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1 A (very informal) crash course in Itô calculus
The aim of this section is to review a few central concepts in Itô calculus. It is intended give
readers who are not familiar with this subject (hence, analysts or geometers who lack the nec-
essary background in probability) the intuition needed in order to be able to follow these notes.
Allowing ourselves to be non-rigorous, the proofs in this section are heuristic, mainly in the
sense that we allow ourselves to freely change between discrete and continuous time.

1.1 A discrete axis of time
In the following, we fix a small number, dt > 0, which denotes a time increment. Some of our
formulas will only be correct in the limit dt→ 0, but for simplicity and for the sake of intuition,
the definitions as well as some of the calculations will be carried out with dt being a fixed, small
number.

Consider the lattice Λ = Zdt. In the following, a stochastic process Xt parametrized by
time will be defined for t ∈ Λ. We will understand the differential of Xt as

dXt := Xt+dt −Xt, ∀t ∈ Λ. (1)

Moreover, by abuse of notation, for stochastic processes Xt, Yt, Zt and for t1, t2 ∈ Λ, we will
write ∫ t2

t1

(YtdXt + Ztdt) :=
∑

t∈Λ∩[t1,t2)

(Yt(Xt+dt −Xt) + Zt · dt) .

1.2 Brownian motion and filtration
A Brownian motion Wt on R will then be understood as follows: We fix a doubly-infinite
sequence of independent standard Gaussian random variables, . . . , N−1, N0, N1, . . . and define
for every time t ∈ Λ,

dWt =
√
dtNi(t)

with i(t) = t/dt. We now define the process Wt via equation (1), setting W0 = 0. With a slight
abuse of notation, we’ll allow ourselves to write, instead of the above,

Wt =

∫ t

0

dWt.
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We will also need to associate a filtration with our Brownian motion. To that end, we set
Ft = σ({dW (s); s ∈ Λ∩ (−∞, t)}). We will say that a process Zt is adapted to Ft if, for every
t ∈ Λ one has that Zt is Ft-measurable.

1.3 Itô processes
Let {Xt}t∈Λ be a sequence of random variables. We say that Xt is an Itô process if there exist
two processes {σt}t∈Λ and {µt}t∈Λ, adapted to Ft, such that

Xt+dt −Xt = σt(Wt+dt −Wt) + µtdt

or, in other words,
dXt = σtdWt + µtdt, ∀t ∈ Λ. (2)

We think of σt as the local variance of Xt and of µt as the local drift. In the special case that
µt = 0, we will say that Xt is a martingale.

A useful fact is the following: if Xt is a martingale and Yt is a process adapted to Ft, we
have that

E
∫ t

0

YtdXt =

∫ t

0

E[YtdXt] =

∫ t

0

E
[
E[YtdXt|Ft]

]
=

∫ t

0

E
[
YtE[dXt|Ft]

]
= 0. (3)

1.4 Quadratic variation
The quadratic variation of a process Xt is defined as

[X]t = sup
k∈N

sup
1≤t1≤···≤tk≤t

k∑
i=1

(Xti −Xti−1
)2.

For a process Xt satisfying equation (2), we have by the law of large numbers (informally, as
dt→ 0)

[X]t =
∑

s∈Λ∩[0,t)

(dXs)
2

=
∑

s∈Λ∩[0,t)

N2
i(t)σ

2
t dt+ µt(dt)

2

=

∫ t

0

σ2
t dt+O(

√
dt).

The last equality requires some continuity assumption about the process σt. In the following
we will allow ourselves to assume that the process σt is nice enough, and the increment dt is
negligible so that

[X]t =

∫ t

0

σ2
t dt.

1.5 Itô’s formula
Let Xt be an Itô process and let Yt = f(Xt), where f is a nice function (have a continuous
second derivative, say). Our goal is to find an expression for the differential dYt, in the form of
equation (2). Naively, one might think that by the chain rule, we simply have

dYt = Yt+dt − Yt = f(Xt+dt)− f(Xt) = f ′(Xt)dXt + o(dt).
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However, this is not correct. The reason is that, since the term dXt is of the order
√
dt rather

than the order dt, there is another term we have to take into account. In other words, our chain
rule has to involve the second derivative of f as well. We actually have,

dYt = Yt+dt − Yt
= f(Xt+dt)− f(Xt)

= f(Xt + σtdWt + µtdt)− f(Xt)

= f ′(Xt)(σtdWt + µtdt) +
1

2
f ′′(Xt)σ

2
t (dWt)

2 + o(dt).

Since dWt is of the order
√
dt rather than of the order dt, we have that the second term is

not negligible compared to dt, it is rather of the same order. This term is called the Itô term.
Moreover, note that we have E[dW 2

t ]/dt = EN2
i(t) = 1. The law of large numbers will allow us

to (informally) write (dWt)
2 = dt. We conclude that

dYt = f ′(Xt)σtdWt +

(
f ′(Xt)µt +

1

2
f ′′(Xt)σ

2
t

)
dt

which is correct, under suitable assumptions, as dt→ 0.
Following the same lines of proof, we can assume that the function f = f(x, t) depends

also on time, hence we define Yt = f(Xt, t). In this case we get an extra term:

dYt =
∂

∂x
f(Xt, t)σtdWt +

(
∂

∂x
ft(Xt)µt +

1

2

∂2

∂x2
f(Xt, t)σ

2
t +

∂

∂t
f(Xt, t)

)
dt.

An easy, but important, consequence of Itô’s formula is the following: If Xt is a martingale,
by taking f(x) = (x− E[X0])2 we deduce from Itô’s formula that

df(Xt) = 2(Xt − E[X0])dXt + σ2
t dt = 2(Xt − E[X0])dXt + d[X]t.

Since E[Xt] = E[X0], we now have

Var[Xt] = E[(Xt − E[Xt])
2] = E[f(Xt)] = [X]t. (4)

where we used the fact that E[dXt] = 0.

1.6 Higher dimensions
The generalization of the above to higher dimensions is pretty straightforward. A Brownian
motion in Rn is a vector valued process Wt such that each coordinate is an independent one
dimensional Brownian motion. For an Itô process Xt, equation (2) is changed so that σt is a
positive semidefinite n × n matrix and µt takes values in Rn (in general, the process Wt can
be in some Rm and σt can be any linear operator Rm → Rn, but it is easy to see that one can
always take σt to be a positive semidefinite square matrix instead).

Itô’s formula becomes

dYt = 〈∇ft(Xt), σtdWt〉+

(
〈∇ft(Xt), µt〉+

1

2
Tr
(
σTt Hessf(Xt)σt

))
dt.
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2 Two useful constructions in analysis
We would like to briefly recall two fundamental constructions: the Log-Laplace transform and
the Ornstein-Uhlenbeck semigroup, along with some of their basic properties. As we will see
below, the main construction discussed in these lecture notes attains several properties that
resemble these two constructions.

2.1 The Log-Laplace transform
For a function f : Rn → R, we define

L[f ](θ) := log

∫
Rn

f(x) exp(〈x, θ〉)dx.

Define also fθ = f(x) exp(〈x,θ〉)∫
f(x) exp(〈x,θ〉) , the ”tilted” version of f(x). The function θ → L[f ](θ) is a

convex function satisfying:

• ∇L[f ](θ) =
∫
xfθ(x)dx is the center of mass of fθ.

• ∇2L[f ](θ) = Cov(fθ).

• In general,∇(k)L[f ](θ) corresponds to the k-th cumulant tensor of fθ.

This transform helps relate the moments of a function to its tail behaviors and entropic proper-
ties, via taking derivatives. In the past decade, it has proven extremely useful in proving bounds
on the distribution of mass in convex bodies (or log-concave measures), such as B. Klartag’s
n1/4 bound for the isotropic constant.
See www.newton.ac.uk/files/seminar/20110622153016302-152712.pdf for
some examples.

2.2 The Ornstein-Uhlenbeck semigroup
Denote by γ the density of the standard Gaussian measure in Rn,

γ(x) =
1

(2π)n/2
e−|x|

2/2.

By slight abuse of notation, we’ll also denote by γ the standard Gaussian measure. Let Γ be a
random vector with law γ. Again let f : Rn → R be a nice enough function. For every t > 0,
we define

Pt[f ](x) := E
[
f
(
e−t/2x+

√
1− e−tΓ

)]
.

It is characterized by the following PDE (heat flow on Gaussian space):

d

dt
Pt[f ](x) = (∆ + x · ∇)Pt[f ](x).

Let us review some of its properties. We have
∫
fdγ =

∫
Pt[f ]dγ for all t ≥ 0. Thus, it makes

sense to consider non-negative functions f satisfying
∫
fdγ = 1. Upon doing so, the Ornstein

Uhlenbeck semigroup induces a flow on the space of probability measures, starting from fdγ,
towards the measure γ.

Define gt,x(y) = Z−1
t exp

(
−|x−y|2
2(1−e−t)

)
, where Zt is chosen so that gt,x is a probability mea-

sure. One has the following easy identities:
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• Pt[f ](x) =
∫
f(y)gt,x(y)dy

• ∇Pt[f ](x) =
∫

(y − x)f(y)gt,x(y)dy

• ∇2Pt[f ](x) =
∫

(y − x)⊗2f(y)gt,x(y)dy = Cov(f · gt,x).

• Again, we can keep differentiating and get higher and higher moments.

3 A stochastic construction
We now define the central construction of these notes. Fix a probability measure µ on Rn. For
a function F define

aµ(F ) =

∫
xF (x)µ(dx) = E[Fµ].

Let Wt be a Brownian motion in Rn. We consider the following equation:

F0(x) = 1, dFt(x) = 〈x− at, dWt〉Ft(x), ∀x ∈ Rn

where
at = aµ(Ft)

Define also
At =

∫
(x− at)⊗2Ftµ(dx) = Cov(Ftµ).

This is an infinite system of SDE’s (one equation for every x ∈ Rn). We will not discuss
existence and uniqueness of the solution here, but later on we’ll see that by taking a slightly
different point of view, this actually becomes a finite system of equations. Finally, for every
t > 0 we define the measure µt by the equation

dµt
dµ

(x) = Ft(x)

or in other words, µt = Ftµ.

3.1 Some basic properties of the process µt
Let us start with some basic things. First, we claim that µt is a probability measure for every
t > 0. By allowing ourselves to freely change the order of differentiation and integration, we
can write

d

∫
Rn

µt(dx) = d

∫
Rn

Ftµ(dt) =

∫
Rn

dFt(x)µ(dx)

=

∫
Rn

〈x− at, dWt〉µt(dx) =

〈∫
Rn

xµt(dx)− at, dWt

〉
= 0.

Another straightforward fact is:

Fact 1. For every x ∈ Rn, the process Ft(x) is a martingale and for every test-function ϕ, the
process

∫
ϕdµt is a martingale.

Informally, our construction has a semi-group property, in the sense that the two following
descriptions are equivalent: (a) Begin with a measure µ, run the process up to some time t, then
take the measure ν = µt and run the process on this measure up to time s, obtaining a measure
νs. (b) Run the process up to time t+ s, obtaining the measure µt+s.
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3.1.1 A slightly different point of view

Another fact we need is a simple application of Itô’s formula. We calculate, for every x ∈ Rn

d logFt(x) =
dFt(x)

Ft(x)
− 1

2

d[F (x)]t
Ft(x)2

= 〈x− at, dWt〉 −
1

2
|x− at|2 dt

= −1

2
|x|2dt+ some linear function in x

Consequently, we have that

Ft(x) = Z−1
t exp

(
〈ct, x〉 −

1

2
t|x|2

)
(5)

for some Itô processes Zt, ct.

3.1.2 Convergence to a δ-measure

In view of equation (5), we have that, as t→∞, µt converges (weakly, with respect to continu-
ous functions) to a Dirac δ-measure. Denoting a∞ = limt→∞ at, we have for every continuous
test function ϕ, that∫

ϕ(x)µ(dx) = lim
t→∞

E
[∫

ϕ(x)µt(dx)

]
= lim

t→∞
E[ϕ(at)] = E[ϕ(a∞)].

In other words we have that a∞ ∼ µ.

3.1.3 The process µt as a moment-generating process

Fix a test function ϕ : Rn → R and consider the process µt. Define

Mt =

∫
ϕ(x)µt(dx). (6)

By Fact 1, we have that Mt is a martingale. Let us calculate the stochastic differential of Mt:

dMt = d

∫
ϕ(x)Ft(x)µ(dx) =

∫
ϕ(x)dFt(x)µ(dx)

=

∫
ϕ(x)〈x− at, dWt〉Ft(x)µ(dx) =

〈∫
ϕ(x)(x− at)µt(dx), dWt

〉
.

And in other words,

d[M ]t =

∣∣∣∣∫ ϕ(x)(x− at)µt(dx)

∣∣∣∣2 dt. (7)

Next, let us define

M
(1)
t =

∫
ϕ(x)(x− at)µt(dx)

so that dMt = 〈M (1)
t , dWt〉. A similar calculation yields

dM
(1)
t =

(∫
ϕ(x)(x− at)⊗2Ft(x)µ(dx)

)
dWt −MtAtdWt.
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In general, defining

M
(k)
t =

∫
ϕ(x)(x− at)⊗kFtµ(dx)

we see that dM (k)
t involves the term M

(k+1)
t dWt. Let us also calculate

dat = d

∫
xFt(x)dµ(x) =

∫
x〈x− at, dWt〉Ft(x)dµ(x) (8)

=

∫
(x− at)〈x− at, dWt〉Ft(x)dµ(x) = AtdWt.

A similar calculation (in spirit) also yields

dAt =

(∫
Rn

(x− at)⊗3µt(dx)

)
dWt − A2

tdt. (9)

3.2 A simple example
Let us looks at the simple case that µ is the standard Gaussian measure as an example. Namely,

dµ

dx
= (2π)−n/2e−|x|

2/2.

According to formula (5), the density of µt takes the form,

dµt
dx

= Z−1
t exp

(
〈x, ct〉 −

1

2
(t+ 1)|x|2

)
where Zt ∈ R, ct ∈ Rn are Itô processes. It follows that the covariance matrix At satisfies

At = (t+ 1)−1Id.

Next, we use (8) to derive that,

at =

∫ t

0

(s+ 1)−1dWs.

and finally, by (5) we know that µt is a Gaussian, thus we must have that

dµt
dx

= (t+ 1)n/2(2π)−n/2 exp

(
−1

2
(t+ 1) |(x− at)|2

)
.

4 Towards the KLS conjecture: from moments to concentra-
tion

4.1 C-concentrated measures
We begin with the definition of a C-concentrated measure.

Definition 2. Let µ be a probability measure on Rn. We say that µ is C-concentrated if for
every 1-Lipschitz function ϕ : Rn → R, one has√

Varµ[ϕ] :=
√

VarX∼µ[ϕ(X)] ≤ C.
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We have, for example,

Fact 3. The standard Gaussian on Rn is 1-concentrated.

A remarkable result by E.Milman (relying on previous works by Buser, Cheeger, Ledoux
and others) is the following.

Theorem 4. (E. Milman, Buser, Cheeger, Ledoux etc.) (informal) Let µ be a log-concave mea-
sure in Rn. The following are equivalent.

(i) The measure µ is C-concentrated.

(ii) The measure µ satisfies the following Poincaré inequality: for every smooth ϕ one has

Varµ[ϕ] ≤ C2

∫
|∇ϕ|2dµ

(iii) The measure µ satisfies a Cheeger inequality of the form

Cµ+(∂T ) ≥ µ(T )(1− µ(T )), ∀T ⊂ Rn.

4.2 The KLS conjecture
The KLS conjecture roughly asserts that a log-concave measure (or alternatively, the uniform
measure over a convex body) admits the same concentration as the one that the Gaussian admits.
However, the fact that a measure is C-concentrated is not invariant to linear transformations of
the measure. Thus, we need to find a suitable normalization. A natural way to do it is simply to
assume that linear functions are concentrated:

Conjecture 5. (Kannan-Lovász-Simonovitz) LetK ⊂ Rn and µ be uniform onK. Suppose that
for every linear, 1-Lipschitz function g, one has Varµ[g] ≤ 1. Then µ is C-concentrated for a
universal constant C > 0.

Remark 6. Another normalization which is more common in the literature and gives an equiva-
lent conjecture is to assume that the covariance matrix of µ is the identity.

We’re interested in another conjecture, known as the variance conjecture or as the thin-shell
conjecture due to Anttila, Ball and Perissinaki and Bobkov-Koldobsky. This conjecture is a
special case of the KLS conjecture, and asserts that the Euclidean norm is concentrated for
log-concave measures.

Conjecture 7. (thin-shell) Let K ⊂ Rn and µ be uniform on K. Suppose that for every linear,
1-Lipschitz function g, one has Varµ[g] ≤ 1. Then for f(x) = |x| one has that

√
Varµ[f ] ≤ C,

where C is a universal constant.

The first breakthrough in attaining such a bound is due to Klartag, who shows that one
can take C = Cn = n0.49 in the above. The state of the art in the above bound is due to
Guédon-Milman who show that one can take C = Cn = n1/3.

Our theorem is, up to logarithmic factors, a reduction of the former conjecture to the latter.
Denote byMn the family of measures µ, which are uniform over some convex set K ⊂ Rn and
satisfy the normalization condition above (i.e., for every linear 1-Lipschitz function f one has
Varµ[f ] ≤ 1). Define

Cn := inf{C;∀µ ∈Mn, µ is C-concentrated}
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and
Vn := sup

µ∈Mn

√
Varµ[x→ |x|].

It is clear, by definition, that Cn ≥ Vn. However, we also have

Theorem 8. For all n one has Cn ≤ Vn log n.

4.3 Proof of the reduction
Fix a test function ϕ : Rn → R. Define the martingale Mt as in equation (6). Our ultimate goal
is to give a bound for Varµ[ϕ] = Var[M∞]. Since Mt is a martingale, we have by orthogonality

Varµ[ϕ] = Var[Mt] + EVar[M∞|Ft] = Var[Mt] + EVarµt [ϕ].

Moreover, Ito’s formula gives Var[Mt] = E[M2
t ]−E[Mt]

2 = E[M ]t, which in turn implies that

Varµ[ϕ] = E[M ]t + EVarµt [ϕ]. (10)

The following well-known result (due to Brascamp-Lieb) will be useful to us:

Proposition 9. Let V : Rn → R be a convex function and let K > 0. Suppose that,

dν(x) = Ze−V (x)− 1
2K
|x|2dx

is a probability measure whose barycenter lies at the origin. Then ν satisfies a Poincaré in-
equality with constant K, namely for every differentiable function ϕ, we have

Varν [ϕ] ≤ K

∫
|∇ϕ(x)|2ν(dx).

Plugging equation (5) with the above proposition, we have

Varµt [ϕ] ≤ t−1

∫
|∇ϕ(x)|2µt(dx)

and in particular, when ϕ is 1-Lipschitz we have that

Varµt [ϕ] ≤ t−1. (11)

In order to bound the term Var[Mt], we use (7), according to which,

d[M ]t =

∣∣∣∣∫ ϕ(x)(x− at)µt(dx)

∣∣∣∣2 dt
And setting θ =

∫
ϕ(x)(x−at)µt(dx)

|∫ ϕ(x)(x−at)µt(dx)| and using Cauchy-Schwartz,

d[M ]t =

(∫
ϕ(x)〈(x− at), θ〉µt(dx)

)2

=

(∫ (
ϕ(x)−

∫
ϕ(x)µtdx

)
〈(x− at), θ〉µt(dx)

)2

≤

(∫ (
ϕ(x)−

∫
ϕ(x)µtdx

)2

µt(dx)

)(∫
〈(x− at), θ〉2µtdx

)
= Varµt [ϕ]〈θAtθ〉 ≤ Yt‖At‖OP .
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where we set Yt = Varµt [ϕ]. Next, we consider the stopping time

τ = sup{t > 0; ‖At‖OP < 2} ∧ 1.

Then by integrating the above inequality (hence using Gronwall’s inequality), we deduce that

[M ]τ ≤ 2

∫ τ

0

Ysds

Now, according to equation (11) and since we assume that the support of µ can be assumed to
be inside a ball of radius n,

Yt ≤ min(t−1, n2)

combining the last two displays finally gives

[M ]τ ≤ 2 + 4 log n.

Finally, equations (10) and (11) combined with the above display teach us that

Varµ[ϕ] ≤ 2 + 4 log n+ E[τ−1]. (12)

So, our goal becomes proving a lower bound on τ .

4.4 Bounding τ from below
Our goal is to give a probabilistic upper bound for ‖At‖OP for small times t. Our starting point
is equation (9), which tells us that

dAt =

(∫
Rn

(x− at)⊗3µt(dx)

)
dWt − A2

tdt.

It is not hard to see that the drift term −A2
tdt is only making our matrix smaller. Roughly

speaking, we may legitimately assume that

dAt =

(∫
Rn

(x− at)⊗3µt(dx)

)
dWt.

This shows us that the quadratic variations of the entries of At have to do with third moments
of the measure µt.

Define λ1(At), . . . , λn(At) to be the eigenvalues of At. Now, fix a time t > 0, and let
e1, . . . , en be an orthonormal basis of eigenvectors of At. In the following differentials, this
basis will be fixed. Define also, for all t,

αi,j(t) = 〈ei, Atej〉

Denoting ξi,j =
∫
Rn〈x − at, ei〉〈x − at, ej〉(x − at)µt(dx), we have by (9) (ignoring the drift

term which only helps us),
dαi,j(t) = 〈ξi,j, dWt〉. (13)

We would like to derive a formula for dλj(t) at t = t0. The next formulas, expressing the
derivatives of eigenvalues in terms of the entries of a diagonal matrix is well known:
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Lemma 10. Let A be a diagonal matrix whose eigenvalues are distinct.
For i ≥ j, denote the (i, j)-th and (j, i)-th entries of A by αi,j . One has, (i)

∂λi(A)

∂αj,k
= δi,jδi,k (14)

(ii) Whenever i 6= j,
∂2λi(A)

∂α2
i,j

=
2

λi − λj
(15)

(iii) Whenever (j, k) 6= (l,m) or i /∈ {j, k},

∂2λi(A)

∂αj,k∂αl,m
= 0

Combining the above lemma with formula (13), we get

dλi = 〈ξi,i, dWt〉+
∑
j 6=i

|ξi,j|2

λi − λj
dt

Now, consider the potential

St =
n∑
i=1

λi(t)
α

with α and define τ̃ = min{t;St ≥ 2α}. It is clear that τ ≥ τ̃ , so it is enough to derive a lower
bound for τ̃ .

Now, Ito’s formula gives

dSt = α
∑
i

λi(t)
α−1dλi(t) +

1

2
α(α− 1)

∑
i

λi(t)
α−2d[λi]t

= α
∑
i

λi(t)
α−1

(
〈ξi,i, dWt〉+

∑
j 6=i

|ξi,j|2

λi − λj
dt

)
+

1

2
α(α− 1)

∑
i

λi(t)
α−2d[λi]t

= α
∑
i

∑
j 6=i

λi(t)
α−1 |ξi,j|2

λi − λj
dt+

1

2
α(α− 1)

∑
i

λi(t)
α−2|ξi,i|2dt+ martingale

=
1

2
α
∑
i 6=j

|ξi,j|2
λi(t)

α−1 − λj(t)α−1

λi − λj
dt+

1

2
α(α− 1)

∑
i

λi(t)
α−2|ξi,i|2dt+ martingale

≤ 1

2
α(α− 1)

∑
i 6=j

|ξi,j|2 max(λi, λj)
α−2dt+

1

2
α(α− 1)

∑
i

λi(t)
α−2|ξi,i|2dt+ martingale

≤ 2α2
∑
i,j

λα−2
i (t)|ξi,j|2dt+ martingale.

At this point, Lee-Vempala use this potential with α = 2 to get

dSt ≤
∑
i,j

|ξi,j|2 + martingale. (16)

We’ll later see how this rather easily achieves the n1/4 bound.
On the contrary, we will take α to be of the order log n. Recall that we’d like to find the first

time for which St = 2α. For simplicity, let us ignore the martingale term and think of the above
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as an ODE. Let us also assume that ‖At‖OP ≥ 1 (recall that we’re trying to bound the operator
norm from above, so this assumption is easy to make). For all t ≤ τ we have that

dSt ≤ 2α2
∑
i

λαi (t)
∑
j

|ξi,j|2dt ≤ 2α2StKtdt

where we define
Kt := sup

i

∑
j

|ξi,j|2.

Suppose that we could prove a deterministic bound Kt ≤ K for all t ≤ τ . Under this assump-
tion, using Gronwall’s inequality with the fact that S0 = n, we would get

St ≤ n exp
(
2α2Kt

)
and comparing St to 2α, this would yield t ≥ α log 2−logn

2α2K
. Taking α = 10 log n then gives

t ≥ 1
10K logn

. This is of course true only when ignoring the martingale term, but it is actually
not hard to show that the same is true for the stopping time τ , namely we have

E[τ−1] ≤ 10K log n

It remains to find a bound for Kt. To that end, first observe that X is a random vector such that
X + at has the law µt then we have∑

j

|ξi,j|2 =
∑
j,k

E[〈X, ei〉〈X, ej〉〈X, ek〉]2 ≤ sup
θ∈Sn−1

‖E[〈X, θ〉X ⊗X]‖2
HS

Now, write Y = A
−1/2
t X and note that Y is by definition isotropic. We clearly have the bound

Kt ≤ ‖At‖3
OP sup

θ∈Sn−1

‖E[〈Y, θ〉Y ⊗ Y ]‖2
HS ≤ 8 sup

θ∈Sn−1

‖E[〈Y, θ〉Y ⊗ Y ]‖2
HS

for all t ≤ τ . The quantity on the right hand side is bounded in Lemma 1.6 of [E], which gives

Kt ≤ C
n∑
k=1

V 2
k /k.

4.4.1 The Lee-Vempala n1/4 bound (up to a logarithmic term)

The main modification is that we now define τ = inf{t : ‖At‖OP ≥ 2
√
n} ∧ 1. Since we now

have a worse bound on ‖At‖OP for t ≤ τ , equation (12) now becomes

Varµ[ϕ] ≤ n1/2(log n+ 1) + E[τ−1]

(we get this by following the exact same steps that yielded equation (12)). Now, in view of
equation (16) and using Gronwall’s inequality, we get St ≤ n+

∑
i,j |ξi,j|2 and ‖At‖OP ≤

√
St

(since we picked α = 2). It follows that

τ = min{t : St ≥ 4n} =
n

K

under the assumption that K is an upper bound for the quantity
∑

i,j |ξi,j|2. It thus remains to
show that ∑

i,j

|ξi,j|2 ≤ n3/2

12



which will imply that E[τ−1] ≤
√
n. Observe that if X, Y are two independent random vectors

both distributed with law µt, then a calculation gives that

∑
i,j

|ξi,j|2 =
∑
i,j,k

(∫
Rn

〈x− at, ei〉〈x− at, ej〉〈x− at, ek〉µt(dx)

)2

= E〈X, Y 〉3

Now define X̃ = A
−1/2
t X and Ỹ = A

−1/2
t Y so that X̃, Ỹ are isotropic. Then

E〈X, Y 〉3 = E〈AtX̃, Ỹ 〉3.

We may clearly assume WLOG that At is diagonal (otherwise apply a unitary transformation).
Suppose that At = diag(a1, ..., an).

〈AtX̃, Ỹ 〉3 =

(∑
i

aiX̃iỸi

)3

.

Now, since for every two independent, isotropic log-concave random variables Z1, Z2 one has
V ar[Z1Z2] < C, we have

V ar[aiX̃iỸi] ≤ Ca2
i

so

E

(∑
i

aiX̃iỸi

)3

. V ar

[∑
i

aiX̃iỸi

]3/2

≤

(
C
∑
i

a2
i

)3/2

≤ Cn3/2.

where the first inequality follows from a reverse-Holder inequality for one-dimensional log-
concave measures and the last follows from the definition of τ . This completes the argument.
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