figure 3-5 Non-modal coordinate solutions y; (t) and y»(t) for Example 3-2.
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3.2 Unforced Damped Multiple Degree-of-Freedom Systems

In section 3.1 we studied the response of undamped and unforced multiple degree-of-freedom
LTI systems. In the process of studying this class of systems, a key result was obtained that
the response was a linear combination of terms that involved the product of periodic functions
with the modal vectors where the frequencies and modal vectors were the eigenvalues and
eigenvectors, respectively, of the weighted eigenvalue problem Ku = AMu. Thus, the response
of an undamped multiple degree-of-freedom LTI system is characterized completely by mass
and stiffness matrices M and K.

We now turn our attention to unforced but damped multiple degree-of-freedom systems.
The key difference between damped and undamped systems is that the eigenvalues and eigen-
vectors of the weighted eigenvalue problem of the undamped system do not decouple the sys-
tem into modal coordinates. Instead, the presence of damping makes it such that no general
decoupling can be obtained. However, a particular class of damping exists called modal damp-
ing for which the differential equations can be transformed to a decoupled form. In this section
we develop the general model for a damped multiple degree-of-freedom system, show why the
equations cannot be decoupled in the case of general damping, and develop the results for the
case of modal damping.

3.2.1 Model Problem: Two Blocks with Linear Springs and Dampers

Consider the system shown in Fig. 3-1 of two blocks of mass m; and m, connected in tandem
to three linear springs with spring constants K, K», and K3 and corresponding unstretched
lengths £1¢, 20, and €30, and three viscous dampers with damping coefficients c1, ¢», and c3,
respectively.

l »l
'Y 1

c1 C2 c3
G G it
07 K m K> mp K3 Q
VWS VWS ~WWWWWWWH 7
X1
> X2
»|

Figure 3-6  Two blocks of mass m; and m; connected in tandem to three springs
with spring constants K1, K», and K3 and corresponding unstretched lengths 19, €20,
and f30, and three viscous dampers with damping coefficients ¢y, ¢o, and c3.

The blocks slide along a horizontal surface of length £ and the displacements of each collar,
denoted x; and x», respectively, are measured relative to the inertially fixed point O, where
O is located on a vertical wall located at the left end of the surface. Finally, assume that the
surface is frictionless. The objective of this part of this analysis is to derive a system of two
differential equations for the blocks in terms of x; and x».

First, taking the ground as an absolutely fixed inertial reference frame (denoted ¥), the
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velocities and accelerations of the blocks in reference frame ‘F are given, respectively, as

Fvi = xEx (3-191)
Fvy = XoEy (3-192)
Fa; = XEy (3-193)
Fay = XEy (3-194)

where E, is the unit vector in the rightward direction. Next, the forces acting on each collar are
given, respectively, as

F,
F»

Fs1 +Foo + Fr1 + Fpo (3-195)
—Fs2 + Fs3 —Fp2 + Fy3 (3-196)

where F;y, Fs», and Fg3 are the forces exerted by each of the three linear springs and Fy;, Fy,
and F g3 are the forces exerted by each of the three viscous dampers. Now we note that, because
spring 2 lies between the two blocks, the force exerted by spring 2 on m, is equal and opposite
the force exerted by spring 2 on m; (i.e., because Fs» acts on m;, —F,> acts on m;). Similarly,
because the second damper lies between the two blocks, the force exerted by the second viscous
friction on m; is equal and opposite the force exerted by the second damper on m,. The forces
exerted by each of the three springs are given, respectively, as

Fa = -Ki({ —tipug (3-197)
Fo = —-Ko(f» —{r)us (3-198)
Fs3 = —K3(f3—{30)uss (3-199)

The lengths of each of the springs are given, respectively, as

#1 = X1 (3—200)
yz = X2 — X1 (3_201)
€3 = {- X7 (3-202)

where £ is the length of the track. Next, the unit vectors in the directions from the attachment
points of each spring to the corresponding blocks are given, respectively, as

u; = E (3-203)

u,, = -E (3-204)

us = -—Ey (3-205)

We note that u;» = ug3 = —E, because the attachment points of springs 2 and 3 lie ahead of
the positions of the first and second block, respectively. Then the spring forces are given as

Faq = -Ki(x; —410)Ex (3-206)

Fo = Kp(xz—x1 —¥20)Ex (3-207)

F3 = K3(f —x2—4¥30)Ex (3-208)

Next, the force exerted by each of the dampers is given as

Fri = —CiVren (3-209)
FfZ = —C2Vryel2 (3-210)
Fr3 = —C3Vre3 (3-211)
Now we have
Vien = ‘vi—-7vo (3-212)
Viez = Jva-Tw (3-213)

Vrel3 = Fy, - fVQ (3-214)
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where we have taken into account the velocity of each block relative to the attachment point of
the respective damper. Now because points O and Q are absolutely fixed, we have 7vy = Fvq =
0. Furthermore, using the expressions for 7v, 7v,, and Fv3 from Egs. (3-191) and (3-192), we

obtain
Vie,i = X1Ex
Viel2 = X2Ex —X1Ex = (X2 — x1)Ex
Vre3 = XoEx

We then obtain the force exert by each damper as

Fri = -—-cxEx
—c2(X2 — x1)Ex

]
%
N

Il

Fr3 = —c3x2Ex
Newton’s 2”4 law for the first block is then given as
Fi =Fg +Fo +Fp +Fpp = my7Ta
which implies that
—Ki(x1 = 410)Ex + Ko (x2 — X1 = €20)Ex — C1X1Ex — C2(X2 — X1)Ex = m1 X1 Ex

Dropping E, from this last equation gives

—Ki1(x1 —410) + K2(x2 — x1 = £20) — c1X1 — C2(X2 — X1) = miX
Rearranging, we obtain

miX; + (€1 — C2) X1 + CaXo + Ki1x1 — Ko (x2 — x1) = K110 — Kol
Equation (3-224) can be rewritten as

miXy + (€1 + c2)X1 + coXo + (K1 + K2)x1 — Koxo = K119 — Kot
Newton’s 2”4 law for the second collar is given as

F, = —Fs + Fg3 —Fpp + Fp3 = mpTay
which implies that
—Kz(x2 — x1 — £20)Ex + K3(£ — X2 — £30)Ex + C2(X2 — X1)Ex — c3X2Ex = maX2Ey
Dropping E, from this last equation gives
—Ka(x2 — x1 —¥20) + K3(£ — x2 — £30) + C2(X2 — X1) — C3%2 = MaXo
Rearranging, we obtain
MmaXy + Co (X1 — X2) + c3X2 + Ko (X2 — x1) + K3x2 = Kolag + K3 (£ — £30)

Equation (3-229) can be rewritten as

MoXo + CaX1 + (c3 — €2) X2 — Kox1 + (Ko + K3)x2 = Kooo + K3 (€ — ¥30)

(3-215)
(3-216)
(3-217)

(3-218)
(3-219)
(3-220)

(3-221)

(3-222)

(3-223)

(3-224)

(3-225)

(3-226)

(3-227)

(3-228)

(3-229)

(3-230)

The system of two differential equations describing the motion of the two collars is then given

as

K110 — Kol

miX1 + (€1 — c2) X1 + X2 + (K1 + K2)x1 — Koxo

Mok + CoX1 + (€3 — €2) X2 — Kox1 + (Ko + K3)x2 = Kotao + Kz (£ — ¥30)

(3-231)
(3-232)
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Equations (3-231) and (3-232) can be written in matrix form as

mi 0 551 n C1 —C2 C2 5(1
0 mp .552 C C3 —C )-Cz

(3-233)
N Ky + K> -K> x| _ K410 — Kot
-K» Ky +Kj3 X2 —Kolog + K3 (€ — 30)
which has the general matrix-vector form
MX+CX+KX=b (3-234)

Now it is seen that the condition for static equilibrium of the system in Eq. (3-234) is given as

KX.q=b (3-235)
Now let
Y =X-Xq (3-236)
We then have
Y = X (3-237)
Y = X (3-238)

Substituting the expression for b into Eq. (3-234), we obtain
MX + CX + KX = KX (3-239)
This last equation can be rewritten as
MX +CX+K(X-Xq) =0 (3-240)
Noting that Y = X — X,; and X =Y, Eq. (3-240) can be rewritten as
MY +CY+KY =0 (3-241)

It is seen that Eq. (3-241) has a similar mathematical form to the single degree-of-freedom
system, the difference being that in this case we have a matrix and column-vector differential
equation (or, alternatively, a system of differential equations) as opposed to a scalar differential
equation. Consequently, the solution to Eq. (3-241) will itself be a column vector.

3.2.2 Analysis of Unforced Damped Multiple Degree-of-Freedom Systems

Consider now a free damped multiple degree-of-freedom system relative to a static equilibrium
point given as
MY +CY+KY =0 (3-242)

It is seen that the difference betwen Eq. (3-241) and (3-37) on page 58 is that Eq. (3-241) has
the additional term CY. This addition term is due to the damping that may be part of some
two degree-of-freedom vibratory systems. Now, we recall from section 3.1.2 that two degree-
of-freedom systems without damping [i.e., systems that satisfy Eq. (3-37)] can be decoupled by
determining the eigenvectors of the weighted eigenvalues problem Ku = AMu. In particular,
using the fact that the eigenvectors are orthogonal to both the mass and stiffness matrices, we
can write

U'KU = U'MUA (3-243)

Then, using a mass-normalized eigenvector matrix U, we have

U'™MU =1 (3-244)
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which implies that
U'KU=A = [ Av 0 } (3-245)
Then, in terms of modal coordinates we had
d+Aq=0 (3-246)
Alternatively, in scalar form we had the system of two decoupled differential equations
dr + Akqx =0, (k=1,...,n) (3-247)

Now, in the case where the system is damped, it is seen in general that the eigenvector matrix
will not diagonalize the damping matrix, i.e., in general it is the case that

ulcu=C (3-248)

where C would be a n X n diagonal matrix, i.e., if C were diagonalizable by the eigenvector
matrix then we would have

C=1 (3-249)
Then, if C was diagonalizable by U, we would be able to write

a+Ca+Aq=0 (3-250)
As aresult, in the case where U diagonalizes C, we would have n scalar equations of the form
6'['k+C~kq+2\qu:0, (i=1,...,n) (3-251)

However, because C is in general not diagonalizable by U, the second term in Eq. (3-250) will
not lead to the form of Eq. (3-251). In other words, when using the transformation

Y =Uq (3-252)

where U is the eigenvector matrix, Eq. (3-241) becomes

G+Tq+Aq=0 (3-253)
where I is given as
Yz Y2 - Yin
Y21 Y22t Yon
= . . . . (3-254)
Yni Yn2 ' Ynn

Because the matrix I is not diagonal, the eigenvector U matrix cannot be used to obtain a modal
form for a multiple degree-of-freedom damped linear system.
3.2.3 Modal Damping (Proportional Damping)
Suppose now that we consider the special case where the damping matrix C is given as
C=oaM+BK (3-255)
Then Eq. (3-241) can be written as
MY + (aM + BK)Y +KY = 0 (3-256)

Suppose now that we transform Eq. (3-256) using the eigenvector matrix U of the weighted
eigenvalue problem Ku = AMu, i.e., we let

Y =Uq (3-257)
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Then, we have
MUqG + (eM + BK)Uq + KUq = 0 (3-258)

Multiplying on the left-hand side by UT gives
U'MUg + UT (aM + BK)Uq + UTKUq = 0 (3-259)
Equation (3-259) can be rewritten as
U'™MU§ + (aUT™MU + BUTKU)q + U'KUq = 0 (3-260)

Suppose now that we choose a mass-normalized eigenvector matrix, i.e., U has the property
that

UMU = 1 (3-261)
U'KU = A (3-262)

Then Eq. (3-260) can be written as
g+ (al+BA)Q+Aq=0 (3-263)

Because A is diagonal, it is seen that the matrix I + SA is also diagonal. In scalar form we have
the following two differential equations:

dr + (x+ BAr)g + Axg = 0, (i=1,...,n) (3-264)

Suppose now that we consider the case where « + BA; > 0 for i = 1, 2. Furthermore, using the
earlier notation, we can write Eq. (3-264) as

dr + Yrdk + Axdr = 0, (i=1,...,n) (3-265)

where
Yk = X + BAg, (i=1,...,n) (3-266)

It is seen that Eq. (3-265) is a system of two decoupled second-order LTI differential equations,
each of which can be solved by the techniques for single degree-of-freedom systems. The form
of damping given in Eq. (3-255) is called modal damping because it is diagonalizable by the
eigenvector matrix of the weighted eigenvalue problem. Suppose now that we define

)\k = (,()]2<
s k=1,...,n 3-267
Yk = 2Crwy ( ) ( )
The quantities wy, (i = 1,...,n) and Ck, (i = 1,...,n) are the modal natural frequencies

and modal damping ratios, respectively. In terms of the modal natural frequencies and modal
damping ratios, we can write

Gk + 2Ckwid + wiq = 0, (k=1,...,n) (3-268)

It can be seen that the each differential equation in Eq. (3-268) is in the standard form and thus
can be solved via the techniques for a single degree-of-freedom LTI
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Example 3-3
Consider the free damped two degree-of-freedom system
MY + CY +KY =0

where the mass, damping, and stiffness matrices, are given, respectively, as follows

10
b = [02
3 2
c = 2 —4
2 -1
K =13 3

Determine a system of two uncoupled differential equations of the form
q+Iq+Aq=0

where the matrices I and A are diagonal.

Solution to Example 3-3

Using the mass, damping, and stiffness matrices given in the problem statement, it is seen that

C=[_§ j}:—[é g]+2[_§ _é}z—M+2K (3-269)

Consequently, C is a modal damping matrix for this problem. We can then use the eigenvector
matrix associated with the weighted eigenvalue problem to decouple the original differential
equations. Now recall that the matrices M and K are the same as those used in Example 3-2.
In particular, recall that the mass-normalized eigenvector matrix in Example 3-2 is given from
Eq. (3-171) on page 71 as

€ 2
U= [ \/12 3 } (3-270)
Now we know from Example 3-2 that U decouples the undamped system, i.e.,
1 0
T _ _
UMU = [ 0 1 } (3-271)
1 0
U'KU = [ 5 ] (3-272)
0 3

Furthermore, for this example it is seen that

1 1 _ 1

uvlcu=| B ¥ L B | bo (3-273)
2 _1 1 -1 R 0 4
3 NG V3 V6

which implies that the eigenvector matrix also decouples the damping matrix C. Now let us
return to the original system. Applying the transformation Y = Uq, we obtain

’_‘w\m

MUq + CUq + KUq = 0 (3-274)
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Then, pre-multiplying by U gives
U™Ug + UTCUq + UTKUq = 0 (3-275)

Then, substituting the expressions for U'MU, UTKU, and U’ CU from Egs. (3-271), (3-271), and
(3-271), respectively, we obtain

1 0 1 0 1 0
q + ] + =0 3-276
[0 1}“‘[0 4}‘*[02}‘1 (3270

Then, setting (q1,q2) = q, Eq. (3-276) is equivalent to the following two scalar differential
equations:

dgi+ai+aq1 = 0 (3-277)
do +4d> + 3q> 0 (3-278)

It can be seen that Egs. (3-277) and (3-278) are decoupled, consistent with the fact that we
have a modally damped system. Finally, recall from Eq. (3-269) that the damping matrix for
this example is given as C = —M + 2K which implies that «x = —1 and = 2. Therefore, from
Eq. (3-266) we have

y1 = o+ BA; (3-279)
yi = o+ BA; (3-280)

Now the eigenvalues of the undamped problem are the same as those given in Eq. (3-148) on
page 69 of Example 3-2, i.e., the eigenvalues are

A o= 1 (3-281)
A = 3 (3-282)
Therefore,
yi = -142A=-1+42(1)=1 (3-283)
Yy = —142A=-1+2(5/2)=4 (3-284)

Examining Egs. (3-277) and (3-278) it is seen that the coefficients multiplying the 4, and g»
terms are 1 and 4, respectively. Consequently, because we have a modally damped system in
this example, determining the values y; and y; is equivalent to computing the transformation
uTcu.

Example 3-4
Consider the system of two nonlinear differential equations

(my + my)x + kix + molO cos@ TmZZO'ZSmG = 0
MmoX cosO + molO + mogsind = 0

Determine (a) the static equilibrium point for the system, (b) the differential equations of mo-
tion for values of x and 0 near the static equilibrium point found in part (a), and (c) the differ-
ential equations in modal coordinates for the case m; = m, =1,l=1,and g = 1.
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Solution to Example 3-4
(a) Static Equilibrium Point
Let (xeq, 0eq) be the static equilibrium point. Then we have

).feqzo y )?eq:O

Oeg =0 , BO,q=0
Substituting these results into the system of differential equations, we obtain

kix = 0=x=0

mpgsing = 0= sin0 =0 = 0,y =0 (3-285)

Therefore, the equilibrium point for this system is (x.q, 8eq) = (0,0).

(b) Linearization of Differential Equations Near Equilibrium Point

Then, we can linearize the differential equations of motion for values of x and 6 near the
equilibrium values as follows. First, let

0X = X —Xeq
50 = 0- 0. (3-286)
Then,
ox = x
o0x = X 3-287
69 _ 9 (3-287)
60 = 0
Furthermore, we have
c0sf = €080, —Sinf,;00 = cos(0) =1
sin@ ~ sin0.q + 080460 = sin(0) + cos(0)60 = 66 (3-288)
02 ~ 20,360 =0

Therefore, the differential equations near the equilibrium point are given as

(m1+m2)65€+k162<+m216é 0
m0X + mald0 + mpgdd = 0

Dividing the first differential equation by [ (in order to make the system symmetric), we obtain

0
0

M2 5%+ KLox + mpd0
Mo0X + mald0 + mogoo

These last two equations can be written in vector-matrix form as

m tme ox ky 0 ox 0
I ma > 1 — _
A IR AR b
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(c) Differential Equations in Modal Coordinates

Let

[ Sx

X = i 6«9] (3-290)
[ mp+mo

M = I 2 } (3-291)
L mp mzl
c

=L 0
- 1 _
K I 0 mag ] (3-292)

Then, substituting the given values of m; = m» =1,1 =1, k; = 1, and g = 1, we obtain

2 1

M = [1 1} (3-293)
2 0

K = [0 1} (3-294)

We then can obtain the modal natural frequencies by solving the weighted eigenvalue problem
Ku = AMu. In particular, the eigenvalues are found as

det (AM -K) =0 (3-295)
which for this problem implies that
2 1 2 0 2A -2 A
(a2 1]-[2 0] -] 252 20 ] we
We then obtain
RA-2)(A=1)—A>=A%-5A+2=0 (3-297)

The eigenvalues are then given as

_ 5++/25-4(1)(2) _ 5+417

Az 2 2

(3-298)

It is noted that 5 > /17 which implies that both A; and A, are positive (which they should be
because this is an undamped oscillatory system). Then we know that the equations in modal
coordinates are given as

aithar = 0 (3-299)
42 9P Azﬂz = 0 (3—300)
which for this problem implies that
54417
q1 5 41 = 0 (3-301)
o + > — Y = 0 (3-302)
(3-303)
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3.3 Non-Symmetric Mass and Stiffness Matrices

Until now all of the theory that we have been discussed has relied on the assumption that the
mass and stiffness matrices are symmetric. In particular, the weighted eigenvalue problem
Ku = AMu produces positive real eigenvalues and orthogonal eigenvectors only in the case
where M is symmetric and positive definite while K is symmetric and positive semi-definite.
Unfortunately, the ability to obtain symmetric mass and stiffness matrices depends upon the
approach used to derive the differential equations. In more advanced courses in vibrations the
differential equations are derived using advanced methods involving Lagrangian mechanics.
However, in our study we have focused on Newtonian formulations. When using Newtonian me-
chanics, it is often possible to obtain a system of differential equations which, when linearized
about the static equilibrium point, results in non-symmetric mass and stiffness matrices. In
order to demonstrate this point, we will now explore an example for which this lack of sym-
metry exists. Now, while no systematic procedure exists from which the system can be made
symmetric, we will proceed to discuss briefly through this example how a symmetric form can
be obtained.

Example 3-5

A collar of mass m; is constrained to slide along a frictionless horizontal track as shown in
Fig. 3-7. Attached to the collar is a linear spring with spring constant K and unstretched length
{y. The collar is attached to one end of a rigid massless arm of length [ while a particle of mass
m; is attached to the other end of the arm. Knowing that x describes the displacement of the
collar relative to the track, that the angle 0 is measured from the downward direction, that the
spring is unstretched when x = 0, and that gravity acts downward, determine (a) a system of
two differential equations that describes the motion of the collar-particle system; (b) a system
of differential equations linearized about the static equilibrium point; (c) an alternate system
of differential equations via algebraic manipulation of the system obtained in part (a); and (d) a
system of differential equations from part (c) linearized about the static equilibrium point.

X
K m1| A

NNNNNNNAN

Figure 3-7 Particle on rigid massless arm attached to sliding collar on spring.

Solution to Example 3-5

Kinematics

First, let F be a reference frame fixed to the track. Then, choose the following coordinate
system fixed in reference frame F:

Origin at Q
when x =0
E. = To the right

r Ot
> = o orpPage

E, = E. X Ey
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Next, let A be a reference frame fixed to the arm. Then, choose the following coordinate system
fixed in reference frame A:

Origin at Q
e, = Along QP
e, = Out of page
ey = e, xe,

The geometry of the bases {Ey,E, ,E.} and {e,,eg, e} is shown in Fig. 3-8.

Ey

eZsEZ

Figure 3-8 Geometry of bases {Ey,E, ,E.} and {e,,eg,e.} for Example 3-5.

Using Fig. 3-8, we have

e, SinO@Ey — cosOE,, (3-304)

CcoSOEy + sindE,, (3-305)

€9

Now, consistent with the discussion at the beginning of this problem, we establish the kinemat-
ics relevant to the system consisting of the collar and the system consisting of the collar and
the particle.

Kinematics of Collar

The position of the collar is given as
r; = xEy (3-306)

Computing the rate of change of r; in reference frame F, we obtain the velocity of the collar in
reference frame F as

. Fa
Ty = T (r;) = XEy (3-307)

Finally, computing the rate of change of 7v; in reference frame ¥, we obtain the acceleration
of the collar in reference frame F as

Fa, = — (fvl) = XE, (3-308)
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Kinematics of Particle

The kinematics of the collar-particle system are governed by the motion of the center of mass
of the system. Consequently, in order to determine the kinematics of the center of mass of the
collar-particle system, it is first necessary to determine the position, velocity, and The position
of the particle is given as

') =11 +TI2/1 (3-309)

Now we have
I = ley (3-310)

Then, adding Egs. (3-310) and (3-309), we obtain the position of the particle as
> = XEyx + le, (3-311)
Next, the angular velocity of reference frame A in reference frame ¥ is given as
Tw? = e, (3-312)
Consequently, the velocity of the particle in reference frame F is obtained as

Fd Fa Fa
Fv, = T7 (rp) = T (r1) + T (r2n) =Ivi+7vap (3-313)

We already have 7v; from Eq. (3-307). Applying the rate of change transport theorem to ry/;
between reference frames A and F gives

Fd rd
fVZ/l = dt (1'2/1) = E (1‘2/1) +fwj‘ XI‘2/1 (3—314)
Now we have
A
a
ar (rz1) = 0 (-21s)
Fw? x1y,1 = 0Oe,xle, =10ey (3-316)

Adding Egs. (3-315) and (3-316), we obtain the velocity of the particle relative to the collar in
reference frame F as _
‘TV2/1 = l9e9 (3—317)

Then, substituting the results of Egs. (3-307) and (3-317) into Eq. (3-313), we obtain the velocity
of the particle in reference frame F as

Fvy = XEx + l0eg (3-318)

Computing the rate of change of 7v; in reference frame ¥ using the general expression for 7v;
as given in Eq. (3-313), the acceleration of the particle in reference frame F is given as

F F F
faz = % (fVZ) = % (fV1> ol % (TV2/1> = fal +fa2/1 (3-319)

Now we already have 7a; from Eq. (3-308). Applying the rate of change transport theorem
between reference frames A and F, we obtain Tay;; as

F a
Fap, = i(jrv ): i(fv )+fwﬂ><fv (3-320)
2/1 At 2/1 At 2/1 2/1
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Now we have

A
d .
= (T — -
dt( Vo) = e (3-321)
Fw? x Fvy)y = e, x 10eg = —10%e, (3-322)

Adding Egs. (3-321) and (3-322), we obtain
Tap = —10%, + l0ey (3-323)

Finally, adding Egs. (3-323) and (3-308), we obtain the acceleration of the particle in reference
frame T as
Fa, = XEx — 10%e, + l0ey (3-324)

Kinematics of Center of Mass of Collar-Particle System
The position of the center of mass of the collar-particle system is given as

f= mir; + mero (3-325)
mi; +mp

Substituting the expressions for r; and r; from Egs. (3-306) and (3-309), respectively, into
(3-325), we obtain I as

mixEy + mo(xEy + le,) _ XE, + mo le, (3-326)
my + mo mp +m;

r=

Next, the velocity of the center of mass of the collar-particle system in reference frame ¥ is
given as
Fo - miFvy + moTv,

(3-327)
my + mp

Substituting the expression for v, from Eq. (3-307) and the expression for v, from
Eq. (3-318) into (3-327), we obtain 7v as

miXEy + mo(XEx + 1Oep) — XE, + mo 10es (3-328)

f",= e
my + mp my + mp

Finally, the acceleration of the center of mass of the collar-particle system in reference frame
F is given as
Fa o miFa; + my7Ta

(3-329)
mi + mp

Substituting the expressions for Fa; and a, from Egs. (3-308) and (3-324), respectively, into
(3-329), we obtain

. . _ 2 A . .
Fa o m i XEyx + mo (XE, — 1O%e, + 1Oep) — ¥E, + L(flezey + liey) (3-330)
mi +mo my + mp

Kinetics

In order to solve this problem, it is convenient to analyze the following two systems: (1) the
collar and (2) the collar and the particle. The kinetic relationships for each of these two systems
is now established.
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Kinetics of Collar

The free body diagram of the collar is shown in Fig. 3-9.

N

mg

Figure 3-9  Free body diagram of collar for Example 3-5.

Using Fig. 3-9, it is seen that the following forces act on the collar:

N = Reaction force of track on collar
R = Tension force in arm due to particle
F; = Force of linear spring

mig = Force of gravity

The forces acting on the collar are given in terms of the bases {Ey,E, ,E.} and {e,,eg,e.} as

N = NE, (3-331)
R = Re, (3-332)
Fs = —-KM{-"{y)us=-K(x+¥y—Lo)Ex = —KxEx (3-333)
mig = -mgE, (3-334)

It is noted that, because the spring is unstretched when x = 0, the length of the spring is
£ = x + ¥1o. Furthermore, it is noted in Eq. (3-332) that, from the strong form of Newton’s 3"¢
law, the force R must lie along the line of action connecting the collar and the particle. The
resultant force acting on the collar is then given as

Fi =N+R+Fs; + mig = NE, + Re, — KxEy — m1gE,, (3-335)
Then, substituting the expression for e, from Eq. (3-304) into (3-335), we have

F, = NE, + R(sin0@E, — cosOE,) - KxE, — m;gE,,

= (Rsin@ — Kx)Ey + (N — Rcos0 — m19)E, (3-336)

Applying Newton’s 2”4 law to the collar by setting F; in Eq. (3-336) equal to m;7a; using the
expression for Fa; from Eq. (3-308), we obtain

(Rsin® — Kx)Ex + (N — Rcos0 —m1g)E, = m XEy (3-337)
Equation (3-337) yields the following two scalar equations:

Rsinf —Kx = wmX (3-338)
0 (3-339)

N —-RcosO —mg
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Kinetics of Collar-Particle System
The free body diagram of the collar-particle system is shown in Fig. 3-10.

N A

« (s

Fy

mgv

mpg

Figure 3-10 Free body diagram of collar-particle system for Example 3-5.

Using Fig. 3-10, it is seen that the following forces act on the collar-particle system:

N = Reaction force of track on collar
F; = Force in linear spring
(m; +my)g = Force of gravity

We already have N and F; from Egs. (3-331) and (3-333), respectively. Furthermore, the force
of gravity acting on the collar-particle system is given as

(my + mp)g = —(my + my)gE,, (3-340)
Consequently, the resultant force acting on the collar is given as

F=N+F;+ (m; +mp)g
NE, — KxEyx — (m; + mz)gE, (3-341)
= —KXEy + [N — (m; + m2)g]E,

Applying Newton’s 2"4 law to the collar-particle system by setting F in Eq. (3-341) equal to
(m; + my)7a using the expression for 7a from Eq. (3-330), we obtain

—KxEy + [N — (m; + mp)g]E, = (my + my) [XEX + Hiz (-16%e, + léeg)] (3-342)

mi +mp
Equation (3-342) can be rewritten as
—KxEy + [N — (my + m2)g]E, = (m; + my)XEy — mol02e, + mylley (3-343)

Then, substituting the expressions for e, and ey from Egs. (3-304) and (3-305), respectively,
into Eq. (3-343), we obtain

—KxEyx + [N = (m1 + mp)g]E, = (my + m2)XE, — Mol0%(sinOE, — cosOE,) (3-344)
+m10(cos OEy + sinOE,)
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Rearranging Eq. (3-344), we obtain

—KxEy + [N = (m; + my)g]E, = [(m1 + M) X + Myl cosO — m»10? sinO]EX

. ) (3-345)
+ [mzle sin@ + myl6? cose} E,
Equation (3-345) yields the following two scalar equations:
—Kx = (my+m)x+moldcos® —m»10%sin0 (3-346)
N-—(mi+mz)g = mylOsind +m»10°cosO (3-347)

(a) System of Two Differential Equations

Using the results of Egs. (3-338), (3-339), (3-346), and (3-347), a system of two differential
equations is now determined. Because Eq. (3-346) has no unknown forces, it is the first differen-
tial equation. The second differential equation is obtained as follows. Multiplying Eqgs. (3-338)
and (3-339) by cos @ and sin 0, respectively, we have

(Rsin® — Kx)cos® = m;Xcos6 (3-348)
Nsin@ — Rcos0 sin0 —m;gsind = 0 (3-349)

Adding Egs. (3-348) and (3-349), we obtain
—Kxcos0 + Nsinf —m;gsin0 = m;x coso (3-350)

Next, multiplying Eq. (3-347) by sin0 gives
Nsin0 — (m; + m»)gsin@ = m10 sin® 0 + m,10% cos O sin 0 (3-351)

Then, subtracting Eq. (3-351) from (3-350), we obtain

Myg sin® — Kx cosO = m % cosO —mol0sin® 0 — m»10% cos 0 sin o (3-352)

Rearranging Eq. (3-352), we obtain the second differential equation of motion as
mix% cos 0 — mol0sin® 0 — m2102 cos 0 sin@ — mog sind + Kx cos0 = 0 (3-353)

A system of two differential equations that describes the motion of the collar-particle system
is then given as

(my + mp)x% + Mol cos® — mol0%sind + Kx = (3-354)

0
0 (3-355)

miX cos0 — m»10sin® 0 — m»10% cos 0 sind — mogsind + Kx cos 0

(b) Linearization of Differential Equations About Static Equilibrium Point

Let (Xeq, 0oq) be the static equilibrium point. Then, substituting x.; and 6.4, along with the
relationships X.; = Xeq = 0 and 6,4 = 0.4 = 0, into Eq. (3-354) and (3-355), we obtain

Kxeq = 0 (3-356)
Mg sind e + Kxeqc080, = 0 (3-357)

It is seen from Egs. (3-356) and (3-357) that the static equilibrium point is (x.q, 8eq) = (0,0).
Next, let
X = X-—X.

|
(o)
|
)
o
S S




3.3 Non-Symmetric Mass and Stiffness Matrices 91

Then, assuming that 6x and 66 are small, we know that all terms involving products of 6x and
60 (and products involving derivatives of 6x and 60) are negligible. Furthermor, we know that
cosO =cos660 ~ 1 andsinf = sin 660 ~ 560. The differential equations linearized relative to the
static equilibrium point are then given as

(3-359)
(3-360)

(my + m2)8% + myals0 + Kéx = 0
mpoxX —mygdé0+Kdéx = 0

Equations (3-359) and (3-360) can be written in matrix form as

m; +my mol ox K 0 ox | | O
[ mi 0 }[(W}JF[K —ng][ae =l o (3-361)
It can be seen that the mass and stiffness matrices in Eq. (3-361) are not symmetric. Con-
sequently, this form of the linearized differential equations is not suitable for eigenvalue-
eigenvector analysis using the symmetric weighted eigenvalue problem. In order to use the
aforementioned techniques to decouple the differential equations, it is necessary to obtain a

symmetric form for the linearized dynamics. We now show how to obtain a symmetric form of
the linearized differential equations.

(c) Alternate System of Differential Equations

Multiplying Eq. (3-354) by cos 8, we have

(my + my)% cosO + my10 cos®> @ — m,10%sin@ cos® + Kxcosd = 0 (3-362)
myxX cos O —myl0sin® @ — m,10% cos 0 sin@ — mogsind + Kxcos® = 0 (3-363)
Then, subtracting Eq. (3-363) from (3-362), we obtain
MyX cos 0 + myl0(cos® O + sin® 0) + mogsind = 0 (3-364)
Using the fact that cos? 0 + sin’ 0 = 1, Eq. (3-364) simplifies to
MoX cos0 +mald + morgsind =0 (3-365)

Now, because the two differential equations in Egs. (3-354) and (3-355) are independent and we
have obtained Egs. (3-354) and (3-365) via a nonsingular transformation, the two differential
equations in Egs. (3-354) and (3-365) are also independent. Consequently, an alternate system
of two differential equations describing the motion of the collar-particle system is given as

(my + mo)% + mol@cosO — myl0%sind + Kx = 0 (3-366)
Mok cos 0 + mol0 + mogsin®d = 0 (3-367)

(d) Linearization of Alternate System of Differential Equations

First, it is important to note that the static equilibrium point for the system obtain in
Egs. (3-366) and (3-367) is the same as that which was obtained previously, i.e., the static
equilibrium point is (Xegq, 0eq) = (0,0). Then, the alternate system of differential equations
obtained in Eqgs. (3-366) and (3-367) can be linearized in a manner similar to that which was
performed for the original system of differential equations. In particular, neglecting all higher
order terms involving products of 6x and 66 and products of their derivatives, we obtain

(M) + my)8% + muld0 + Kéx = 0 (3-368)
M20X + Mol60 + mrgsd = 0 (3-369)
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where we have again used the approximations cos@ = cosd60 ~ 1 and sinf = sind6 ~ §0.
Next, dividing Eq. (3-368 by [ yields the system

m&& 60 + %5;(

Mo8X + mlé0 + mygso

Il
o

(3-370)
(3-371)

Il
=)

Equations (3-370) and (3-371) can be written in matrix form as
(m; +m)/l moy ox K/l 0 ox | | O
[ ms mol ] [ 56 | T 0 mog 60 | | O (3-372)
Unlike the matrix differential equation that was obtain in Eq. (3-361), it is seen that the mass
and stiffness matrices in Eq. (3-372) are both symmetric. Furthermore (and equally important)

M is positive definite while K is positive semi-definite, thereby making it possible to analyze
the system in Eq. (3-372) using the eigenvalue-eigenvector techniques described previously.




Chapter 4

Forced Response of Multiple
Degree-of-Freedom Systems

In Chapter 3 we studied the response of a multiple degree-of-freedom system to initial con-
ditions. We now turn our attention to the response of multiple degree-of-freedom systems to
external time-varying forcing functions. In particular, in this chapter we start with a general
system of linear time-invariant second-order differential equations subject to a general forc-
ing function. We then divide the analysis into two parts. In the first part of this chapter we
study the response of a multiple degree-of-freedom system to nonperiodic inputs whereas in
the second part of this chapter we study the response of multiple degree-of-freedom systems
to periodic inputs.

4.1 Generic Model for Forced Multiple Degree-of-Freedom System

The general mathematical model for a forced multiple degree-of-freedom system subject to a
time-varying forcing function is given as

MY + CY + KY = f(t) (4-1)

where f(t) is an external vector forcing function of time. Similar to a single degree-of-freedom
system, the function f(t) is not a function of Y and its derivatives, but is an explicit function of
time.

4.2 Response of Modally Damped Systems to Nonperiodic Inputs

Now consider the case of a modally damped system and an input function f(t) that is nonperi-
odic. Because C is a modal damping matrix, we know that

C=aM+ K (4-2)

Then, from Eq. (3-263) we know that the eigenvector matrix U of the weighted eigenva}ue
problem Ku = AMu can be used to decouple the homogeneous differential equation MY + CY +
KY =0

q+ («I+BA)G+Aq=0 (4-3)
where Y = Uq. However, in this case we have a nonhomogeneous differential equation. Then,

from Eq. (4-1) we have
MU§ + CUq + KUq = f(t) (4-4)
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Multiplying on the left-hand side by U” gives
U™™U¢q + U'Cuq + UTKUq = UTf(¢) (4-5)
Now assuming that U is mass-normalized, U'MU = I we obtain
a+ (ed+ BA)G+Aq=UTf(t) (4-6)

where we know for a mass normalized eigenvector matrix that U'KU = A. It is seen that the
system of differential equations given by Eq. (4-6) is also decoupled with the exception that the
right-hand side is not zero. However, as we will soon see, the fact that the right-hand side is
nonzero does not pose a computational problem for modally damped systems. In particular,
let

F
F>
ulf=| . 4-7)
Fy
Then in scalar form Eq. (4-6) can be written as
dr + (& + BAR)qr + Akaqx = Fi (1), (k=1,...,n) (4-8)

It is seen that Eq. (4-8) is a system of n scalar uncoupled second-order LTI differential equa-
tions. Consequently, for nonperiodic inputs the differential equations of Eq. (4-8) can be solved
using the techniques in Chapter 2. In order to see more clearly how these differential equations
can be solved, suppose that each function fi(t), (k = 1,...,n) is a linear combination of fun-
damental nonperiodic function (e.g., linear combinations of functions such as the unit impulse
function, the unit step function, the unit ramp function, etc.). Then each differential equation
in Eq. (4-8) can be written as

m
G + (o + BA) i + Adi = . akjh;(t), (k=1,...,n) (4-9)
Jj=0
where
ho(t) = o(t)
t
hi(t) = J ho(T)dT
0
t
hy(t) = JO hy(T)dTt (4-10)
' t
hp(t) = J hp (T)dT
0
In other words, each function hj(t), (j = 0,...,n) is a multiple integral of the unit impulse
function. Now suppose that we let gi;(t), (j = 0,...,m) be the response of the kth differential

equation in Eq. (4-8) to the input h;(t), (j = 0,...,m). Then the response of the kth differential
equation in Eq. (4-8) is given as

ak(t) = > arjg;(t) (4-11)
j=0
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Then, the response of the original system defined by Y(t) is given as

Z ayjgij(t)
qi1(t) J;lo
qz(t) z azjgzj(t)
Y(t) =Uq(t) =U : = j=0
Qn.(t) .
Z anjgnj(t)
L j=o0 ]

Now we know that the eigenvector matrix can be written in general form

Uil U2 -+ Uin

U1 U2 -+ U2n
U=

Unt Un2 -+ Unn

Consequently, Eq. (4-12) can be written as

r m T1r n m
Z aijg1;(t) u
=0 p=1  j=0
Upip U2 -+ Un m n m
U1 U2 -+ U2p Z azjgzj(t) Z u
Y(t) = Jj=0 p=1 j=0
Un1r Un2 - Unpn m n m
2. Anjdni®) || X np X apigp;(t)
L j=0 J4 L p=1 J=0

Finally, we can rewrite

Y(t) =| p=1j-0

n m
D D Uipapgpi(t)

n m
D D Unpdpidpi(t)
L p=1,=0 i

U2pApjFp;j(t)

1p 2. Apjgpj(t)

2p Z apjgpj(t)

(4-12)

(4-13)

(4-14)

(4-15)

In other words, not only is the response of the system in the original coordinates Y(t) a linear
combination of the responses to the input functions h;(t), (j = 0,...,n), but, due to the
fact that the elements of Y are themselves linear combinations of the elements of q (due to
the eigenvector matrix, U), this response is simultaneously a linear combination of these linear

combinations.

Example 4-1

Consider the forced damped two degree-of-fr

eedom system

MY + CY + KY = f(t)
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where the mass, damping, and stiffness matrices, are given, respectively, as follows

10
LS [02
-3 2
c = 2 -4
2 -1
LS = -1 3

Determine the response of the system to the input f(t) where f(t) is given as

o[ 26 |

where 6(t) and u(t) are the unit impulse function and unit step function, respectively.

Solution to Example 4-1

Recall that the mass, damping, and stiffness matrices correspond to those of Example 4-1.
Furthermore, the mass-normalized eigenvector matrix of the weighted eigenvalue problem
Ku = AMu is given from Eq. (3-270) on page 80

iz
u=| ¢ V3 (4-16)
BT

Furthermore, we know from Example 4-1 that the system for this problem is modally damped.
Consequently, the modal coordinate equations are obtained from Eq. (4-6) as

G+ (ol + BA)G+ Aq = UTE(1) (4-17)
Again, from Eqgs. (3-272), and (3-273) we have, respectively,
1
U'KU=A = [ 0 2 ] (4-18)
2
T 1 0
oI+ BA=U'CU= 0 4 (4-19)
Finally, using U in Eq. (4-16), we have
1 1 1 1
u't=| B ¢ [ o(t) } _ | BB+ u®) (4-20)
2 L[ uw® V28t - Lu)
Therefore, from Eq. (4-7) we have
F(t) 16(t)+ 1u(t) aoho(t) +a h(t)—ia hi(t) (4-21)
1 = 7= = = aioho 1111 = 1M -
V3 V3 =
2 1 !
Fp(t) = §5(t) = %u(t) = daxoho(t) + az hi(t) = Z azjh;(t) (4-22)
j=0

where ho(t) = 6(t) and h,(t) = u(t). Furthermore, the coefficients ax;, (k = 1,2),(j = 0,1)
are given as

ap = y A =

(4-23)

—
w\m&y‘
= Sl

<
=)

azp = y a1 = —
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Suppose now that we let gio(t) and g1 (t) be the response of the first modal coordinate, q; (t),
to the functions ho(t) = 6(t) and hq(t) = u(t), respectively. Then, from the principle of
superposition, the total response of the first modal coordinate is given as

1 1
q1(t) = a10g10(t) + a11g11(t) = ﬁglo(t) + ﬁgu(t) (4-24)

Similarly, suppose that we let g»>o(t) and g2, (t) be the response of the second modal coordinate,
qz(t), to the functions ho(t) = 6(t) and h;(t) = u(t), respectively. Then, from the principle of
superposition, the total response of the second modal coordinate is given as

q>(t) = az0g20(t) + azig»1(t) = \/ggzo(t) = %921“) (4-25)

The modal coordinate response is then given in vector form as

i (t) } Fg10(t) + J5911 ()
t) = =| T 4-26
at [ a2(t) [ \/ggzo(t) - %921@) ( )

Then, using the fact that Y = Uq, we obtain the response of the original system as

5 3 L Z || 5910® + Fan®
veon-[ 3 F (a0 ][5 B[ peeriee ] e
73 76 73 N 3920(t) — g21(1)

Multiplying out Eq. (4-27), we obtain

Y = [ 3910(0) + g1 (1) + $g20(t) — 321 (1) ]

4-28
L0 + La1(t) = Lga0(t) - Lgan (1) S

It is important to observe that the solution obtained in Eq. (4-28) is identical to that given in
Eq. (4-15). In particular, for this example we have m = 1 and Eq. (4-15) reduces to

2 1
DL D Uipapigpi(t)
vty =| ;M7 (4-29)
Z U2pApgpj(t)
p=1j=0

Using the eigenvector matrix U in Eq. (4-16), we have

_ 1 _ 2
un = B Ui \/1; (4-30)
U = 3 » U2 = —f5
Then, combining Eq. (4-30) and (4-23) in Eq. (4-29), we have
(0 %g (%glo(t) + v%gu(t)) + \/%(\/ggzo(t) = %921(1“)) “431)
5 (%glo(t) + \%gu(t)) - % (\/gyzo(t) - %.@21(”)
Equation (4-31) simplifies to
vo | 3900+ 3911 + 2g20(t) — 321(0) )
3910(8) + Tg11(t) = $g20(t) — £21 (1)

which is the same result as obtained in Eq. (4-28).
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4.3 Response of Modally Damped Systems to Periodic Inputs

Suppose now that the forcing function f(t) has the form
f(t) = Fe'®! (4-33)

where F is a constant. It is seen that the form of f(t¢) given in Eq. (4-33) is a vector periodic
function of time with input frequency w. Suppose now that the damping matrix C is assumed
to be modal, i.e.,

C=aoM+ BK (4-34)
Suppose further that we transform the variable Y via the eigenvector matrix U as
Y = Ug (4-35)
We then obtain _
MUg + CUq + KUq = Fe'®! (4-36)
which further implies ‘
U'MU¢§ + U'CUq + U'KUq = U'Fe'®! (4-37)

Now, assume that U has been mass-normalized. Then, because we have assumed that the
system is modally damped, this last equation can be written as

4 +Tq+ Aq = UTFei®t (4-38)
where I and A are diagonal, i.e.,
Fy1 O 0 0
0 y» O 0
r = 0 e (4-39)
- 0
| 0 O 0  yn |
FAr O 0 0
0 A O 0
A = 0 . e (4-40)
C .0
| 0 0 .- 0 An |

Suppose now that the matrix UTF is given as

fi
S
U'F=| . (4-41)
Sn
Then each scalar equation can be written as
Gk + Yrdk + Aedk = fre™, (k=1,...,n) (4-42)
Now let
Yk = 2Crwg (4-43)

A = wi (4-44)
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where i, (k =1,...,n) and wy are the damping ratios and natural frequencies for the coordi-
nates qy, (k =1,...,n). Then we can write
dk + 28k wirdr + wiax = fre'™", (k=1,...,n) (4-45)

Finally, let ,
fi=Aw,  (k=1,...,n) (4-46)

Then the system of differential equations in modal coordinates is given as
Gk + 2Ckwidk + Wiqx = Agwie'™!, k=1,...,n) (4-47)

It is seen that Eq. (4-47) is a system of decoupled equations (i.e., modal coordinate equations)
and are in the standard form as given in Eq. (2-50), i.e., each equation in Eq. (4-47) has the form

X+ 2CwpX + wix = w2 Ae'®t (4-48)
Now we now that the solution to Eq. (4-48) is given as

x(t) = A|G(iw)|et@i=® (4-49)

where G(iw) is the transfer function

1

w \? w
() e
w Wy

n

G(iw) = (4-50)

and |G(iw)| and ¢ = ¢p(w) are the magnitude and phase of G(iw), respectively. Then, for
each modal coordinate the solution is given as

ar(t) = Al Gy (iw) ! @t= 1) (4-51)
where G (iw) is the transfer function associated with the k" modal coordinate, i.e.,

1

Grliw) = — o
- (L) g
Wi Wi

(4-52)

and |Gy (iw)| and ¢y = ¢pr(w) are the magnitude and phase of G (iw), respectively. Then the
solution Y(t) is obtained as

Y =Uq (4-53)
where )
a1 A11Gy (iw) |etl@t=¢D)
a2 A2|Ga (iw)|etlwi=#2)
q-= . = . (4-54)
an An|Gy(iw)|etl@t=¢n)
Consequently,
q: A11Gy (iw) | etl@t=#1)
7k Az| G (iw)|etlwi=2)
Y:Uq:U =U ) (4—55)

dn Aann(iw)|ei<wt7¢")
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Example 4-2

Consider the two degree-of-freedom system

MY +CY+KY=F

— 1 iwt
F—[ 1 }e

where the mass, damping, and stiffness matrices, are given, respectively, as follows

where

1 0
b= [02
3 2
c = 2 —4
2 1
K =1_.,; 3

Determine the time response of the above system.

Solution to Example 4-2

Recall that M, C, and K correspond to those given in Example 3-3. Furthermore, recalling the
mass-normalized eigenvector matrix U from Eq. (3-270) on page 80 of Example 3-3, we have

1 2
u=| ¢ 3 (4-56)
from which we obtain . e
U - [ JT% s (4-57)
3 6

Then, using the value of F given in the problem statement we have

SR T2
UF=| ¥ P ][ }— =3 } (4-58)
[ Vi —w L) [ V5-%

Now, recall that Example 3-3 was modally damped. Consequently, the unforced system can be
decoupled as given in Egs. (3-277) and Eqgs. (3-278). Then, using the result of Eq. (4-58), we
obtain the forced differential equations in modal coordinates as

Gi+d+a = Zgeiet (4-59)
Go +4d> +3q2 = ( 2 %) eiwt (4-60)
Also recall from Example 3-3 that the eigenvalues of the undamped system
A= 1 (4-61)
A o= 3 (4-62)

which implies that the modal natural frequencies are given as
w; = 1 (4-63)
(4-64)

i

w? =
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Furthermore, the damping ratios are obtained as

2wy = y1=1 (4-65)
20wy = y»=4 (4-66)

where we recall that y; and y, are the coefficients associated with the terms involving g; and
q», respectively. We then obtain

1
1 = > (4-67)
4 2
G = —==2,/C (4-68)
2, 5
We can now determine the values of A; and A, as follows:
2
Aiwd = fi 7 (4-69)
Aw3d = fo= (@f %) (4-70)
Using the expressions for w; and w3», we obtain
2
A = — 4-71
1 \/§ ( )

A = 2 (\/g_ Lg) (4-72)
from which we obtain

A = (4-73)

Then the modal responses are given as

a1(t) = AlGi(iw)|el@t=#v (4-75)
d2(t) = AGy(iw)|e!@i=#2) (4-76)
where G, (iw) and G2 (iw) are given as
Giliw) = — 1 - 4-77)
1—(—) +i20,—
w1 w1
1

Gz (l(U) > (4—78)
1- (ﬂ) n i2?;2£

w? w?
and w1, w2, 1, C2, A1, and A, are as obtained earlier in the solution to this example. Finally,

the solution in the original coordinates defined by Y is given as

; a1 (t) _
= ] [ q>(t) } )

V6

‘Hw\w

Y—Uq—{

Ssl
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4.4 Response of Systems with General Damping to Periodic Inputs

Suppose now that we consider again a multiple degree-of-freedom LTI system subject to a
periodic forcing function, i.e., . ,
MY + CY + KY = Fe'®! (4-80)

Now because the input is periodic, we know that the steady-state output will also be periodic,
i.e., Y(t) will have the form

Y(t) = Ye'®! (4-81)
which implies that
Y(t) = iwYel®t
Y(t) = -—w?Yel®t (4-82)

Substiuting the expression for Y, Y, and Y into Eq. (4-80), we obtain
et [~w?M + iwC + K| ¥ = Fei®! (4-83)
Observing that e®! is not zero as a function of time, we obtain
[~w?M +iwC+K|Y =F (4-84)
Suppose now that we define
Z(iw) =Z = —w*M+iwC+K (4-85)

The quantity Z = Z(iw) is called the impedance matrix. In terms of the impedance matrix we
can write
Z(iw)Y(iw) =F (4-86)

where we note that Y is also a function of icw. Then, assuming that Z is nonsingular (otherwise
we would not have a unique solution), we obtain

Y(iw) = Z7 ' (iw)F (4-87)
The time response is then given as

Y(t) = Z ' (iw)Fel®t (4-88)

4.4.1 Response of Two Degree-of-Freedom System to Periodic Input

Suppose now that we consider the special case of a two degree-of-freedom system with mass,
damping, and stiffness matrices given, respectively, as

S ] (4-89)
| M2 M22
c - C11 C12:| (4-90)
| M2 C22
_ [ kin kiz
K = | ki ke ] (4-91)

Furthermore, assume that M is positive definite and that C and K are positive semidefinite.
Then, the impedance matrix is given as

7(1)214’112 +iwcy + k12 7(1)214’122 +1iwco + k22 Z12 222

Z(iw) = [

—(,UZ’WLH +iwcy) + ki —(,Uzmlz +1iwcy2 + ki :| _ [ 211 212

} (4-92)
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where it is noted that Z(iw) is symmetric because M, C, and K are symmetric. The inverse of
Z(iw) is then given as

Z-(iw) = 1 :[ Zn  —Z2 }_ 1 [ Zyn —Z2 } (4-93)

detZ(iw) -z12  zZn Z11222 — 25, | "Z12 Zu

Multiplying Z~! (iw) by F where, we obtain Y as

< 1. 1 Zp  —Z12 F Y;
Y=27" F=——— =]y 4-94
(tw) 211222 —2%2 |: —Z12 211 :| |: F> :| |: Y> :| (4-94)

Consequently,

_ SFy — F.

v, = 2221721222 (4-95)
Z11222 — 272

- —z12F +z11 F

Y, = 2121—21;2 (4-96)
Z11222 — Z12

4.4.2 Response of Undamped Two Degree-of-Freedom System to Periodic Input

Suppose now that we specialize further to the case of an undamped two degree-of-freedom
system. In this case we know that C is zero. Then, from Eq. (4-92) we obtain

Zn zZiz | _ —w*myy + ki —w?miz + ki (4-97)
Z12 Z2 —w?miz + kiz  —w?ma; + koo

Equations (4-95) and (4-96) then reduce to

_ (2 _ _ 2
v, = (k2§ wmy)F . (k12 —w m12)Fzz . (4-98)
(k11 — w?myy) (k22 — w?mp2) — (k12 — w?my»)
. —(ki2 — w?mio)Fy + (ki1 — w?my)F>

Yo = 4-99
: (k11 — w?mq1) (ko — w?myy) — (ki — w?my2)? ( )

The time responses Y (t) and Y2 (t) are then given as

_ (ko2 — w?mMpp)Fy — (k12 — w?my)Fo ot

hit) = [(kn ~ w2myy) (kaz — w2mMa) — (kiz — w?mpp)? | © (4-100)
B — (k12 — w?mi)Fi + (ki1 — w?mi)F icot

L) = |:(k11 —w?myy) (ko2 — w2my2) — (k12 — w2my2)? ¢ AU

4.5 Undamped Vibration Absorbers

Consider now the undamped system shown in Fig. 4-1 of a block of mass M attached to two
linear springs with spring constants K; and K, and a second block of mass m attached in
tandem connected to the second spring. Furthermore, assume that a force F(t) is applied to
the first block.

Assuming that the unstretched lengths of the springs are 1o and ¥», the force applied to the
block of mass M is given as

Fi =F+Fs +F» = FEx — K1 (41 — Y10)us1 — Ko (£2 — fop)us (4-102)

Now we have

4
4

lry —roll = x1 (4-103)
lIry —r2fl = x2 — X1 (4-104)
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, F(t)
—
Kl KZ

0 M AWWWWWWS - m

I > X2
I »l
I >

Figure 4-1 Two masses on two springs representing a model for a vibration ab-
sorber.

Furthermore,
I —Io
u = ——  =FE (4—105)
! It —roll ¥
r —I
u = ——=-E (4-106)
- 11 — 2|l x
Therefore,

Fi = FEx — K1 (x1 — £10)Ex — Ko (x2 — x1 — 20) (—Ex) = [-K1(x1 — Y10) + K2(x2 — x1 — £20)] Ex

(4-107)

Then, because the inertial acceleration of the first block is 7a; = %,E,, from Newton’s second
law we obtain

[F — Ki(x1 = t10) + Ka(x2 — x1 — £20) ] Ex = MXEy (4-108)

which implies that the first differential equation is given as
Mxy + (K + K2)x1 — Koxo = F + K189 — Kalog (4-109)
Similarly, the force exerted on the block of mass m is given as
F» = —Fg = =Ko (x2 — x1 — £20)Ex (4-110)

Then, because the inertial acceleration of the second block is 7a, = %>E,, from Newton’s second
law we obtain
=K (x2 — x1 — £20)Ex = miEy (4-111)

which implies that the second differential equation is given as
mx, + —Kox1 + Koxy = Kz#zo (4—112)

It is noted that the system consisting of the block of mass M together with the first spring is
called the main system while the second system consisting of the block of mass m together
with the second spring is called the absorber. The objective of this analysis is to determine
the design that enables the absorber to absorb as much of the response of the main system as
possible.

Observing the form of the differential equations, it is seen that the differential equations
relative to the static equilibrium point are given as

My (K1 + K2)y1 —Kxys = F(1) (4-113)
my, — Koy + K22 0 (4-114)
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where x1 = Y1 — Y1,eq and x2 = y2 — ¥2.4. Suppose now that we consider the case where F(t)
is periodic of the form F(t) = F; sin wt. Then, because the system is undamped, we know that

the phase of the output will be zero which implies that

yi(t) = Yl sin wt
Vo (t) = Yo sinwt

Then, using the results of Egs. (4-100) and (4-101) we obtain y; (t) and y»(t) as

(1) &K — w?m)Fy sin wt
7 (K1 + K2 — w?M) (K2 — w?m) — K3
K2Fy ,
t t
2(t) [<K1+K2w2M)(K2me)Kg]Smw
where
% _ (K2 - wzm)Fl
"7 (K + Ko - w2M)(Kz — w2m) — K3
;o K> Fy
27 (K + K2 — w02M) (K — w2m) — K2

Suppose now that we introduce the following notation:

w, = +Ki/M = natural frequency of main system
w, = +K;/m = natural frequency of absorber

yse = F1/Ky = static deflection of main system
y = m/M = ratio of absorber to main system

Then Egs. (4-119) and (4-120) can be written in terms of w, w4, Vs and y as

_ _ [1_(w/wa)2]yst

[1+ y(wa/wn)? - (w/wn)?][1 - (w/wa)?]—y(Wa/wn)?
> Vst

[1+ y(wa/wn)? = (w/wn)?][1 - (w/wa)?] —y(Wa/wn)?

It can be seen that

Yl(wa) = 0

Vst __(ﬂY&__ﬂ

Vo(wa) = = on? = \w, -

y K>

(4-115)
(4-116)

(4-117)

(4-118)

(4-119)

(4-120)

(4-121)

(4-122)

(4-123)

(4-124)

It is seen from Eq. (4-121) that the mass m (i.e., the absorber) will absorb the motion of the
main system if w = wy, i.e., the best natural frequency for the absorber is w, = w. In other
words, the best design for the absorber is one where the natural frequency of the absorber is

the same as the frequency of the forcing function F(t).
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Appendix A

Review of Linear Algebra

A.1 Row Vectors, Column Vectors, and Matrices

Let C and R denote the set of complex and real numbers, respectively. Furthermore, let g; €
C, (i = 1,...,n) be complex-valued scalars. These scalars can be arranged in either a row
or a column as follows. When arranged in a row, we can write q = (g1 g2 ... qn]. Then the
quantity q = [q1 g2 ... qn] is called a row vector. Alternatively, a row vector can be written as
q=(q1,...,qn),i.e.,
a=(a,-...an) =[a@1 a2 ... an] (A-1)
When arranged as a column, i.e., as
a1
qaz
q= . (A-2)
dn
the quantity q is called a column vector. Suppose now that we consider a set of complex-valued
coefficients a;j (i = 1,...,m; j =1,...,m). Also, suppose that we arrange these coefficients as

follows:
ann ap - aAin

azi azx - A2n
A= . . . . (A-3)

aAm1 aAm2 - Amn
The quantity A € C"™*" is called an m X n matrix and the quantities a;; (i = 1,...,m; j =
1,...,n) are called the elements of A. Furthermore, because a;; (i = 1,...,m; j = 1,...,n)
are real numbers, the matrix A is more specifically referred to as a real matrix. We note that a
special case of an m x n real-valued matrix is a so called square matrix. A square matrix is one
where m = n, i.e., a square matrix is written in element form as

an a2 -+ Ain
a az -+ dAn

A= . . ) . (A-4)
an1 an2 - QAnn

Examining a row vector, a column vector, and a matrix, it is seen that the following are true.
First, an n-dimensional row vector is a matrix of size 1 x n, i.e., if q is a row vector, then
q € C*", Next, an m-dimensional column vector is a matrix of size m x 1, i.e., if q is a column
vector, then q € C"™*1,
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A.2 Types of Matrices

Identity Matrix

The most basic matrix is the identity matrix. The n x n identity matrix, denoted I,,, is defined
as

In: . . . . (A_S)

In other words, I, € R™" and is such that its diagonal elements are unity while its off-diagonal
elements are zero. In index form, we can write the identity matrix as follows:

1 , i=jJ
[In]ij:(sij:{ 0 iij’

where the quantity ¢ is the Kronecker delta function. We note that for any column vector q the
identity matrix satisfies the property that

(A-6)

Iq=q (A-7)

Transpose of a Matrix

Let A be an m x n complex-valued matrix. Then the transpose of A, denoted AT, is defined as

an ax -t Aml

T ayz Aazx -+ AaAme
Al = . . . . (A-8)

aAin AaAn - Amn

It is noted that AT is obtained from A by interchanging the elements of A, i.e., the element a;;
in A is equal to the element aj; in AT,
Complex Conjugate of a Matrix

Let A be an m x n complex-valued matrix. Then the complex conjugate of A, denoted A, is
defined as

an a2 -+ din

B a1 az - arn

A= . . . . (A-9)
dml dmZ et dmn

where d;; is the complex conjugate of a;;.

Properties of Square Matrices

Because square matrices arise so frequently in linear algebra, we devote a separate section to
defining particular classes of square matrices. The remainder of this section deals specifically
with square matrices, i.e., matrices that have the same number of rows and columns.

A.2.1 Hermitian Matrix

Let A be an n X n square complex-valued matrix. Then A is said to be Hermitian if A = AT,
i.e., a complex valued square matrix A is Hermitian if A is equal to the transpose of its complex
conjugate. In element form, a Hermitian matrix is one such that a;; = a;j;, (i,j =1,...,n).
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Skew-Hermitian Matrix

Let A be an n x n square complex-valued matrix. Then A is said to be skew-Hermitian if
A = —AT ie., a complex valued square matrix A is skew-Hermitian if A is equal to the negative
of the transpose of its complex conjugate. In element form, a Hermitian matrix is one such that
aij = —G-lji, (i,j = ].,...,’l’l).

Symmetric Matrix

Let A be a square complex-valued n X n matrix, Then A is said to be symmetricif A = AT, i.e, a
square matrix is symmetric if it is equal to its transpose. In scalar form, a real-valued square
matrix is symmetric if a;; = aj;, (i,j=1,...,n).

Skew-Symmetric Matrix

Let A be a square complex-valued matrix. Then A is said to be skew-symmetric A = —AT, i.e., a
square matrix is skew-symmetric if it is equal to the negative of its transpose. In scalar form, a
matrix is symmetric if a;; = aj;, (i,j=1,...,n).

Inverse of a Matrix

Let A be a square complex-valued matrix. Then A is said to be invertible if there exists a matrix
A~! such that
AATL=ATIA =1 (A-10)

where I is the n X n identity matrix. Any invertible matrix is said to be nonsingular.

Orthogonal Matrix

Let A be a square complex-valued matrix. Then A is said to be orthogonal if A=1 = AT, i.e., a
matrix is orthogonal if its inverse is equal to its transpose. Because of the property of an
orthogonal matrix, we know that

ATA=ATA=1 (A-11)
where I is the n x n identity matrix. Suppose we write an orthogonal matrix in column form as
A=[a a - a, | (A-12)
Then,
aj
aj
AT =| | (A-13)
a;,
Multiplying AT by A gives
al ala, ala, --- ala,
al ala; ala, --- ala,
ATA=[a a - a, || | |= _ _ _ =1 (A-14)
al ala; ala, --- ala,

Then for an orthogonal matrix we obtain

s

a.Taj = 61] = { 1, lzj (A—lS)

where §;; is the Kronecker delta function.
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Determinant of a Matrix

Let A € R™" be an n x n real-valued matrix. Then the determinant of A, denoted det A or |A|,
is defined as

[ a1 ap -+ ain ]
az az -+ An
detA = det . . . . (A-16)
L An1 An2 -  Ann |
and is computed recursively as
[ ax azz --- awn |
asy dAasz -+ Asn
detA = a; det
L An2 AaAn3 -+  Aann |
[ a1 apz -+ aApp |
azy Aasz -+ A3n
— ay» det . . . . (A-17)
| An1 AaAn3 -+ Ann
[ ax»  azzs -+ axm-1)
az; Aszz - A3n-1)
+ aq det
L An1 aAn3z - An(n-1)

As mentioned, it is seen that the determinant of a matrix is defined in terms of determinants of
smaller matrices. The most basic matrix for which a determinant must be computed is a 2 x 2
matrix. Suppose that A € R?*? matrix. Then the determinant of a 2 x 2 matrix is given as

an a
det MR aas - anan (A-18)
azy Az

Next, let A € R3*3 matrix. Then the determinant of a 2 X 2 matrix is given as

ay; a2 as
det| a1 a2 az | =aii(azass —azasz) —az(azass —azzas:) +az(azas — azasm)
asy daz2 Aass
(A-19)
It is noted that the determinants of 2 X 2 and 3 x 3 matrices can be used as building blocks to
compute the determinant of an n x n matrix. Also, it is important to understand that a square
matrix is invertible if and only if its determinant is nonzero, i.e.,

A"l exists < detA = 0

A.3 Simple Algebra Associated with Matrices

Sum and Difference of Matrices

Let A and B be m x n real-valued matrices. Furthermore, denote A and B in element form,
respectively, as
an a2 -+ Ain
az; az -+ A2n
A= . . . . (A-20)

an1 AaAn2 -+  Ann
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bin b -+ by
b1y b -+ b2y
B = . . . (A-21)
bml me et bmn
Then the sum of A and B is defined as
an +bn a2 + bz T Ain + bin
az +bx  azx+bxp .- a+by
A+B= . . . . (A-22)
ami +bm1 am2+bmz -+ Amn +bmn

It is seen from Eq. (A-22) that A + B = B + A. Similar to the sum of two matrices, the difference
between A and B is defined as

an —bn a2 — bz T ain — bin
az —bx  ax—Dbxp -+  a—ba

A-B= . . . . (A-23)
ami —bm1 am2 —bmz -+ amn —bmn

It is noted that matrices can only be added or subtracted if they are the same size.

Product of a Matrix with a Constant

Let A be an m x n real-valued matrix and let k be a scalar. Then the product of k with A is
defined as

kaq kai» s kain
kaos kas» s kaon

kA = . . . . (A-24)
k(lm] kamg e kamn

Product of Two Matrices of Conforming Size

Let A and B be m X p and p X n real-valued matrices, respectively. Then the product of A with
B is defined as

[ ann a2 - aip by, by, --- bin
ax az -+ dzp boy by -+ boy
AB = . . .
L Am1 Am2 -+  QAmp b][,1 pr C b’m
- P p p (A-25)
Dio1 awkbrr Yo awbre -0 Yo akbrn
Sh_jawbi  Si_jaxbke - Yh_j awbin
L Zzﬂ apkbkl 22:1 apkka T 25:1 apkbkn
In other words, the (I, m)'" element of AB is given as
/4
[ABl;m = > dibim (A-26)

k=1

It is very important to note that two matrices can be multiplied only if the number of rows of A
must be the same as the number of columns of B (i.e., if A € R™? and B € R%", then A and B
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can be multiplied only if p = g). This last requirement is called conformability, i.e., two matrices
can be multiplied only if their sizes are conforming. Due to the conformability requirement, the
only case in which both AB and BA are valid operations is if A and B are both square matrices.
Finally, we note that, even in the case of two square matrices A and B it is generally the case
that AB + BA (i.e., the matrix product is not commutative).

Inner Product Between Row and Column Vectors

The standard inner product (or dot product) between two row vectors or column vectors p and
q is defined as

n
P a= ) pidi (A-27)
k=1
where p;, (i =1,...,n) and q;, (i = 1,...,n) are the elements of p and q, respectively. From

the definition of the product of two matrices, it is seen that if p and q are both column vectors
then the dot product between p and g can be written as

P1 ’ aq1 a1
p2 qaz qz n
p-a=p'q= =l o ] = > piai (A-28)
. . . k=1
Pn an Adn

Similarly, if p and q are both row vectors, then the dot product between p and ¢ can be written
as

pa=pa=[p p - pall@m @ - an]
0 (A-29)
n —
:[pl p2 - pn} q.z =Zpiqi
: k=1
an

We say that two vectors p and q are orthogonal with respect to the standard inner product
(i.e., dot product) if and only if p- q = 0, i.e.,

p and q are orthogonal with respect to the standard inner product < p’q =0 (A-30)
Next, the weighted inner product is defined as
p-Wq=p'Wq (A-31)

where W € R™" is a weighting matrix. It is noted that two vectors p and q are orthogonal with
respect to the weighting matrix W if and only if pTWq = 0, i.e.,

p and q are orthogonal with respect to W < p"Wq = 0 (A-32)

A.4 Null Space and Range Space of a Real Matrix

Let A € R™*" he an m X n real-valued matrix. It is observed that A operates on column vectors
of length n and produces column vectors of length m. Then the null space of A is defined as
the set of all column vectors q € R" (where q + 0) such that

Aq=0 (A-33)
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The null space of A is denoted N (A). Any vector q that satisfies Eq. (A-33) is said to lie
in N (A). Moreover, we say that any vector q that lies in 2N (A) is annihilated by A (.e., if
q € N (A), then A annihilates q). It is noted that the null space of a square matrix is nonzero
if and only if the determinant of A is zero.
Next, the range space of A is the set of all vectors p € R™ (where p # 0) for which there
exists a vector q € R™ such that
Aq=p (A-34)

The range space of a matrix is denoted R(A). Any vector p that satisfies Eq. (A-34) is said to
lie in R(A).

A.5 Eigenvalues and Eigenvectors of a Real Square Matrix

Let A € R™" be an nxn real-valued square matrix. Then the scalar A is said to be an eigenvalue
of A with eigenvector u if
Au = Au (A-35)

Rearranging Eq. (A-35), we obtain
Au—-Au=0 (A-36)

Now we know that q = Iq where I is the n x n identity matrix. Therefore, Eq. (A-36) can be
rewritten as
Alu-Au=0 (A-37)

Eq. (A-37) can be rearranged as
(AT-A)u=0 (A-38)

Eq. (A-38) implies one of two things. Either u = 0 or the vector q must lie in the null space
of the matrix AI — A (i.e., A — A must annihilate u). The former case is the trivial solution and
hence is of no interest. Therefore, the latter case must be true. Now, in order for u to lie in the
null space of AI — A, the matrix AI — A must have a nonzero null space. Recall that AI — A has
a nonzero null space, it must be singular (i.e., Al — A does not have an inverse) and, therefore,
det(AI-A) =0

det(AI-A) =0 (A-39)

Therefore, the condition of Eq. (A-38) that leads to a nontrivial value of u is given by Eq. (A-39).
Examining Eq. (A-39) and using the general form for a determinant from Eq. (A-17), it is
seen that det(AI — A) = 0 is a polynomial in A, i.e., det(AI — A) = 0 can be written as

n
det@QI—A) =A" + A" '+ @A™ 2 4 - an A+ an = D ankA* =0 (A-40)
k=1

where we note that ag = 1. Eq. (A-40) is called the characteristic equation of the matrix A. Now,
because A is a real matrix, the coefficients (ay,...,a,) must also be real.

Multiplicity of Eigenvalues and Eigenvectors

Because Eq. (A-40) is a polynomial of degree n with real coefficients, from the fundamental
theorem of algebra its roots (i.e., the eigenvalues of A) must either be real or occur in complex
conjugate pairs. Suppose we let A ..., A, be the eigenvalues of A. Then the characteristic
equation can be written in factored form as

det(AI-A) = (A=A))(A=A2) - - - (A =Ay) (A-41)

In general, the eigenvalues A, ..., A, will not be distinct [i.e., Eq. (A-41) may have repeated roots].
When an eigenvalue A; of Eq. (A-41) repeats itself k times (i.e., k roots of Eq. (A-40) are equal to
A;), we say that the eigenvalue A; has algebraic multiplicity k. For example, suppose that two of
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the roots of the characteristic equation are equal to u. Then in factored form the characteristic
equation would have the factor A — u appear twice [i.e., we would have a factor (A — )2 in the
characteristic equation]. In this case the algebraic multiplicity of the eigenvalue yu would be
two.

Suppose now that m < n is the number of distinct eigenvalues of A and let Ay,..., A
be the corresponding eigenvalues of A. Next, let ki,...,k;; be the algebraic multiplicities
of Aq,...,A;,, respectively. Furthermore, let the set [1,...,n] be partitioned into sets P; =

[pic1+1,...,pi], (i=1,...,m) such that

i
pi= 2k (A-42)
j=1
and po = 0. Then for each distinct eigenvalue A;, (i = 1,...,1) we have
Auy, = Ay, (riepPy), (i=1,...,m) (A-43)

It is seen that the sum of the algebraic multiplicities must add to n, i.e.,
m
dDki=n (A-44)
Jj=1

Furthermore, the eigenvectors associated with each partition P; need not be distinct. Suppose
that m; < k; is the number of linearly independent eigenvectors associated with each partition
P;. Then we say that the eigenvalue A;, (i = 1,...,m) has geometric multiplicity m; < k;. In the
case where m; = k;, the algebraic and geometric multiplicities of A; are the same.

Diagonalization of Square Matrices and Similarity Transformations

In the case where the geometric and algebraic multiplicities of every distinct eigenvalue A1, ..., A,
of a matrix A are the same (i.e., m; = k; forall i = 1,...,m), we say that the matrix A has a com-
plete set of eigenvectors. Moreover, when a matrix A has a complete set of eigenvectors, it is
seen that n linearly independent eigenvectors can be obtained, i.e., the eigenvectors uy,...,u,
form a basis form a basis for R™. Stated somewhat more rigorously, we can write the following:

Eigenvectors of A complete < The set {uy,...,u,} forms a basis for R"
Then, for each eigenvector u;, (i = 1,...,1) we have
Au; = Aju;, (i=1,...,n) (A-45)
Eq. (A-45) implies that
A[ u u - uy ]: [ Aup Auwr -0 Ayuy } (A-46)

Eq. (A-46) can be rewritten as

A[ u u - Uy ] (A-47)
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Now let

U = [u1 u - un] (A-48)

(A-49)
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The matrix U is called the eigenvector matrix of the matrix A. In terms of U, Eq. (A-47) can then
be written as
AU = UA (A-50)

Now because the eigenvectors of A are complete and form a basis for R", it is known that the
matrix U is nonsingular (i.e., U~! exists). Consequently, we can multiply both sides of Eq. (A-50)
on the left by U™! to obtain

A=U"1'AU (A-51)

The quantity U 'AU is a similarity transformation of the matrix A by the eigenvector matrix
U. It is seen that, for a matrix A that has a complete set of eigenvectors, using the similarity
transformation of Eq. (A-51) produces a diagonal matrix A.

Eigenvectors Associated with Complex Pairs of Eigenvectors

Let A; be an eigenvalue of a real-valued matrix A € R"™*". Furthermore, assume that A; is
complex. Then, because eigenvalues of a real-valued matrix must occur in complex conjugate
pairs, there must exist an eigenvalue A; such that A; = Ai, where A; is the complex conjugate
of A;. Next, let u; be the eigenvector associated with A;. Then we have

Au; = A (A-52)
Taking the complex conjugate of Eq. (A-52) gives
Au; = Aju; (A-53)
Now the right-hand and left-hand sides of Eq. (A-53) can be written, respectively, as
A = A (A-54)
Au; = A (A-55)
where we note that A = A because A is a real-valued matrix. Therefore,
Au; = A1 (A-56)

It is seen that Eq. (A-56) satisﬁes_ the eigenvalue equation of Eq. (A-35). Therefore, Wi; is an
eigenvector of A with eigenvalue A;

A.6 Eigenvalues and Eigenvectors of a Real Symmetric Matrix

Now consider the special case where A is real and symmetric, i.e., A = AT. Then for eigenvectors
u; and u; with corresponding eigenvalues A; and A, respectively, we have

Aui = Aiui (A—57)
Auj = Ajuj (A—58)

Suppose now that we multiply both sides of Eq. (A-57) on the left-hand side by uJT and multiply
both sides of Eq. (A-58) on the left-hand side by uiT. We then obtain

uJTAui = uJT.Aiui (A-59)

u/Au; = ujAu; (A-60)
Now because A; and A; are scalars, we have

uJT)\iui = AiuJTui (A—61)

Ajulu; (A-62)

Ty 1.
u; Aju;
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Furthermore, we know that uJTui = u; - u; and, thus, is a scalar. Consequently, uJTAui is also a
scalar and we have

T
[uJTAui] =u/ATy; (A-63)
Now because A is symmetric, Eq. (A-63) implies
T
[uJTAui] =u/A’Tu; = u/Au; (A-64)

Substituting the result of Eq. (A-64) into Eq. (A-59), placing it alongside Eq. (A-60), and using
the results of Egs. (A-61) and (A-62) gives

u/Au; = Auju; (A-65)
u/Au; = Ajulu; (A-66)

Subtracting Eq. (A-65) from (A-66), we obtain
AjuJT-ui — AiuJT-ui = ()\j - ?\i)uJT-ui =0 (A—67)
Then, because A; # A;, it must be the case that

ujrui =0 (A-68)

Using the definition of orthogonality of vectors with respect to the standard inner product,
it is seen that Equation (A-68) implies that eigenvectors u; and u; corresponding to distinct
eigenvalues A; and A; of a real symmetric matrix are orthogonal.

Next, assume that two of the eigenvalues of a real symmetric matrix A are a complex con-
jugate pair, i.e., we consider two eigenvalues A; and A; such that A; = Ai. Now we know from
earlier in this section that the eigenvector u; associated with the complex conjugate of eigen-
value A; = A; is the complex conjugate of u; (i.e., u; = 0;). Furthermore, from the definition of
an eigenvalue-eigenvector pair we have

Aui = Aiui (A—69)

Al; = Ay (A-70)
Multiplying Egs. (A-69) and (A-70) by i and u/, respectively, we obtain

ﬁiTAui = ﬁiTAiui = AiﬁiTui (A—7l)
uiTAﬁi = uiTi_\iﬁi = i_\iuiTﬁi (A-72)

Now because A is symmetric, we have

u/ATa; = ul Aw; (A-73)

[ﬁiTAui]T
[af ui]T - u'ny (A-74)

Furthermore, because ﬁiT Au; and ﬁiTui are scalars, we can substitute the results of Egs. (A-73)
and (A-74) into Egs. (A-75) from (A-76), respectively, we obtain

uAn; = Aulw (A-75)
uiTAﬁi = f\iuiTﬁi (A—76)

Subtracting Eq. (A-75) from (A-76) gives
(Ai —ADufw; =0 (A-77)

Now because uiTﬁi + 0, we have
Ai—=Ai=0 (A-78)
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which implies that )

Ai = A (A-79)
Equation (A-79) states that a complex eigenvalue of a real symmetric matrix is equal to its
complex conjugate. The only possible way for a complex number to equal its complex conjugate
is if the number is itself real. Another way of looking at this is as follows. Suppose that

Ai = x+1iB (A-80)

It then follows that

Ai = o—iB (A-81)
Consequently, the only way for A; and A; to be equal is if 8 = 0, i.e., A; = « € R. The key result
is that the eigenvalues of a real symmetric matrix are real.
Now suppose we let U be the eigenvector matrix associated with a real symmetric matrix.
Then we have

U=[w w - uy | (A-82)
Now because the eigenvectors of a real symmetric matrix are orthogonal, we can normalize
each eigenvector to unit magnitude, i.e., we can say that

uill =1 (A-83)

Then the eigenvector matrix U is such that its columns are orthonormal which implies that U is
an orthogonal matrix, i.e.,
ul=0u" (A-84)

Then because the eigenvectors are complete (by virtue of the fact that they are orthonormal),
we know that
AU = UA (A-85)

where A is a diagonal matrix with the eigenvalues on the diagonal. Finally, using the fact that
U is orthogonal, we know that
U 'AU = UTAU (A-86)

Consequently,
UTAU = A (A-87)

A.7 Symmetric Weighted Eigenvalue Problem

Consider now the eigenvalue problem
Au = ABu (A-88)

where the matrices A and B are both symmetric. Eq. (A-88) is called a symmetric weighted
eigenvalue problem or, simply, a weighted eigenvalue problem because the matrix B is not the
identity matrix. Rearranging Eq. (A-88), we obtain

= ABu - Au = (AB-A)u (A-89)

Orthogonality of Eigenvectors of Symmetric Weighted Eigenvalue Problem

As with the standard eigenvalue problem, consider two eigenvectors u; and u; corresponding
to distinct eigenvalues A; and Aj, i.e., consider

Alll' = AiBui (A—90)
Auj AjBuj (A—9l)
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Equations (A-90) and (A-91) together imply that

uJTAui )\iuJTBui (A-92)
u/Au; = Aju/Bu; (A-93)

Then, using the fact that A and B are symmetric, we know that

[uJTAui]T = u/ATu; =u/Au; (A-94)
[uiTBuJ]T = uJTBTui = uJTBui (A-95)
Consequently,
u/Au; = A;u/Bu; (A-96)
u/Au; = AulBu; (A-97)
Subtracting Egs. (A-97) and (A-97), we obtain
(Ai —Aj)u/Bu; =0 (A-98)
This time, because Aj # A;, we have
u/Bu; =0 (A-99)

Equation (A-99) implies that the eigenvectors u; and u; are orthogonal with respect to the matrix
B. Furthermore, by rewriting Eq. (A-88) in the form

Bu = pAu (A-100)

where yu = 1/A, it can be seen that
u/Au; =0 (A-101)

Equation (A-101) implies that the eigenvectors u; and u; are orthogonal with respect to the
matrix A. In other words, for the weighted eigenvalue problem of Eq. (A-88), the eigenvectors
of distinct eigenvalues are orthogonal with respect to both the matrices A and B.

Eigenvalues of Symmetric Weighted Eigenvalue Problem

Now assume that A; and A; are two eigenvalues of the weighted eigenvalue problem of Eq. (A-88).
Furthermore, suppose that A; = A;. Now we have

Aui = AiBui (A—102)
Allj = AjBuj (A—IOS)

Taking the complex conjugate of Eq. (A-102) gives

rm = AiBui (A—104)
Equation (A-104) implies )

Au; = A;Bu; (A-105)
Observing that A; = A;, we obtain

AR; = AjBiy (A-106)

Consequently, @; is an eigenvector of the weighted eigenvalue problem with eigenvalue A;. In
other words, if A; is a complex eigenvalue of the weighted eigenvalue problem with eigenvector
u;, then A; is an eigenvalue of the weighted eigenvalue problem with eigenvalue 1;.
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Now suppose that A; and A; are eigenvalues of the weighted eigenvalue problem of Eq. (A-88).
Furthermore, let A; = A;. Then, from the definition of the weighted eigenvalue problem of
Eq. (A-88), we have

Alli = /\iBui (A—107)
An; = ABu; (A-108)

Multiplying Egs. (A-107) and (A-108) by u] and u!, respectively, we obtain

u/Au; = a!ABu; = Aa!Bu; (A-109)
u/Aw; = u!ABu; = Au!Buy; (A-110)
Now because both A and B are symmetric and we know that
T
[alAu;] = ulAT&; =ulAw (A-111)
T
[alBu;] = ulB"& =u/Ba (A-112)

Then, because ﬁiTAui and ﬁiTBui are scalars, we can substitute the results of Eqs. (A-111) and
(A-112) into Egs. (A-109) and (A-110), respectively, to obtain

u/Au; = Au!Bu; (A-113)
u/Au; = Au!Bu; (A-114)

Subtracting Eq. (A-113) from (A-114), we obtain

(Ai =A)u{Ba; =0 (A-115)
Now because u!Bi; # 0, we have i
Ai—A;=0 (A-116)
which implies that i
Ai = A (A-117)

Equation (A-117) states that a complex eigenvalue of the weighted eigenvalue problem of
Eq. (A-88) is equal to its complex conjugate. The only possible way for a complex number
to equal its complex conjugate is if the number is itself real. Another way of looking at this is
as follows. Suppose that

Ai=x+if (A-118)

It then follows that )

A= x—ip (A-119)
Consequently, the only way for A; and A; to be equal is if 8 = 0, i.e., A; = « € R. The key result
is that the eigenvalues of the weighted eigenvalue problem of Eq. (A-88) are real.

Suppose now that we let

U= [ u u - Uy ] (A-120)
Then we can write
Alw w -+ w, | =] ABw ABu - A.Buy | (A-121)
Using the expression for U from Eq. (A-120), it is seen that (A-121) can be rewritten as
AL 0 . 0
0 A -+ O
AU=| Bu Bu, - Bu, || I - o (A-122)
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Then, defining

Aq 0 0
0 A 0
A=| 1 o T (A-123)
+0 - 0 Ay
Equation (A-122) can be written as
AU=[ Buy Bu, --- Bu, |A (A-124)

Factoring B on the left-hand side of Eq. (A-124), we obtain
AU=B[ w w - u, |A (A-125)
Again, using the expression for U from Eq. (A-120) gives
AU = BUA (A-126)
Multiplying both sides of Eq. (A-126) by UT gives
UTAU = U'BUA (A-127)

Normalization of Eigenvectors of Symmetric Weighted Eigenvalue Problem

Unlike the symmetric standard eigenvalue problem Au = Au (where A = AT), the eigenvectors
of A are orthogonal (i.e., uiTu j = 0), in the symmetric weighted eigenvalue problem Au = ABu
(where A = AT and B = BT) it was seen that the eigenvectors are orthogonal with respect to the
matrices A and B, i.e.,

T
u;Au; = 0 . ~
wBy, = 0° (i=1,...,n) (A-128)

Consequently, in the symmetric weighted eigenvalue problem with B +# I it is not possible

to find a set of normalized eigenvectors uy,...,u, such that the eigenvector matrix U is an

orthogonal matrix (i.e., for the symmetric weighted eigenvalue problem it is generally the case
that U™! += UT). Instead, due to the fact that the eigenvector matrix is orthogonal with respect
to both A and B, the eigenvector matrix U is commonly normalized with respect to either
UTAU = I or UTBU = 1. In the former case we say that U is normalized with respect to A
whereas in the latter case we say that U is normalized with respect to B. Suppose we choose to
normalize U with respect to A. To this end, let wy, ..., w, be the unnormalized eigenvectors of
the symmetric weighted eigenvalue problem, i.e.,

Aw; = A;Bw; (A-129)
Then, pre-multiplying by wl-T , we have
wlAw; = wIA;Bw; = A;w!Bw; (A-130)
Suppose now that we choose the normalized eigenvectors u;, (i = 1,...,n) such that
Wi

u; = (i=1,...,n) (A-131)

JWIAwW; ’

Then it is seen that

T
T
. . I' Aw:
uiTAlliz{Wl} A[ 7 }_WL WI=1’ (i=1,...,n) (A-132)

= Lt
W Aw; JWHAw; | Wi AW
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Consequently, normalizing with respect to the matrix A, we have

w=—2 (i=1,...,n) (A-133)
W Aw;
which implies that
UTAU = I < Eigenvectors Are Normalized With Respect to A (A-134)

Next, suppose we choose to normalize the eigenvectors respect to the matrix B. Then in this
case we would choose the normalized eigenvectors such that

Wi

U = ———, (i=1,...,n) (A-135)
W Bw;
Then it is seen that
T T8
By = | —— | Bl | =Yy (i=1,.,m) (A-136)
\/wiTBwi \/wiTBwi w; Bw;
Consequently, using a normalization
W= (i=1,...,n) (A-137)
W Bw;
we see that
UTBU =1 < Eigenvectors Are Normalized With Respect to B (A-138)

A.8 Definiteness of Matrices

Let A € R™" be an n x n real-valued matrix. Then A is said to be positive definite if and only if
u’Au > 0 forallu # 0, i.e.,

A positive definite < u’Au > 0 Yu # 0 (A-139)

Similarly, the matrix A is said to be positive semi-definite if and only if u’Au > 0 for allu # 0,
i.e.,

A positive semi-definite <= u’Au = 0 Yu = 0 (A-140)
Finally, the matrix A is said to be negative semi-definite if and only if u”Au < 0 for all u = 0,
i.e.,

A negative semi-definite < u’Au < 0 Yu # 0 (A-141)

Any matrix that can neither be classified as positive definite, positive-semi-definite, negative
definite, nor negative semi-definite, is called indefinite.
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