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Milton Garćıa-Borroto

Third Degree Volterra Kernel for Newborn Cry Estimation . . . . . . . . . . . . 230
Gibran Etcheverry, Efráın López-Damian, and
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Cost-Sensitive Neural Networks and Editing Techniques
for Imbalance Problems

R. Alejo1, J.M. Sotoca1, V. Garcı́a1, and R.M. Valdovinos2

1 Institute of New Imaging Technologies
Dept. Llenguatges i Sistemes Informátics, Universitat Jaume I

Av. Sos Baynat s/n, 12071 Castelló de la Plana (Spain)
2 Centro Universitario UAEM Valle de Chalco, Universidad Autónoma del Estado de México

Hermenegildo Galena No.3, Col. Ma. Isabel, 56615 Valle de Chalco (Mexico)

Abstract. The multi-class imbalance problem in supervised pattern recognition
methods is receiving growing attention. Imbalanced datasets means that some
classes are represented by a large number of samples while the others classes only
contain a few. In real-world applications, imbalanced training sets may produce
an important deterioration of the classifier performance when neural networks
are applied in the classes less represented. In this paper we propose training cost-
sentitive neural networks with editing techniques for handling the class imbalance
problem on multi-class datasets. The aim is to remove majority samples while
compensating the class imbalance during the training process. Experiments with
real data sets demonstrate the effectiveness of the strategy here proposed.

Keywords: Multi-class imbalance; backpropagation; cost function; editing.

1 Introduction

Neural networks have become a popular tool in Pattern Recognition, Machine Learn-
ing and Data Mining [1]. Although there are several kinds of neural networks, most
attention has been focused on the use of Multilayer Perceptron (MLP) [2], or feed-
forward networks trained with a backpropagation learning algorithm for supervised
classification.

However, it is well known that in MLP, the nature of the Training Data Sets (TDS)
has a major impact on the ability of the network to generalize[2]. One of the prob-
lems in the complexity of the TDS that most affects the neural networks is the class
imbalance [3].

A two-class data set is said to be imbalanced when one of the classes (the minority
one) is heavily under-represented with regard to the other class (the majority one) [4].
This problem is encountered in a large number of domains, and in certain cases, it
has been observed that class imbalance may cause a significant deterioration in the
performance attainable by standard learners because these are often biased towards the
majority class [5].

Many works have addressed the class imbalance problem [6,5]. The most popu-
lar strategies for dealing with this problem can be grouped in three categories. One
is to assign different costs to the classification errors [3]. The second technique is to

J.A. Carrasco-Ochoa et al. (Eds.): MCPR 2010, LNCS 6256, pp. 180–188, 2010.
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Cost-Sensitive Neural Networks and Editing Techniques 181

make a resampling of the original TDS, over-sampling the minority class and/or under-
sampling the majority class until the classes are approximately equally represented [4].
The third technique consists in internally biasing the discrimination-based process and
compensate the class imbalance [7,8]. However, these techniques do not consider other
complexities that might result from TDS. In this regard, several studies suggest that
other problems such as the overlap between classes should be taken into account in
classification tasks [9,10].

In this work, we present some preliminary results to explore two issues related with
the Multi-Class Imbalance Problem. Initially, we remove majority samples from the
overlap region, producing a local balance of the classes. For this, the only requirement
is that all samples of the minority classes must be saved in the TDS. As downsizing
of the majority classes can throw away significant information, an editing scheme is
applied. Note that a global balance in the class sizes is not achieved. Subsequently, the
backpropagation algorithm is modified to avoid that the minority classes be ignored in
the learning process, and to accelerate the convergence of the neural network.

2 Multilayer Perceptron

The multilayer perceptron (MLP) neural network [11] usually comprises one input
layer, one or more hidden layers, and one output layer. Input nodes correspond to
features, hidden layers are used for computations, and output layers are related with
the number of classes. A neuron is the elemental unit of each layer. It computes the
weighted sum of its inputs, adds a bias term and drives the result thought a generally
nonlinear (commonly a sigmoid) activation function to produce a single output.

The most popular training algorithm for MLP is the backpropagation strategy, which
uses a set of training instances for the learning process. Given a feedforward network,
the weights are initialized to small random numbers. Each training instance is sent
through the network and the output from each unit is computed. The target output is
compared with the output estimated by the network calculating the error, which is fed-
back through the network.

To adjust the weights, the backpropagation algorithm uses a gradient descent to min-
imize the squared error. At each unit in the network starting from the output unit and
moving to the hidden units, its error value is used to adjust the weights of its connec-
tions as well as to reduce the error. This process is repeated for a fixed number of times,
or until the error is small.

2.1 The Backpropagation Algorithm and the Class Imbalance Problem

Empirical studies of the backpropagation algorithm [12] show that class imbalance
problem generates unequal contributions to the mean square error (MSE) in the training
phase. Clearly the major contribution to the MSE is produced by the majority class.

Let us consider a TDS with two classes (m = 2) such that N =
∑m

i ni and ni is the
number of samples from class i. Suppose that the MSE by class can be expressed as

Ei(U) =
1
N

ni∑

n=1

L∑

p=1

(dn
p − yn

p )2 , (1)
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where dn
p is the desired output and yn

p is the actual output of the network for sample n.
Then the overall MSE can be expressed as

E(U) =
m∑

i=1

Ei = E1(U) + E2(U) . (2)

If n1 << n2 then E1(U) << E2(U) and ‖∇E1(U)‖ << ‖∇E2(U)‖, conse-
quently ∇E(U) ≈ ∇E2(U). So, −∇E(U) it is not always the best direction to mini-
mize the MSE in both classes.

Considering that the imbalance problem affects negatively in the backpropagation
algorithm due to the disproportionate contributions in the MSE, it is possible to consider
a cost function (γ) that balance the TDS class imbalance as follows:

E(U) =
∑m

i=1 γ(i)Ei = γ(1)E1(U) + γ(2)E2(U)

= 1
N

∑m
i=1 γ(i)

∑ni

n=1

∑L
p=1(y

n
p − Fn

p )2 ,
(3)

where γ(1)‖∇E1(U)‖ ≈ γ(2)‖∇E2(U)‖ avoiding that the minority class be ignored
in the learning process. In this work, the cost function is defined as

γ(i) = ‖∇Emax(U)‖/‖∇Ei(U)‖, (4)

where ‖∇Emax(U)‖ corresponds to the largest majority class.
When a cost function is included in the training process, the data probability distri-

bution is altered [13]. However, this cost function (Eq. 4) reduces its impact in the data
distribution probability because the cost function value is diminished gradually. In this
way, the class imbalance problem is reduced in early iterations, and later γ(m) reduces
its effect on the data distribution probability.

3 Edited Nearest Neighbor Rule

Wilson [14] developed the Edited Nearest Neighbor (ENN) algorithm in which the set
of samples S starts out the same as TDS, and then each instance of the set S is removed if
it does not agree with the majority of its k nearest neighbors (with k=3, typically). This
method removes noisy instances as well as samples at the borderline, leaving smoother
decision boundaries. Algorithmically, the ENN scheme can be expressed as follows:

1. Let S = X .
2. For each xi in X do:

– Discard xi from S if it is misclassified using the k-NN rule with prototypes in
X − {xi}.

In this work, the ENN is applied only in the majority classes. The aim is to reduce the
complexity in the overlap region maintaining all the minority samples. This technique
can be seen as focused under-sampling.
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4 Methodology

The experiments were carried out on three images real data sets (Cayo, Feltwell and
Satimage). A brief summary is given in the Table 1. For each database, a 10–fold cross–
validation was applied. The datasets were divided into ten equal parts, using nine folds
as training set and the remaining block as test set.

Table 1. A brief summary of some basic characteristics of the databases

Dataset Size Attr. Class Class distribution
Cayo 6019 4 11 838/293/624/322/133/369/324/722/789/833/772
Feltwell 10944 15 5 3531/2441/896/2295/1781
Satimage 6430 36 6 1508/1531/703/1356/625/707

The Accuracy and g-mean are used as performance measure to evaluate the classifier.
It is common to obtain measure criteria from the confusion matrix where real classes
are in columns, whereas predicted ones appear in rows (Table 2). The table built in
this way is a general vision assignment, where diagonal elements count the correctly
assigned samples and elements out of the diagonal count the wrongly classified ones.

From the confusion matrix, we can define

Accuracy =
m∑

i=1

nii/N , (5)

where N is the total number of samples.

Accuracy by class = nii/ni+. (6)

Other measure used is the geometric mean (g-mean) defined as

g-mean = (
m∏

i=1

nii/ni+)
1
m . (7)

All the MLP were trained with the backpropagation algorithm in batch mode. This
process has been repeated ten times and the results correspond to the average. The
learning rate (η) was set to 0.1 and only one hidden layer was used. The number of
neurons for the hidden layer was established to 7, 6 and 12 for Cayo, Feltwell and
Satimage datasets respectively.

Table 2. Confusion matrix for a multi-class problem

Real Classes
Predicted Classes 1 2 · · · m total (ni+)

1 n11 n12 · · · n1m n1+
2 n21 n22 · · · n2m n2+

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
m nm1 nm2 · · · nmm nm+

total (n+j ) n+1 n+2 · · · n+m N
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Summarizing the strategy proposed in this work consists of the following:

1. To edit the TDS with the ENN technique, removing only majority samples in the
overlap region and producing a local balance of the classes (sec. 3).

2. To modify the backpropagation algorithm applying a cost-function (Eq. 4) to avoid
that the minority classes would be ignored in the learning process, and accelerating
the convergence of the neural network.

3. To train the MLP with the modified algorithm over the TDS edited.

5 Results and Discussion

In order to evaluate the possibilities of the proposed approaches here exposed, several
experiments with imbalance data sets were developed. In Tables 3, 4, 5 and 6 the main
results are detailed. In these experiments, we denote “Cost-MLP” the cost function with
MLP and “TDS edited” the imbalanced training set edited.

Table 3 shows the percentage of samples eliminated after applying the edition algo-
rithm in the majority classes. In the case of Cayo database, the classes 1, 3, 8, 9, 10
and 11 were considered as majority classes. On the other hand, in Feltwell database,
only the class 3 was identified like minority class. For Satimage database, the classes
1, 2 and 4 were considered as majority classes. The experiments used different values
of k in the edition process choosing the most suitable for each database: Cayo k = 15,
Feltwell k = 9 and Satimage k = 5.

In the case of majority classes, the number of samples eliminated were significant
(see Table 3). This important reduction of the size tends to improve the classification
accuracy in the minority classes. On the other hand, it is possible observe that in some
majority classes, the number of samples eliminated was minimum: classes 1 and 8 for
Cayo, classes 2, 4 and 5 for Feltwell and class 2 for Satimage.

The information presented in Tables 4, 5 and 6 was organized as follows. The first
column of each table indicates the strategy applied, i.e., if the TDS were edited or
not, or if we use the modified algorithm or the standard algorithm. The second column
indicates the class to which the results correspond. In the third column (the ratio), we
show the proportion of class elements in relation with the total samples (ratio = ni/N ,
where ni is the elements number of class i and N the total samples in the TDS). The
fourth column is the classification accuracy and the last one shows the classes with
the level of confusion is greater thant 10% (the percentage of confusion appears in
brackets).

Table 3. Percentage of samples eliminated after editing the TDS

Class 1 2 3 4 5 6 7 8 9 10 11 Total reduction
Cayo 10.74 0.00 43.73 0.00 0.00 0.00 0.00 5.54 13.42 48.92 48.19 21.40%

Feltwell 15.26 10.93 0.00 11.2 13.14 11.89%

Satimage 47.5 12.69 0.00 60.56 0.00 0.00 27.31%
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Table 4. Results of the classification phase with the MLP on the Cayo data base

Class Ratio Accuracy % confusion ( > 10 %)
C-01 0.14 89.74
C-02 0.05 51.20 C-03 (48.63)
C-03 0.10 95.69
C-04 0.05 70.99 C-03 (12.61) C-08 (11.43)
C-05 0.02 19.92 C-01 (50.30) C-03 (19.39)

MLP + TDS C-06 0.06 56.44 C-07 (31.90)
C-07 0.05 95.40
C-08 0.12 98.55
C-09 0.13 87.56 C-10 (12.44)
C-10 0.14 77.03 C-11 (21.80)
C-11 0.13 89.40 C-10 (10.14)
C-01 0.14 88.10
C-02 0.05 51.37 C-03 (48.63)
C-03 0.10 93.42
C-04 0.05 93.54
C-05 0.02 73.79 C-01 (14.39) C-03 (11.52)

Cost-MLP + TDS C-06 0.06 60.43 C-07 (30.82)
C-07 0.05 95.31
C-08 0.12 94.86
C-09 0.13 87.56 C-10 (12.44)
C-10 0.14 76.36 C-11 (22.99)
C-11 0.13 91.89
C-01 0.14 88.15
C-02 0.05 51.99 C-03 (48.01)
C-03 0.10 92.84
C-04 0.05 91.43
C-05 0.02 51.97 C-01 (25.23) C-03 (15.45)

MLP + TDS edited C-06 0.06 58.99 C-07 (31.90)
C-07 0.05 96.29
C-08 0.12 97.60
C-09 0.13 87.56 C-10 (12.44)
C-10 0.14 76.56 C-11 (15.06)
C-11 0.13 75.41 C-09 (16.02)
C-01 0.14 86.87
C-02 0.05 70.72 C-03 (29.28)
C-03 0.10 78.31 C-02 (14.79)
C-04 0.05 94.22
C-05 0.02 86.67

Cost-MLP + TDS edited C-06 0.06 60.95 C-07 (31.39)
C-07 0.05 95.74
C-08 0.12 95.24
C-09 0.13 87.56 C-10 (12.44)
C-10 0.14 73.94 C-11 (24.63)
C-11 0.13 94.70

In Table 4, we observe in Cayo dataset that the classes 2, 5 and 6 are affected seri-
ously by the imbalance problem. We point out that when the imbalance is compensated
with the cost function, the accuracy of the minority classes is increased (except for the
class 2) especially in the case of class 5.

When the TDS is edited, the global accuracy and the performance of the minority
classes are improved. Nevertheless, in the case of overlapped classes (see class 2 in
Table 4) the results presented are practically the same.

When the classes imbalance is compensated and the network is trained with the TDS
edited, the accuracy of the class 2 increases significantly. On the other hand, the com-
bination of both strategies improves the rate of recognition on the minority classes. The
classes 6 and 7 do not increase your performance due to these classes are overlapped
each other.
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Table 5. Feltwell: Classification with MLP

Class Ratio Accuracy % confusion ( > 10 %)
C-01 0.35 99.07
C-02 0.24 81.97 C-03 (11.72)

MLP + TDS C-03 0.10 78.86 C-01 (10.70)
C-04 0.15 83.91 C-01 (11.48)
C-05 0.17 90.43
C-01 0.35 98.58
C-02 0.24 80.85 C-03 (14.85)

Cost-MLP + TDS C-03 0.10 83.08
C-04 0.15 83.35 C-01 (10.74)
C-05 0.17 88.92 C-01 (10.55)
C-01 0.35 97.63
C-02 0.24 73.62 C-03 (13.99) C-05 (11.17)

MLP + TDS edited C-03 0.10 81.48 C-04 (10.09)
C-04 0.15 83.19
C-05 0.17 96.12
C-01 0.35 97.45
C-02 0.24 69.70 C-03 (23.85)

Cost-MLP + TDS edited C-03 0.10 84.70
C-04 0.15 81.80
C-05 0.17 95.76

Table 6. Satimage: Classification results with the MLP

Class Ratio Accuracy % confusion ( > 10 %)
C-01 0.23 90.87
C-02 0.23 98.83
C-03 0.11 90.71

MLP + TDS C-04 0.20 97.71
C-05 0.11 2.37 C-01 (61.04) C-04 (33.03)
C-06 0.12 70.25 C-01 (15.74)
C-01 0.23 81.89 C-05 (13.83)
C-02 0.23 97.51
C-03 0.11 90.54

Cost-MLP + TDS C-04 0.20 91.61
C-05 0.11 65.73 C-01 (19.91) C-04 (13.22)
C-06 0.12 76.71 C-01 (13.50)
C-01 0.23 75.21 C-05 (18.66)
C-02 0.23 98.18
C-03 0.11 91.43

MLP + TDS edited C-04 0.20 88.46 C-05 (10.18)
C-05 0.11 60.95 C-01 (25.45) C-04 (11.04)
C-06 0.12 77.05
C-01 0.23 71.47 C-05 (23.09)
C-02 0.23 96.83
C-03 0.11 93.39

Cost-MLP + TDS edited C-04 0.20 83.27 C-05 (15.57)
C-05 0.11 84.08
C-06 0.12 81.14

The results of Feltwell database are included in Table 5. The use of the TDS edited
improves the classifier effectiveness on the minority class 3. However, there is a ten-
dency for reducing the network effectiveness on the majority classes, especially class 2.

Satimage database (see Table 6) shows a similar tendency to Cayo and Feltwell.
When the TDS is edited, the classification on the minority classes is increased. The
combination of both approaches increases the accuracy of minority classes and com-
pensate the classes imbalance. This strategy qualitatively improves the accuracy of the
minority classes. For example, in class 5 the accuracy is 65.73% with the original TDS,
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Table 7. Global performance of the classifier

Cayo
MLP Cost-MLP MLP Cost-MLP
TDS TDS TDS edited TDS edited

Accuracy 83.58(0.77) 85.15(0.27) 82.75(1.90) 84.79(0.48)
g-mean 70.17(6.28) 80.96(0.44) 76.50(2.92) 83.30(0.78)

Feltwell
MLP Cost-MLP MLP Cost-MLP
TDS TDS TDS edited TDS edited

Accuracy 89.38(0.95) 89.01(0.51) 87.99(1.21) 87.04(0.71)
g-mean 86.60(1.64) 86.79(0.75) 85.97(1.47) 85.33(0.98)

Satimage
MLP Cost-MLP MLP Cost-MLP
TDS TDS TDS edited TDS edited

Accuracy 82.26(0.31) 86.07(0.34) 83.66(0.34) 84.59(0.38)
g-mean 47.31(5.72) 83.34(0.95) 80.90(1.17) 84.70(0.36)

whereas when the network is trained with the TDS edited and with the modified algo-
rithm its value reaches 84.08%.

On the other hand, analyzing the global values of accuracy and geometric mean (see
Table 7), we can see that these measures obtain better results when the TDS is edited,
even in cases where the imbalance is not compensated.

In Feltwell database, it is possible that the proposed strategy does not represent a sig-
nificant improvement. Only when we apply cost-functions in training neural network,
the results are similar to original dataset. The editing technique proposed obtains clearly
worse results and it is not adequate for this database.

Summarizing we can say that the editing of TDS and the application of cost functions
in the neural network training reduces the confusion between classes. However, when
we give priority to minority classes, the majority classes are affected in the training
process with a loss of accuracy in these classes.

6 Conclusion

In this work we propose a strategy based on combination of training cost-functions
with editing technique in neural networks to deal with the class imbalance problem on
multi-class datasets. This generates two effects: a) to compensate the class imbalance
during the training process and b) to reduce the confusion of the minority classes in
the overlap region. With the edition of the majority classes it is possible to reduce the
confusion between the minority and majority classes.

The modification of the training algorithm including a cost function increases the
recognition rate of less represented classes, accelerating the convergence of the
network.

However, we have seen in some situations that the proposed editing technique has not
been adequate. Thus, it is interesting the use of new strategies to reduce the confusion
region taking into account both the imbalance and the representativeness of the data.
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