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Lecture Notes III (Continued – Part 2) 
 

Reflection of Sound Waves:  Sound waves bounce (i.e. reflect) off of walls – just like light 
waves (i.e. EM waves) bouncing off of/reflecting from a mirror: 

 
 
                Plane                        incident 
                   waves:                       wave            reflected 
             I     R                    wave 
Sound source far 
 away from wall            
               

            Surface 
The Law of Reflection:       Angle of Incidence  =  Angle of Reflection. 
 

     The law of reflection for sound waves is same as that for light waves, e.g. light reflecting off 
of a mirror and/or a refracting interface. The law of reflection (in either case) physically arises 
from (microscopic) conservation of energy and momentum at the interface/reflecting mirror! 
 

Sound Waves Can Be Focused Just Like Light!!! 
 

     In one dimension, define the sound source location, Ssource. Define the receiver/observer 
location, Sobserver. The focal length of a (concave) spherical mirror,  f = +R/2, where  
R = radius of curvature of spherical mirror.{For a convex spherical mirror,  f =  –R/2}.  
All distances are measured with respect to the apex of the mirror. 
 

Then:  
1 1 1 2

source observerS S f R
       “Acoustic Mirror Equation” 

 

Thus, if the sound source is located at the focal point of spherical mirror, Ssource = f = R/2, then 
the sound emerges from the acoustic mirror as parallel rays (i.e. as plane waves) – just as in the 
optics case (see figure below)! The observer’s location is at Sobserver = . 
 
 
 
 
Parallel        Spherical 
(Plane)           mirror 
Waves          
        
           
           
           
           
         Sound source located at focal point of mirror,  f = +R/2. 
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Time-Reversed Situation: 
 

     If the sound source is located infinitely far from the focal point of spherical mirror,  
i.e. Ssource = , the sound from the source impinges on the spherical mirror as plane waves, and 
the sound converges to the focal point of the acoustic mirror – just as in the optics case!  
The observer location is at the focal point of the mirror, Sobserver = f = R/2. 
 

 
 
 
Incident        Spherical 
Plane                       mirror 
 waves                                    R 

                                                                   I 
           
           
                               I = R                      
                         for each ray-point 
      Microphone “ear”                on the mirror! 
 

Thus, a spherical acoustic mirror can be used as a supersensitive “ear” – focusing (i.e. converging) 
the incoming sound plane waves to a single point - at the focus of the mirror! Using two such acoustic 
mirrors facing each other and e.g. separated by a large distance d = 100 ft, two people, each standing 
at the focus of one mirror (and facing it) whispering to each other can very clearly hear each other – 
this two-mirror configuration is known as a whispering gallery… 

 
n.b. The sign conventions needed/used in acoustic mirror equation (above) are the same as that 
as used in optics with the optical mirror equation for optical image formation with an optical 
mirror. 
 
Sound waves behave very similarly/analogously to that of light waves/EM waves (photons)! 
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Refraction (i.e. Bending) of Sound Waves (“Dispersion”) 
 

     Refraction of sound waves arises from temperature/pressure/density gradient(s) in air. 
 

     Listen to the phase shift/flanging effect of jet airplane engine’s when jet is in the air. This 
sound effect arises from interference effect from mixing (i.e. superposition) of sound amplitudes 
from same sound source, but due to (slightly) different paths taken by sound from the sound 
source (jet) to observer/listener, resulting in (slightly) different path lengths of the sound in air, 
thus having (slightly) different propagation times from sound source to observer! 

 

     Refraction (bending) of sound “rays” in air arises due to density dependence of the speed of 
sound. From the Ideal Gas Law  PV = NRT, the speed of sound propagation in air also depends 
on the temperature/pressure of air. 
 
Interference of Sound (& Light) Waves: 
 

     Many individual sound (& light) waves propagating in a medium can exist simultaneously at 
the same point, x and at the same time, t in that medium. 
 

Linear Superposition (i.e. Addition) of Sound Waves:  
 

     When two (or more) sound waves spatially/temporally overlap each other, in general they will 
interfere with each other. We must then add e.g. individual over-pressure (or displacement) 
amplitudes together to obtain the total over-pressure (or displacement) amplitude: 
 

e.g. 2 waves:   1 2( , ) ( , ) ( , )totp z t p z t p z t   

e.g. N waves:   1 2
1

( , ) ( , ) ( , ) .... ( , ) ( , )
N

tot N i
i

p z t p z t p z t p z t p z t


      

Sound (& light) waves can interfere { }constructively
 destructively or somewhere in-between these two! 

 

2-wave constructive interference: 1( , ) 2 ( , )totp z t p z t . 

2-wave  destructive  interference:  2 1( , ) 0 ( , ) ( , )totp z t p z t p z t    
 

     The mathematical addition of individual amplitudes must be done carefully, in order to 
preserve (relative) phase information. We discuss in detail how this is accomplished, below. 
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Interference of Sound Waves: 
 

     Two sound sources – at same frequency – there will be points in space where the overall 
sound level is high (ptot(z,t) is large – constructive interference) and other places where over all 
sound level is ~ zero (ptot(z,t) ~ 0 – destructive interference). 

     Consider two point sources of sound waves that emit precisely/exactly the same sound  
– i.e. having the same frequency, same amplitude and phase (e.g. a pair of stereo loud-speakers), 
as shown in the figure below: 
 

Sound 
Source 
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     If the distance of the observer/listener from both of the two sound sources is large compared 
to the sound source separation distance, i.e. L >> d, {the so-called “far-field” limit} then tan   
sin  and hence L  d sin. The relative phase difference between the two amplitudes at the 
observer/listener location is:  = k L = 2L/  2d sin/ (in radians). 
 

     At the observer/listener location, suppose the individual over-pressure amplitudes at a given 
instant in time are given by: 
 

   

     

         

1

2 2

1 2

1

2

1 2

, cos

, cos ( ) cos

, , , cos cos

o

o o

tot o o

p L t p t kL

p L t p t k L L p t kL

p L t p L t p L t p t kL p t kL



  

  

 

      

      

 

 

     The phase-sensitive interference relation between the two individual over-pressure amplitudes 
and the resultant/total over-pressure amplitude heard by the observer/listener can be represented 
graphically using a so-called phasor diagram, as shown in the figure below. The phasor diagram 
adds the two vector amplitudes together to form the resultant/overall/net vector amplitude. 
 

     The phasor diagram, by convention, orients the over-pressure amplitude associated with the 
first sound source p1(z,t) on the horizontal axis. The base of the over-pressure amplitude 
associated with the second sound source, p2(z,t) is placed at the tip of the first, and angled away 
from the x-axis by the relative phase difference angle, . The resultant/total/net displacement 
amplitude, ytot(t) is the vector drawn from the base of the first displacement amplitude to the tip 
of the second displacement amplitude, as shown in the figure below: 

Note that the phasor triangle obeys the trigonometrical law of cosines relation: 
 

c2 = a2 + b2 – 2ab cos( – ) = a2 + b2 + 2ab cos  
 

{the latter relation on the RHS of this equation was obtained using the trigonometric identity:  
cos(A – B) = cosA cosB + sinA sinB).   
 

The magnitude (i.e. length) of the resultant/total/net over-pressure amplitude, ptot is given by: 
 

  
1 2 1 2

2 2 2 2 costot o o o op p p p p        or:    
1 2 1 2

2 2 2 costot o o o op p p p p     

po1 

po2 
ptot 

  
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     Maxima (i.e. total constructive interference, 
1 2

2 2 2
tot o op p p  occur when cos  = +1,  

i.e. when:  = 0, 2, 4, 6, … = 2n, n = 0, 1, 2, 3, … corresponding to  
L/ = d sin / = 0, 1, 2, 3, … = 2n/2 = n, i.e.  
L    = d sin     = 0, 1, 2, 3, … = 2n/2 = n. 
 

     Minima (i.e. total destructive interference, 
1 2

2 2 2
tot o op p p  occur when cos  =  –1, 

i.e. when  = , 3, 5, 7, … = (2n+1), n = 0, 1, 2, 3, … corresponding to  
L/ = d sin/ = 1/2 , 3/2, 5/2, … = (2n+1)/2, i.e.  
L   = d sin     = /2, 3/2, 5/2, … = (2n+1)./2. 
 

     As drawn in the above figure, this phasor diagram represents a “snapshot” in time – i.e. at 
some particular time t. As time t progresses, the entire phasor triangle precesses (i.e. rotates with 
angular frequency    about its origin (the base point of over-pressure amplitude # 1)) in a 
counter-clockwise direction. 
 

     Note that the acoustical interference of two sound sources with each other – e.g. two 
loudspeakers – is the analog of Young’s two-slit interference experiment in optics! 
 

     Note also that the sound intensity, I (Watts/m2) is proportional to the (modulus) square of the 
over-pressure amplitude – i.e. I(z,t) ~ p2(z,t). Thus, we can rewrite the above formula in terms of 

sound intensities:  1 2 1 22 costotI I I I I    .  
 

     The sound intensity distribution Itot(x) vs. x (= ) = transverse distance (at z = L) is shown in 
below for equal intensities from two sound sources, I1 = I2 = Io = 1, when Itot(x) = 2Io[1+cos(x)]. 
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Interference Effects from Multiple Sound Sources – Phased Arrays: 
 

     Obviously, the phasor diagram can be extended to multiple (i.e. N) identical sound sources, 
each with sound intensity Io arranged in a line (e.g. the x-axis), each separated by a lateral 
distance d from each other, and interfering with each other – analogous to multiple, or N-slit 
interference in optics!  
 

The intensity distribution for N-slit interference on a transverse screen is given by: 

     Minima – i.e. intensity zeroes (complete destructive interference) occur when the numerator 
factor  N /2 = , 2, 3, … = n, n = 1, 2, 3, … except when the denominator factor 
simultaneously has /2 = , 2, 3, … = n, n = 1, 2, 3, … then we have a global 
maximum of the intensity, where Itot = N 2Io.  
 

     The limiting case is where the number of sources/slits, N    i.e. a continuum of closely-
spaced/immediately adjacent/contiguous, infinitesimally small sound sources, all in phase with 
each other, as in the 2-sound source case described immediately above. This limiting case 
describes the phenomena of diffraction of sound waves (or light waves) e.g. through a 
constricting aperture! 
 

   The phasor method can also be used for obtaining the intensity distribution associated e.g. with 
a 2-dimensional phased array of sound sources since, as in the case for light/EM waves, sound 
interference effects along one axis (e.g. x) do not interfere with those along a different axis     
(e.g. y). For example, the overall intensity distribution for a 2-dimensional rectangular array of 
Nx and Ny sound sources in the far-field limit is given by the product expression: 
 

 
where in the far-field limit: x = 2dx sin x/ and y = 2dy sin y/ (in radians). 
 
Additional info & plots on 1-D and 2-D N-slit “far-field” interference is available on the Physics 
406 Software webpage at the following URL:  
 

http://courses.physics.illinois.edu/phys406/406pom_sw.html 
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Diffraction (i.e. Spreading) of (Light &) Sound Waves Through Constricting Apertures: 
 

     For sound (or light) incident as plane waves on a single, narrow slit/aperture of lateral width, 
a, the intensity I (), far from the aperture (the so-called Fraunhofer limit), making an angle  
with the initial direction of propagation of the sound (or light) waves, is given by: 

 

where Io = I ( = 0) and Sinc(x)  sin x/x. This formula results from considering the interference 
arising from a succession of contiguous, infinitesimally small slits of lateral width, a adding up 
to the total lateral width, a of the physical aperture. The phasor diagram for this situation is an 
arc – i.e. a segment of a circle of radius R, as shown in the figure below. Note that the arc length 
formula, S = R  and the formula for the chord of a circle are used in deriving the above relation. 
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     The Sinc2 function – Sinc2(x) vs. x, where x = ½max = (a sin /), relevant for diffraction of 
sound (or light) through a narrow slit/aperture of lateral width a is shown in the figure below, as 
a semi-log plot. The global maximum of the intensity/power is in the central lobe, near |x| ~ 0. 
 

 

Diffraction minima occur when x = ½max = (a sin/) = , 2, 3, … = m,  
m = 1, 2, 3, …. 
 
Diffraction Through a Circular Aperture of Radius, R: 
 

     A more realistic situation for diffraction of sound is that of diffraction through a circular 
aperture. Diffraction occurs in all sound-generating transducers, such as loudspeakers. For a 
circular loudspeaker of radius R (n.b. also mounted on an infinite baffle) the angular intensity 
distribution I() resulting from the sound diffracting from the aperture of the loudspeaker is 
given by: 

 

where   is the polar angle from the axis of the loudspeaker, sinkR   and J1() is the 
ordinary Bessel function of order 1. Bessel functions frequently arise in situations where 
circular/cylindrical symmetry is involved. The Bessel function of order n, Jn(x) can be expressed 
as a power series expansion in x: 
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     A plot of Jn(x) vs. x for the three lowest-order Bessel functions (n = 0, 1 & 2) is shown in the 
figure below. 

 

     The first few zeros of the first order Bessel function, J1(x) occur at x = 0.0000, 3.8317, 
7.0156, 10.1735, 13.3237, 16.4706, 19.6159, … These are obviously not simply-related to one 
another – numerical computational and/or graphical techniques are usually used to determine 
them…  
 

A plot of normalized intensity 2 2
1 ( ) /J r r vs. r is shown in the figure below. 
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     The first intensity zero (i.e. a diffraction intensity minimum) associated with the diffraction of 
a plane wave through a circular aperture of radius R occurs at: 
 

 

where   is the angle from the symmetry axis (e.g. z-axis) of the circular aperture. 
 

     The situation for acoustic diffraction for sound waves of wavelength  diffracting through a 
circular aperture of radius R is the same as that for light/EM waves of wavelength  diffracting 
through a circular aperture of radius R. In the latter case, the bright central annular region is 
known as the so-called Airy Disk. Most of the intensity/power (~ 98.3%) is contained within this 
central region. 
 

Acoustic Diffraction and  Interference: 
 

     In the real world, both diffraction and interference effects operate simultaneously. For 
example, a stereo system consisting of two loudspeakers, each of radius R separated by a 
transverse distance a will have an overall intensity pattern, Itot() arising from the product of the 
intensity pattern associated with interference effects arising from the two speakers, modulated by 
the intensity pattern associated with sound diffraction effects associated with a single 
loudspeaker, since the latter is a phenomenon common to/operative on both loudspeakers. Thus, 
the overall intensity pattern e.g. associated with a pair of stereo loudspeakers is given by: 
 
 

 
Additional info & plots on 1-D and 2-D diffraction and diffraction & interference are available 
on the Physics 406 Software webpage at the following URL:  
 

http://courses.physics.illinois.edu/phys406/406pom_sw.html 
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Beats Phenomenon: 
 

     Beats is the phenomenon of interference with 2 (or more) signals of approximately the same, 
but NOT identical frequency, i.e. f1 ~ f2. 
 

     Linearly superpose (i.e. add) two “generic” signals with amplitudes A1(t) and A2(t), and which 
have similar/comparable frequencies,  2(t) = 2f2(t)  ~ 1(t) = 2f1(t), with instantaneous phase 
of the second signal relative to the first of 21(t): 
 
 

 
 
 

     Note that at the amplitude level, there is nothing explicitly overt and/or obvious in the above 
mathematical expression for the overall/total/resultant amplitude, Atot(t) that easily explains the 
phenomenon of beats associated with adding together two signals that have comparable 
amplitudes and frequencies. From the above formula, clearly the total waveform simply consists 
of two individual waveforms, one with slightly different frequency than the other. 
 

    However, let us consider the (instantaneous) phasor relationship between the individual 
amplitudes for the two signals, A1(t) and A2(t) respectively. Their relative initial phase difference 
at time t = 0 is 21(t=0) and the resultant/total amplitude, Atot(t=0) is shown in the figure below, 
for time, t = 0: 
 
 
 
 
 
 
 
 

     From the law of cosines, the magnitude of the total amplitude, Atot(t) at an arbitrary time t is 
obtained from the following: 
 

 
 
 
Thus: 
 
 
 
 
 

For equal amplitudes A10 = A20 = A0, zero relative initial phase 21 = 0 and constant  
(i.e. time-independent) frequencies, 2 and 1, this expression simplifies to: 
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     The phase of the total amplitude Atot(t) relative to that of the first amplitude A1(t), at an 
arbitrary time t is (t) and is obtained from the projections of the total amplitude phasor Atot(t) 
onto the y- and x- axes of the 2-D phasor plane: 
 

 

     The total amplitude Atot(t) = A1(t) + A2(t) vs. time t is shown in the figure below, for time-
independent/constant frequencies of f1 = 1000 Hz and f2 = 980 Hz, equal amplitudes of unit 
strength A10 = A20 = 1.0 and zero relative initial phase 21 = 0.0 

     Clearly, the beats phenomenon can be seen in the above waveform of total amplitude  
Atot(t) = A1(t) + A2(t) vs. time t. When Atot(t) = 0, we have complete destructive interference of 
the two individual amplitudes – i.e. the 2nd amplitude is 180o out of phase relative to the first. 
When Atot(t) = 2, we have complete constructive interference of the two amplitudes – the two 
individual amplitudes are exactly in phase with each other. More on this, below… 
 

     From the above graph, it is also obvious that the beat period beat = 1/fbeat = 0.050 sec = 1/20th 
sec, corresponding to a beat frequency of  fbeat = 1/beat = 20 Hz, which is simply the (absolute 
value of the) frequency difference  fbeat  | f1  f2| between f1 = 1000 Hz and f2 = 980 Hz. Thus, 
the beat period beat = 1/fbeat = 1/| f1  f2|. When f1 = f2, the beat period becomes infinitely long, 
and no beats are heard. 
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    Human beings perceive/hear beats in a rather peculiar manner – when the two (or more) 
individual frequencies are quite close together, i.e. f1 ~ f2, and in fact so close together such that 
their frequency difference, f = fbeat = | f1  f2| is less than the so-called critical band for human 
hearing (typically ~ 90 Hz for frequencies in the human voice range (~ 100 Hz – 1 KHz)). We 
humans don’t perceive the individual frequencies as separate, rather, we perceive/hear only a 
single frequency, as the (~ log-weighted intensity) average of the frequencies present. For two 
signals with equal amplitudes/equal sound intensities having f1 ~ f2 with f = fbeat = | f1  f2| less 
than the critical band, the perceived average frequency is simply < f > = ½( f1 + f2). What we 
humans hear as beats in this situation is so-called amplitude modulation of a sound wave 
consisting of a single average frequency < f > = ½( f1 + f2), much like someone rhythmically 
turning the volume control of an amplifier up and down at a frequency of f = fbeat = | f1  f2|, or 
equivalently, a beat period of beat = 1/fbeat = 1/| f1  f2|. 
 

    In terms of the phasor diagram, as time progresses, the individual amplitudes A1(t) and A2(t) 
actually precess at (angular) rates of 1 = 2f1 and 2 = 2f2 radians per second respectively, 
completing one revolution in the phasor diagram, for each cycle/each period of 1 = 2/1 = 1/f1 
and 2 = 2/2 = 1/f2, respectively. If at time t = 0 the two phasors are precisely in phase with 
each other (i.e. with initial relative phase 21 = 0.0), then the resultant/total amplitude  
Atot(t = 0) = A1(t = 0) + A2(t = 0)  will be as shown in the figure below. 
 
 
 
 
 
     As time progresses, if 1  2, (phasor 1 with angular frequency 1 = 2f1 = 2*1000 = 
2000 radians/sec and 2 = 2f2 = 2*980 = 1960 radians/sec in our example above) phasor 1, 
with higher angular frequency will precess more rapidly than phasor 2 (by the difference in 
angular frequencies,    = (1  2) = (2000  1960) = 40 radians/second). Thus, as time 
increases, phasor 1 will lead phasor 2; eventually (at time t = ½beat = 0.025 = 1/40th sec in our 
above example) phasor 2 will be exactly  =  radians, or 180 degrees behind in phase relative 
to phasor 1. Phasor 1 at time t = ½beat = 0.025 sec = 1/40th sec will be oriented exactly as it was 
at time t = 0.0 (having precessed exactly N1 = 1t/2 = 2f1t/2 = f1t = 25.0 revolutions in this 
time period), however phasor 2 will be pointing in the opposite direction at this instant in time 
(having precessed only N2 = 2t/2 = 2f2t/2 = f2t = 24.5 revolutions in this same time period), 
and thus the total amplitude Atot(t = ½beat) = A1(t = ½beat) + A2(t = ½beat) will be precisely zero 
(if the magnitudes of the two individual amplitudes are precisely equal to each other), or minimal 
(if the magnitudes of the two individual amplitudes are not precisely equal to each other), as 
shown in the figure below. 
 
 
 
 
 

     As time progresses further, phasor 2 will continue to lag farther and farther behind, and 
eventually (at time t = beat = 0.050 sec = 1/20th sec in our above example) phasor 2, having 
precessed through N2 = 49.0 revolutions will now be exactly  = 2 radians, or 360 degrees (or 

A1(t=0) A2(t=0) 

Atot(t=0) = A1(t=0) + A2(t=0) 

A2(t = ½beat) = A1(t = ½beat) 

Atot(t = ½beat) = A1(t = ½beat) + A2(t = ½beat) = 0 
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one full revolution) behind in phase relative to phasor 1 (which has precessed through N1 = 50.0 
full revolutions), thus, the net/overall result is the same as being exactly in phase with phasor 1! 
At this point in time, Atot(t = beat) = A1(t = beat) + A2(t = beat) = 2A1(t = beat) = 2A1(t = beat), and 
the phasor diagram looks precisely like that at time t = 0. 
 

    Thus, it should (hopefully) now be clear to the reader that the phenomenon of beats is 
manifestly that of time-dependent alternating constructive/destructive interference between two 
periodic signals of comparable frequency, at the amplitude level. This is by no means a trivial 
point, as often the beats phenomenon is discussed in physics textbooks in the context of 
intensity, Itot(t) = |Atot(t)|2 = |A1(t) + A2(t)|2.  From the above discussion, the physics origin of the 
beats phenomenon has absolutely nothing to do with intensity of the overall/ resultant signal. 
 

     The primary reason that the phenomenon of beats is discussed more often in terms of 
intensity, rather than amplitude is that the physics is perhaps easier to understand from the 
intensity perspective – at least mathematically, things appear more obvious, physically: 
 
 
 
 
Let us define:       and:  
 
And then let us use the mathematical identity: 
 
 
Thus: 
 
 
 
The let us define: 
 
 
We then obtain: 
 

 
 
 

Using the above mathematical identity again, we see that: 
 
 
and thus we obtain an additional relation, one which is not usually presented and/or discussed in 
many physics textbooks, but one which is very interesting: 
 

 
 
 
 

 
This latter formula shows that there are: 
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a.) DC (i.e. zero frequency, f = 0 Hz) components (i.e. constant terms) present, associated  
     with/arising from both of the individual amplitudes A10 and A20. 
b.) 2nd harmonic components present with 2f1 and 2f2, as well as:  
c.) a component associated with the sum of the two frequencies, 21 = f1 + f2, and:  
d.) a component associated with the difference of the two frequencies, f21 = f1 – f1.  
This is a remarkably similar result to that associated e.g. with the output response from a system 
having a quadratic non-linear response to a pure/single-frequency sine-wave input!  
(Please see/read the Physics 406 Lecture Notes on Distortion for more details...) 
 

     So, simply stated, beats is a phenomenon where e.g. two waves from separate sound sources 
with slightly different frequencies are combined/allowed to mix. The resultant total/overall wave 
exhibits interference between the two waves of slightly different frequencies. We hear this 
interference effect as an amplitude modulation of the overall envelope of the waveform. 
 

   We, as human beings hear/perceive the two frequencies as an average frequency, < favg > = 
½(f1+f2), if the two signals have equal amplitude/intensities, and we hear/perceive the difference 
frequency as a beat frequency – an amplitude modulation effect of the overall waveform, with  
f = fbeat = | f1f2| (= absolute value of the frequency difference). Fundamentally, beats is 
manifestly an interference phenomenon associated with two (or more) waves of nearly the same, 
but not identical frequency. 
 

     Note that the phenomenon of beats is not associated solely with acoustical physics – for 
example, in two entangled beams of light/EM waves of nearly the same frequency will also 
exhibit the property known as optical beats – this is the principal of operation of LIDAR (LIght 
Detection And Ranging), as well as Doppler RADAR (RAdio Dectection And Ranging). In 
LIDAR, a laser beam is split into two separate beams, e.g. using a beam splitter – a reference 
beam and a probe beam – the latter of which reflects off of a moving object, resulting in a 
Doppler-shifted frequency (see below), which upon mixing with the reference beam, results in 
optical beats. Thus, e.g. police use LIDAR devices for (very accurately) monitoring the speed of 
vehicles on interstate highways… 
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     The principal of operation of LIDAR and/or Doppler RADAR can also be used in an acoustical 
application, if the probe beam is used to illuminate e.g. a small, light-weight aluminized mylar 
mirror mounted on the cone of a loudspeaker. Then the frequency of the probe beam is Doppler-
shifted by the motion of the vibrating cone of the loudspeaker. When recombined with the 
reference beam, optical beats occurs, and if the envelope of the overall resultant/total/combined 
light intensity is detected e.g. using a photodiode, then electrically amplifying the signal output 
from the photodiode, and output to another (i.e. 2nd) loudspeaker, the sound output from the 
original loudspeaker can be heard in the second loudspeaker! 
      
The Doppler Effect – Frequency Shifts Due To Motional Effects: 

 

Simplest Case: Relative Motion of Sound Source and Observer in 1-Dimension: 
 

Let us first define: 
a.) Ground speed = speed of an object relative to ground (ground is assumed stationary). 
b.) Moving sound source has ground speed, Usource.  
c.) Moving     observer    has ground speed, Uobserver.  
d.) Speed of propagation of sound in medium (e.g. air) has ground speed, Vmedium. 
e.) Sound source emits sound with frequency,  fsource in sound source reference frame. 
f.) Moving observer hears/perceives frequency,  fobserver  fsource in his/her reference frame! 
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There are four possible/different/distinct cases/situations for the Doppler effect: 
 

a.) Sound source and observer are both moving in opposite directions – but approaching each 
other. The relative motion of sound source and observer is toward each other: 

 

 
 
 

b.) Sound source and observer are both moving in opposite directions – but receding from each 
other. The relative motion of sound source and observer is away from each other: 

 

 
 

 

c.) Sound source and observer are both moving in same direction, but the source is ahead of the 
observer: 
 

 
 

d.) Sound source and observer both moving in same direction, but the source is behind the 
observer: 
 

 
 
     A frequency shift f  =  fobserver – fsource  occurs when the sound source and/or observer are in 
motion with respect to ground reference frame! 
 

     The frequency heard/perceived by observer is higher if the relative motion of the sound 
source and observer is toward each other: fobserver > fsource, thus f  =  fobserver – fsource  > 0. 
 

     The frequency heard/perceived by observer is lower if the relative motion of the sound source 
and observer is  away from each other: fobserver < fsource, thus f  =  fobserver – fsource  < 0. 
 

     For each of above four cases, can get limiting/special cases, e.g. when ground speed of 
observer, Uobserver = 0 and/or when ground speed of sound source, Usource = 0. 
 

     If there exists a wind, then the component of wind velocity vector projected onto the line of 
relative motion between sound source and observer must be added (or subtracted) from ground 
speed of propagation of sound, Vsound. The presence/existence of wind has no effect if it is 
transverse (i.e. perpendicular) to the line defined by the relative motion between the sound 
source and observer.  
 

     Formally, the Doppler effect is actually a 3-D vector problem – involving the 3-D velocity 
vectors of all three items – i.e. the 3-D velocity vectors associated with the sound source, 
observer and the wind (if present). The above four 1-D formulae are correct only for the 
projections of these velocity vectors onto the line defined by the relative 1-D motion between 
sound source and observer. 
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An Example of the Musical Use of the Doppler Effect - The Leslie Speaker Cabinet: 
 
     The Leslie speaker cabinet, developed by Don Leslie in ~ 1940 – most frequently used in 
conjunction with the venerable Hammond B3 organ (but which also can be used with guitar, 
bass, vocals, harmonica, …) is a 2-way, 2-speed (fast/slow) rotating speaker system (with 
passive cross-over network) - highs (fhi > 800 Hz) come out of a rotating horn, lows (flow < 800 
Hz) emanate from a (fixed, non-rotating) 15” woofer with rotating rotor (black cloth-covered 
cylinder below the 15” woofer), as shown in the 3 pix below of the back/inside of a Leslie 
cabinet:  
 

 

 
     The single-opening/mouth of the rotating high-frequency horn and the single-opening/mouth 
of the rotating rotor for the woofer act/behave as (independently) rotating sound sources, rotating 
at angular frequencies hi and lo, respectively. Since the tangential velocity of a rotating object 
of radial size r is given by tv r 

 
, and sint tv v r r r       

 
(since 90o  = angle 

between the and r


vectors – i.e. they are perpendicular to each other), the respective hi/lo 
frequency rotor tangential speeds are thus vhi = hirhi and vlo = lorlo.  
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     Note that for a fixed radius rotor, the tangential speed tv  is linearly proportional to the 

angular frequency . Design-wise, for a fixed angular frequency   the tangential speed tv is 

linearly proportional to the rotor radius r – hence using a larger diameter rotor will give a larger 
Doppler effect than a smaller diameter one at a given/fixed angular frequency. 

 
 
 

Observer position (far from rotating sound source) 
 

      When a rotating sound source of finite radial size r is oriented such that it is instantaneously 
moving directly towards or directly away from a (distant) observer (sound source points A and C, 
respectively in the above diagram), the Doppler shift formula a.) and b.) as given above apply at 
those instants:  
 

At point A (source moving directly towards a distant, stationary observer):  
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At point C (source moving directly away from a distant, stationary observer):  
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At the points B and D, the orientation of the instantaneous tangential velocity vector of the 
rotating sound source tv


 is perpendicular to the sound source – distant observer direction, thus at 

these instants in time, the observer hears no Doppler shift (up or down in pitch), i.e. 
B D

observer observer sourcef f f  . Thus, as time progresses, the (distant) observer hears a sinusoidal 

variation of the frequency over the range: C A
observer source observerf f f  .   

 

For one full revolution of the Leslie speaker rotor, the x-component of the tangential speed of the 

rotating sound source (refer to above figure) as a function of time is:   cos cosx tv t v t r t     

thus the frequency heard by an observer/listener (red dot in the above figure) is: 
 

    cos
air air

observer source source
air t air

V V
f t f f

V v t V r t 
   

        
 

 

     A rhythmic, or periodic/sinusoidal variation in frequency (= “pitch” in musical parlance) is 
known as vibrato. 
 

     The sound from a Leslie cabinet used inside a room, or an auditorium is actually far more 
rich and complex than just that as described above! The reason(s) for this are: 
 

a.) The sound radiated from the each of the rotating speakers of the 2-way Leslie speaker cabinet 
also reflects off of the walls, floor and ceiling in a myriad of ways – single and multiple 
reflections, and with correspondingly differing path lengths (hence differing propagation delay 
times) which depend on the details of the geometry of the room, the Leslie speaker cabinet 
location and observer/listener location in the room. The indirect, reflected sounds seemingly 
coming from everywhere in the room will thus have their own specific Doppler shifts in 
frequency, as dictated by the law of reflection from the wall/floor/ceiling surfaces of the room, 
which are also heard by the observer, in addition to the vibrato sound coming directly from the 
Leslie cabinet.  

 
 
 
 



UIUC Physics 406 Acoustical Physics of Music 

 
Professor Steven Errede, Department of Physics, University of Illinois at Urbana-Champaign, Illinois  

2002-2017. All rights reserved. 

- 22 -

      At the listener’s position, the Doppler-shifted direct sounds will interfere in a complex 
manner with the indirect sounds, sometimes constructively/destructively – resulting in a beats-
type/amplitude modulation/tremolo effect, especially at lower frequencies, for which diffraction 
effects from the mouth of the rotating sound source are larger than for higher frequencies {since 
the Airy disk is within an angular region of  1sin 1.22 D   from the instantaneous axis of 

the mouth of the Leslie speaker rotor}. However for mid-range and higher frequencies, the 
mixing of direct and indirect sounds from a Leslie operated in a room often results 
predominantly in more of a flanged/phase-shifted vibrato-type sounding effect. 
 

b.) The musical sound(s) coming from a Leslie cabinet are almost never just a single/pure-tone  
frequency, but are complex musical sounds – i.e. all types of chords, which consist of multiple 
frequencies, and harmonics thereof. Thus, the direct and indirect sounds associated with a whole 
hierarchy of Doppler-shifted harmonics associated with these chords are heard. 
 

     Thus, the overall sound of a Leslie heard by a listener in a room is an extremely lush-
sounding 3-dimensional, texturally shimmering “chorale” type of sound effect, made famous in 
many rock-and-roll songs over the years, by many talented/gifted Hammond B3 organ players 
(e.g. Booker T. Jones/Booker T. & The MG’s, Matthew Fisher/Procol Harum, “A Whiter Shade 
of Pale”, Billy Preston, Keith Emerson/Nice/ELP, Al Kooper, Greg Allman/Allman Brothers 
Band, Benmont Tench/Tom Petty & The Heartbreakers, Garth Hudson/The Band, Jon Lord/Deep 
Purple, Paul Shafer, …), many guitarists (e.g. George Harrison/The Beatles, “Let It Be”, and 
“Lucy in the Sky With Diamonds”, Eric Clapton/The Cream, “Badge”), it has also been used e.g. 
for harp (harmonica players) as well as vocals in various songs. More information on the Leslie 
cabinet is discussed e.g. in the book “The Hammond Organ – Beauty in the B”, by Mark Vail, 
2nd Ed., Backbeat Books, 2002. Many websites for Leslies also exist on the internet. 
 

    The  Leslie sound can be emulated (to a certain degree) e.g. via various types of analog and/or 
digital electronic FX circuits, however none of these truly fully captures the totality/complexity 
of the Leslie sound (although they are certainly more convenient to bring to/from a gig, as well 
as hook up and use in live performances). The most famous of these FX boxes is the Univox 
Uni-Vibe, as used e.g. by Jimi Hendrix (Band of Gypsys), David Gilmour (Pink Floyd) and e.g. 
Robin Trower in various of their songs on albums from the late 1960’s/early 1970’s. 
 

The Univox Uni-Vibe. The pedal controls the speed of the vibrato/chorus effect(s). 
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Acoustic Energy & Acoustic Power in Sound Waves 
 

In order to create an acoustic “disturbance’ in a medium (gas, liquid, solid..), must input/expend 
energy. The energy supplied to create the acoustic wave travels with the wave as it propagates. 
 

Process whereby acoustic energy is carried away from the sound source is called RADIATION. 
 

In order to make a sound source radiate, e.g. a constant over-pressure amplitude sound wave 
requires a certain amount of energy input per unit time into the sound source – i.e. power, P(t): 
 

Power,      E t E t
P t

t t

 
 

 
= time rate of change in energy = Joules/second = Watts 

 

The sound source then radiates sound energy; the acoustic power in the sound wave is expressed 
in acoustic Watts. 

Electrical (and/or mechanical) power input to the sound source = power supplied (Watts) 
 

     Note that the efficiency for conversion of e.g. electrical power into acoustical power,  
e.g. using a loudspeaker is not very high: 
 

Efficiency   
acoustic power

power supplied
  1-2%    typical efficiency for loudspeakers! 

 

     Thus, e.g. for a 100 Watt (rms) guitar amplifier, the power rating of the amplifier actually 
refers to the electrical power driving the loudspeaker(s) of the amp; the actual acoustic power 
radiated by loudspeakers of the 100 Watt (rms) guitar amplifier is typically only ~ 1-2 acoustic 
Watts (rms)!  
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a  sound absorption coefficient  IAbsorbed/ IIncident 

Relation Between Sound Intensity, I and Radiated Acoustic Power, P 
 

Sound intensity I   acoustic power P radiated from sound source per unit area A.  
 

Sound e.g. from a “point” sound source is radiated over the surface area of (an imaginary) sphere 
of radius R centered on the sound source. The sound intensity I at a radial distance r =R from the 
sound source is thus: 
 

 
           (SI units: Watts/m2) 
 
 

Sound Absorption:  
 

Sound energy can also be absorbed in propagating through a medium, and/or upon reflection 
from a surface. 
 

The transmitted and/or reflected sound intensity is in general less than incident sound intensity: 
 

 

Define:   
 

 
    
 

    a = 0: no sound absorbed 
    a = 1: sound completely absorbed 
 
     The amount of sound absorption in a given material depends on the detailed nature of the 
material and also the frequency, i.e. in general the absorption coefficient a = a(f ).  
We will discuss this further in subsequent lecture(s), e.g. on auditorium/room acoustics. 

 

 

  24Sphere

P PI r R A R    

10  a  

IIncident = ITransmitted + IReflected + IAbsorbed 

Sound energy is 
conserved, and 
propagates radially 
outward in all 
directions from the 
point sound source. 

(from conservation of energy) 
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