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1 Foreword

The aim of these notes is to provide a concise introduction to microeconomic modeling at the

advanced undergraduate level. No final year undergraduate student in economics is expected

to find in these notes any concept or idea he is not already familiar with. These old ideas will

however be presented in a way that is likely to be new to most students at that stage in the

course of their curriculum. Some familiarity with the language of Mathematics will undoubtly

help the reader of these notes. While a number of key mathematical results are briefly pre-

sented in the appendix to these notes, these results are intended for immediate reference only.

In no way do they substitute an introductory course in real analysis. Sydsaeter’s Mathemat-

ical Analysis is an excellent reference for economists. Those with a stronger background in

Mathematics may want to use Rudin’s Principles of Mathematical Analysis instead.

All introductory textbooks on microeconomics cover most of the material found in these

notes, and indeed very often more than that. Students are therefore encouraged to satisfy

their curiosity by consulting alternative sources. Rubinstein’s outstanding Lecture Notes in

Microeconomics for instance are freely available online. Bear in mind however that any set

of notes derives as much of its added value from what it chooses to leave out as from what it

effectively contains. Finally, while in principle usable on a stand-alone basis, these notes are

primarily designed to support lectures. Attending lectures should therefore help you improve

your understanding of the material covered in the notes.

These notes are organized as follows. Section 2 is devoted to the study of the consumer.

Section 2.1 elaborates a general framework in which to study issues related to consumption.

Section 2.2 illustrates some of the most important applications of the framework: intertem-

poral consumption (2.2.1), consumption under uncertainty (2.2.2), as well as labor supply
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(2.2.3). We show in section 3 how our approach to consumption can be transferred over to

think about production. Section 4 introduces General Equilibrium. Section 5 develops the

concept of a financial asset. That section unifies the applications covered in 2.2, and allows us

to explicitly deal with temporal aspects of general equilibrium – which constitute the theme

of section 6.

Results are divided into lemmas and propositions. The lemmas tend to be purely technical

results. They are mere tools in the build-up to the propositions, in which the economic insights

really lie. Scattered in the text is also a series of questions. While these questions are meant

to give you an opportunity to exert the knowledge you have acquired, the results developed

in them are often important complement to the material covered in the lectures. As such

they are part and parcel of these notes. Sketch answers to all questions are provided in the

Appendix. More detailed answers will be given during the weekly seminars.
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2 The Consumer

2.1 General Framework

Wherever possible, we will in these notes confine our analysis to a world containing two

goods. All results developed here naturally extend to higher dimensions, but our aim is to

keep the analysis simple in order to focus on economic content. Restricting attention to the

2-dimensional case also offers the great advantage of accommodating a complete graphical

representation.

The ultimate foundation of our approach is the utility function, used to represent prefer-

ences1 of the consumer over vectors of goods x = (x1, x2). A consumer having utility function

u is one who prefers x to y iff u(x) > u(y).2 Always bear in mind that utility functions are

mere numerical tools used to represent underlying preferences. In particular, if v is strictly

increasing and a consumer has utility function u then v ◦ u is an equally valid utility function

for that consumer. A consumer’s utility function is thus determined only up to an increasing

transformation.

In principle, utility functions may take a variety of forms. In order to make progress, one

is bound to make certain restrictive assumptions regarding consumers’ preferences. While

these assumptions may to some extent be justified economically, their main asset is to greatly

simplify the analysis of the model we build. We will immediately state these assumptions in

terms of utility functions. You should convince yourself however that all these assumptions

are preserved under any (smooth) increasing transformation. This is critical, given we are

claiming to make assumptions concerning consumers’ underlying preferences.

Our first assumption embodies the idea that consumers exhibit smooth preferences.

Assumption A.1: u is C∞ (u is smooth).

Our second assumption embodies the idea that consumers always prefer consuming more.

Assumption A.2: ∇iu > 0, ∀i (u is strictly increasing).

1We could spend an entire course examining the relationship between consumers’ underlying preferences
and the utility function representation of these preferences. The interested reader is referred to Rubinstein’s
outstanding Lecture Notes in Microeconomics, freely available online.

2Notice that this immediately precludes certain preferences, in particular non-transitive preferences. It is
possible to show however that any 8well-behaved′ preferences can be represented using a utility function.
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Our third assumption embodies the idea that consumers prefer balanced baskets of goods.3

This is the natural assumption for complementary goods, but is also very compelling in the

contexts of intertemporal consumption and consumption under uncertainty. We explore these

topics in detail later in the notes.

Assumption A.3: u(λx + (1 − λ)y) > min{u(x), u(y)}, ∀λ ∈ (0, 1) (u is strictly quasi-

concave).

We will in these notes develop a set of results concerning utility functions satisfying the

former assumptions. Utility functions which fail to satisfy one or more of these assumptions

have to be dealt with on an individual basis.

Definition 1 A consumer with utility function u is one who prefers x to y iff u(x) > u(y).

A function u : Rn → R is a standard utility function iff it satisfies assumptions A.1-A.3.

Henceforth, all utility functions we will be dealing with in these notes will be assumed to

be standard utility functions, unless stated otherwise.

The following technical lemma records a useful way to check whether a given utility function

satisfies the standard assumptions.

Lemma 1 Consider u such that A.1-A.2 hold. Then assumption A.3 holds iff u has convex

level curves.4.

Proof. Suppose A.3 holds, let L an arbitrary level curve of u (u(x) = l, ∀x ∈ L), and f

such that L = {(x, f(x)) : x ∈ R}. We want to show that f is convex. Let x and y belong to

L. By strict quasi-concavity u(λx+ (1− λ)y) > min{u(x), u(y)} = l. And, since u is strictly

increasing, L lies below the line segment joining x and y. But this implies f convex, since x

and y were chosen arbitrarily.

For the converse, suppose u has convex level curves and let x and y be two consumption

bundles. Suppose moreover, wlog, that u(y) ≥ u(x). Let y′ the point on the same level

curve as x such that y′2 = y2. Note that y′ lies to the left of y, so that if we can show that

u(λx + (1 − λ)y′) > u(x) then we are done. But the previous inequality indeed holds since

the level curve containing x and y′ is decreasing, convex, and ∇iu > 0, ∀i, by A.2.

3Observe that any concave function is also quasi-concave. However, quasi-concavity is preserved under
increasing transformation, while concavity is not. So quasi-concavity is a statement about underlying prefer-
ences, while concavity is not.

4Recall that a level curve of u represents the set of points such that u(x) = l, for some fixed l.
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.

[Q1] Let α ∈ (0, 1) and consider the Cobb-Douglas functional form: u(x) = xα1x
1−α
2 . Show

that the Cobb-Douglas is (almost) a standard utility function.

.

We next introduce an important class of utility functions:

Definition 2 A utility function u has the additive property iff there exists U : R → R and

(αi)1≤i≤n, αi > 0, ∀i, such that:

u(x) =
∑
i

αiU(xi) (1)

Utility functions satisfying the additive property are particularly convenient to handle and

occupy for that reason a prominent place in microeconomic theory. The following lemma

shows for instance that assumptions A.1-A.3 take a particularly simple form for that class

of utility functions.

Lemma 2 Let u satisfy the additive property, u(x) =
∑

i αiU(xi). Then u satisfies A.1-A.3

iff

1. U is C∞

2. U ′ > 0

3. U ′′ < 0

Proof. Note first that 1 and 2 are evidently necessary and sufficient for A.1 and A.2 to hold,

respectively.

We next show that if 3 holds then so does A.3. We have

u(λx+ (1− λ)y) =
∑
i

αiU(λxi + (1− λ)yi) >
∑
i

α
(
λU(xi) + (1− λ)U(yi)

)
(2)

Hence u(λx+ (1− λ)y) > λu(x) + (1− λ)u(y).

We finally show that concavity of U is in fact a necessary condition for A.3 to hold.

Suppose U not strictly concave. We can thus find x such that U ′′(x) ≥ 0. Let x2(x1) denote

the level curve of u passing through x = (x, x), so that

α1U(x1) + α2U(x2(x1)) = α1U(x) + α2U(x) (3)
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Differentiating twice with respect to x1 yields

x′′2 = −
[
α1U

′′(x1) + α2U
′′(x2)(x′2)2

α2U ′(x2)

]
(4)

In particular x′′2(x) ≤ 0. By Lemma 1 therefore, u violates A.3.

�

.

[Q2] Using this time Lemma 2, show once more that the Cobb-Douglas is (almost) a standard

utility function.

.

The problem of the consumer is straightforward to formulate on the basis of Definition

1. Let m denote the budget of a consumer with utility function u, and p the given vector of

prices. A consumer choosing his most preferred affordable bundle of goods effectively solves

max
x≥0

u(x) s.t. p.x ≤ m (5)

Notice that if pi = 0 for some good i then, by A.2, the consumer will demand an infinite

amount of that good. We will therefore suppose throughout that pi > 0, ∀i. Under this

assumption, a solution to (5) always exists.5 There is moreover a unique optimal consumption

bundle x. Indeed, if there were two we could take a weighted average of them and, owing to

the strict quasi-concavity of u, obtain a strictly higher utility level. Note also that p.x = m

at the optimum, by A.2. We will say that the solution is interior if xi > 0, ∀i.
Our first result embodies the following idea: prices establish the rate at which the consumer

can trade goods against one another. So unless this rate reflects his own valuation of the

goods the consumer always has an incentive to trade goods at the market rate. Thus, at an

optimum, the consumer’s marginal rate of substitution (MRS) must equal the price ratio. The

proposition also provides a useful set of sufficient conditions to elicit the optimal consumption

bundle.

Proposition 1 Let p > 0. Any interior solution to (5) satisfies

∂u/∂xi
∂u/∂xj

=
pi
pj

(i.e. MRS = price ratio) (6)

5All so-called 8existence′ results of microeconomics follow from standard results in topology. These results
are however beyond the scope of these notes.
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Moreover, if x satisfies (6) and p.x = m then x solves the consumer problem.

Proof. Necessity of condition (6) is an immediate application of the Karush-Kuhn-Tucker

Theorem (notice that we are here using the fact that the constraint is binding at an optimum).

Suppose next x satisfies (6), and p.x = m. By the Implicit Function Theorem the level

curve of u at x is then tangent to the hyperplane p.x = m. But utility functions have convex

level curves by Lemma 1. The level curve of u at x thus lies entirely above its tangent. This

shows that x is optimal for the consumer problem.

�

We record for future reference the following definitions:

Definition 3 The optimal consumption bundle in (5) is called Marshallian demand, and

denoted x(p,m).

Definition 4 The maximum utility level attained in (5) is called indirect utility, and denoted

v(p,m).

Definition 5 A good is said normal6 iff the Marshallian demand for it satisfies ∂xi(p,m)/∂m ≥
0.

.

[Q3] Suppose two goods are perfect complements for a given consumer. What functional

form does this imply for this consumer’s utility function? Comment. What if the two goods are

perfect substitutes instead?

.

[Q4] Show that Marshallian demand is homogenous degree zero in (p,m), and satisfies p.x =

m. Show moreover that indirect utility is homogenous degree zero in (p,m), increasing in income,

decreasing in prices, and quasiconvex in (p,m).

.

[Q5] Let u a standard utility function and v : R → R smooth and strictly increasing. Apply

(6) to v(u(x)) instead of u. What do you observe? Comment.

.

[Q6] Let α ∈ (0, 1) and consider a consumer with Cobb-Douglas utility function. Find the

Marshallian demand functions and indirect utility function in this case. Show that both goods are

normal goods for this consumer.

6The definition is slightly misleading since a good may be normal for one consumer but not for another.
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[Q7] Let u(x) = x1 +φ(x2). Under what conditions is u a standard utility function? Assuming

these conditions to be satisfied, find the Marshallian demand functions. Comment.

.

Some careful inspection7 will bring you to the observation that the solution to the consumer

problem (5) is also the solution to a different – closely related – problem. We next develop

this intuition.

Consider the following problem and definitions:

min
x≥0

p.x s.t. u(x) ≥ u (7)

Definition 6 The optimal consumption bundle in (7) is called Hicksian demand, and denoted

h(p, u).

Definition 7 The minimum expenditure attained in (7) is called expenditure function, and

denoted e(p, u).

.

[Q8] Show that the expenditure function is homogenous degree one in p, increasing in u as

well as in prices, and concave in p.

.

The dual formulation of consumer theory rests on the following, mirror, results:

Lemma 3

x(p,m) = h(p, v(p,m)) (8)

Proof. Let u = v(p,m). Note first that e
(
p, u
)
≥ m. Indeed, suppose we can find x such

that u(x) ≥ u all the while p.x < m. Since ∇iu > 0, ∀i, we can also find y close to x such

that u(y) ≥ u and p.y < m. But this contradicts u = v(p,m). So e
(
p, u
)
≥ m.

Note also that e
(
p, v(p,m)

)
≤ m since we have in particular p.x(p,m) = m, while

u(x(p,m)) = u. Hence e
(
p, u
)

= m

The result follows since, once again, p.x(p,m) = m. �

Lemma 4

h(p, u) = x(p, e(p, u)) (9)

7Though admittedly mixed with a fair amount of intuition.
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Proof. Let m = e(p, u). Note first that v(p,m) ≤ u. Indeed, suppose we can find x such that

u(x) > u and p.x ≤ m then we could also find y close to x such that u(y) > u and p.y < m.

But this implies e(p, u) < m, a contradiction. So v(p,m) ≤ u.

But we also have v(p,m) ≥ u, since u
(
h(p, u)

)
= u while p.h(p, u) = e(p, u) = m. Hence

v(p,m) = u.

The result now follows, since like we said already u
(
h(p, u)

)
= u and p.h(p, u) = e(p, u) =

m.

�

Corollary 1

m = e
(
p, v(p,m)

)
(10)

Proof. This was proven within the proof of lemma 3.

�

Corollary 2

u = v
(
p, e(p, u)

)
(11)

Proof. This was proven within the proof of lemma 4.

�

.

[Q9] Consider a consumer with Cobb-Douglas preferences. Compute the Hicksian demand and

expenditure functions in this case.

.

The dual formulation is somewhat more than a simple theoretical curiosity. It is useful for

at least two reasons. It first allows us to illustrate income and substitution effects, and opens

the way to comparative statics exercises. Second, and maybe more importantly, it suggests

an ingenious way of providing a unified treatment of consumption and production.

Leave production aside for now. Our second result embodies the following idea: An

increase in the price of good 1 makes good 1 relatively more expensive compared to other

available goods. In addition, it reduces the purchasing power of the consumer. These effects

– substitution effect on the one hand, income effect on the other – are essentially distinct

effects. The slutsky equation establishes this distinction formally and confirms that in so far

as normal goods are concerned, the total effect on demand of an own-price increase is negative.
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Proposition 2 [Slutsky Equation] Suppose all goods are normal goods.8 For all i, j:

∂xi(p,m)

∂pj
=
∂hi(p, v(p,m))

∂pj
− xj(p,m).

∂xi(p,m)

∂m
(12)

In particular if i = j then both sides in (12) are negative. Moreover, ∂v(p,m)/∂pi < 0.

Proof. By (9), and using the chain rule

∂hi(p, u)

∂pj
=
∂xi(p, e(p, u))

∂pj
+
∂xi(p, e(p, u))

∂m
.
∂e(p, u)

∂pj
(13)

By the Envelope Theorem, we also have

∂e(p, u)

∂pj
= hj(p, u) (14)

This establishes (12).

Moreover, from (14):
∂hi(p, u)

∂pi
=
∂2e(p, u)

∂p2
i

(15)

But we have shown in [Q3] that e(p, u) is concave in p. Hence
∂hi(p,u)

∂pi
< 0 and, if goods are

normal, both sides in (12) are negative.

That dv(p,m(p))/dpi < 0 is immediate since an increase in prices strictly reduces the set

of goods affordable.

�

.

[Q10] Show that the substitution effect following an own-price increase is always negative.

.

The general framework we have developed remains silent on the source of the consumer’s

budget m. As we will later see when using this framework for practical purposes, a recurrent

scenario is one in which9 m = m(p), i.e. in which wealth itself is a function of prices. In the

canonical example for instance, the consumer is originally endowed with a vector of goods e,

8Observe that the Slutsky Equation holds for all goods, normal or not. The sign however of the total effect
of an own-price increase is determined only if the good is normal.

9Notice that m = m(p) allows for the possibility that ∂m/∂p = 0. So the truly general framework is the
one in which m = m(p). I follow here however common practice and treat this case as an extension.
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so that he is both a seller and buyer of the goods he consumes. Given prices p then: m = p.e.

The consumer is a net buyer of good i iff xi > ei, and a net seller otherwise.

Naturally, extending the framework in this way creates important distortions regrading

the effect of price changes and we must look beyond the Slutsky equation. It is in particular

no longer generally true that the total effect on demand of an own-price increase is negative.

If the consumer is a net seller of the good whose price increases he may benefit so much that

he actually ends up raising his consumption of that good. In a similar vein, the consumer

need not be worse off following a price increase. Indeed if he is a net seller of the good whose

price increases then his old consumption bundle remains affordable, and he will even be left

with a little cash in hand. That consumer is thus in fact unambiguously better off. Our next

proposition formalizes these ideas.

Proposition 3 Suppose all goods normal and consider a consumer with endowment e, so that

m = p.e. Then, for all i:

1.
dxi(p,m(p))

dpi
< 0 if xi > ei

2.
dv(p,m(p))

dpi
< 0 if xi > ei,

dv(p,m(p))

dpi
> 0 if ei > xi

Proof. Using the chain rule, we obtain the total derivative:

dxi(p,m(p))

dpi
=
∂xi(p,m(p))

∂pi
+
∂xi(p,m(p))

∂m

∂m(p)

∂pi
(16)

We then obtain by (12) and the fact that
∂m(p)

∂pi
= ei:

dxi(p,m(p))

dpi
=

[
∂hi(p, v(p,m(p)))

∂pi
− xi(p,m(p)).

∂xi(p,m(p))

∂m

]
+
∂xi(p,m(p))

∂m
.ei (17)

And, rearranging:

dxi(p,m(p))

dpi
=
∂hi(p, v(p,m(p)))

∂pi
−
∂xi(p,m(p))

∂m

[
xi(p,m(p)).− ei

]
(18)

This concludes the first part of the proof since, as already indicated in the proof of Propo-

sition 2,
∂hi(p,u)

∂pi
< 0 .

Suppose next ei > xi. A rise in the price of good i leaves consumption bundle x strictly

affordable. Thus
dv(p,m(p))

dpi
> 0 in this case.
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Finally, suppose xi > ei. Let u = v(p,m(p)) and assume for a contradiction that
dv(p,m(p))

dpi
≥

0, i.e. assume that the consumer remains able to reach level curve u following a rise in the

price of good i. By revealed preference the new consumption bundle must lie 8to the left′ of

e. But xi > ei, which implies that the demand for good i must be making a discontinuous

jump. This is impossible, owing to the continuity of demand (which itself is a consequence of

the Maximum Theorem).

�

2.2 Applications

2.2.1 Intertemporal Consumption

Consider a consumer with a two periods horizon, xi his consumption in period i, and U(x)

his (ex post) utility from consuming quantity x.10 We are interested in the consumer’s ex

ante preferences over profiles of consumption over time x, represented by the (ex ante) util-

ity function u. While there are in principle infinitely many ways in which to define u, the

time-discount assumption is by far the most convenient to work with.11 The time-discount

assumption sets u(x) = U(x1) + δU(x2), where δ ≤ 1.

Let yi denote income received by the consumer in period i = 1, 2. If the consumer is

able to freely borrow and lend at the market interest rate r, his budget constraint is x2 ≤
y2 + (1 + r)(y1 − x1): he can in period 2 consume his income from period 2 plus capital and

interest from any saving he has from period 1. Letting p = (1, 1
1+r

) we can then formulate the

consumer problem as

max
x≥0

u(x) s.t. p.x ≤ p.y (19)

Note that in case borrowing constraints apply we then have the additional condition that

x1 ≤ y1.

.

[Q11] Consider a consumer with a two periods horizon receiving income yi in period i = 1, 2,

and such that u(x) = U(x1) + δU(x2). Show that consumption is greater in period 2 than in

period 1 iff δ > (1 + r)−1. Can you say anything concerning the effect of changing the interest

10We suppose here that this utility is time-independent.
11While extremely convenient analytically, bear in mind that the time-discount assumption is far from

innocuous. Indeed, it supposes important restrictions on consumers’ underlying preferences. The fact for
instance that cross-effects are excluded from the framework (∂2u/∂x1∂x2 = 0) is hard to reconcile with
certain aspects of human behavior such as habits.
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rate on saving? What if the utility function has the Cobb-Douglas functional form?

.

[Q12] Consider a consumer with a two periods horizon receiving income yi in period i = 1, 2.

Suppose we know that if the consumer can freely borrow and lend he consumes x1 > y1. Find

that consumer’s optimal consumption profile if now he can freely lend but cannot borrow money.

What if x1 < y1 instead?

2.2.2 Consumption under Uncertainty

Uncertainty is conveniently illustrated by means of bets, or lotteries. A bet B with n possible

outcomes is a vector-pair (p, b) where p is the vector of probabilities and b the associated

vector of contingent gains. In particular µ(B), the expected gain of bet B, is then given by

p.b.

Definition 8 A bet is said to be fair iff it entails an expected gain/loss of 0, i.e. µ(B) =

p.b = 0.

Let 1 denote the vector with all entries equal to 1. It is sometimes convenient to think

of B as composed of a sure gain µ(B) on the one hand and a fair bet B0 on the other hand,

where b0 = b−µ(b)1. The attractiveness of this representation lies in the fact that we thereby

separate the 8gain component′ of B from the 8risk component′ of B. A risk-averse consumer

for instance is one who would ideally like to part with the 8risk component′ of B.

Definition 9 A consumer is said to be risk-averse iff to any bet B = (p, b) he prefers the sure

gain µ(B).

The following definition is useful in the context of insurance, a theme we later investigate.

Definition 10 Let B = (p, b). The hedge of B is the bet B such that B = (p,−b), B yielding

−bi whenever B yields bi.

.

[Q13] Consider a risk-averse consumer facing bet B, where µ(B) < 0. Show that B is worth

strictly more than |µ(B)| for that consumer. Comment.

.

We next introduce a very central concept in the study of consumption under uncertainty.
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Definition 11 Consider an uncertain environment with n contingencies and associated prob-

abilities (pi)1≤i≤n. Let xi represent consumption under contingency i and u the utility function

representing consumer preferences over vectors of contingent consumption. A consumer is an

expected-utility maximizer iff12 there exists a function U such that u(x) =
∑

i piU(xi).

The expected-utility assumption is quite compelling. However, its greatest credential lies

in the extent to which it simplifies the analysis of most problems. 13 In particular, while risk-

aversion in no way invokes expected-utility, the latter phenomena takes a remarkably simple

form under the expected-utility assumption. Indeed, the following Lemma establishes that,

in the expected-utility model, risk-averse consumers are precisely those with concave ex post

utility function U .

Lemma 5 Consider an expected-utility maximizing consumer, and let U denote his ex post

utility function. The consumer is risk-averse iff U is concave.

Proof. If U is concave then the consumer is risk-averse by Jensen’s Inequality.

If U is not concave then we can find y, z, and λ such that U(λy + (1 − λ)z) < λU(y) +

(1 − λ)U(z). But then consider bet B = (p, b) where p = (λ, 1 − λ) and b = (y, z). We have

u(B) = λU(y) + (1 − λ)U(z) > U(λy + (1 − λ)z) = u(Iµ(B)), where Iµ(B) denotes the bet in

which the consumer receives µ(B) for sure. This shows that the consumer is not risk averse.

�

It is noteworthy to underline in lieu of concluding remark that Lemma 5, together with

Lemma 2, show that in the context of expected-utility the general framework we developed

in section 2.1 is, in fact, precisely a model of risk-aversion.

.

[Q14] Consider an expected-utility maximizing consumer. Let U his ex post utility and m his

wealth. Show that the set of 8small′ bets he is willing to make expands according to U ′′(m)/U ′(m).

.

12In this definition p is treated as a parameter. Of course, p may be a variable of the problem under study.
The interested reader is referred to Section 8.1.

13While extremely convenient analytically, bear in mind that the expected-utility assumption is far from
innocuous. Indeed, it supposes important restrictions on consumers’ underlying preferences. The Allais
Paradox in particular indicates that human behavior is to some extent irreconcilable with the expected-utility
assumption. Section 8.1 elaborates on this important point.
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Application to the market for insurance:

We saw in Q13 that risk-averse consumers are precisely those willing to pay a premium

to hedge themselves against uncertain outcomes. An insurance company is just another firm

whose business model is to take advantage of this observation. We develop here the simplest

possible model of insurance.

Consider a consumer (or insuree), with initial wealth M , facing the risk of an accident

occurring with probability q.14 If an accident occurs the consumer loses L ≤ M , otherwise

nothing happens. An insurance company offers to insure the consumer for a unit price p. In

other words, it offers for a price pK a contract specifying that the insurance company commits

to pay the consumer amount K in case an accident occurs.

The object of what follows is to show that the problem of the consumer, namely choosing

K, is in fact nothing more than a special case of the general problem we examined at length

in section 2.1.

Let x1 denote consumption in case of no accident and x2 denote consumption in case of

accident. We will start by showing that choosing K is equivalent to choosing x = (x1, x2)

satisfying

(1− p)x1 + px2 ≤M − pL (20)

If the consumer purchases K units of insurance he is left with M − pK if no accident

takes place, i.e. he can choose x1 ≤ M − pK. If an accident occurs on the other hand he

will end up with M − pK − L + K = M − L + (1 − p)K. He can thus choose to consume

x2 ≤M −L+ (1− p)K. Summing a weighted average of these inequalities yields (1− p)x1 +

px2 ≤ (1− p)(M − pK) + p(M −L+ (1− p)K) = M − pL. But note that this is exactly (20).

Conversely, suppose that the consumer chooses (x∗1, x
∗
2) satisfying (20) and let us show

that he can achieve this outcome with an appropriate choice of K. Let K∗ =
M−x∗1
p

, and check

that this choice of K works. In case of no accident the consumer is left with M − pK∗ =

M − pM−x
∗
1

p
= x∗1, as desired. In case of an accident he ends up with M − L + (1 − p)K∗ =

M −L+ (1− p)M−x
∗
1

p
. He can thus consume x2 ≤ 1

p
M −L− 1−p

p
x∗1. But notice that the RHS

of this inequality is at most x∗2 since by assumption (x∗1, x
∗
2) satisfies (20).

Since we have now shown that choosing K is equivalent to choosing x = (x1, x2) satisfying

(20), this also means that the insurance problem can be stated as maxx≥0 u(x) such that

(20) holds. But notice that (20) can be written as p.x ≤ p.e, where p = (1 − p, p) and

14We suppose here the accident probability given and, in particular, independent of the behavior of the
insuree. This circumvents the (important) topic of moral hazard.
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e = (M,M − L). In other words, an equivalent formulation of the insurance problem is:

max
x≥0

u(x) s.t. p.x ≤ p.e (21)

The insurance problem can thus be framed as a standard consumer problem in which (i)

the consumer’s initial 8endowments′ are M in good times and M − L in bad times and (ii)

the consumer can trade consumption in good times for consumption in bad times at rate

(1− p)/p.15

We conclude with the following useful definitions:

Definition 12 An insurance policy is fair iff it entails a fair bet.

Definition 13 A consumer is said to be fully insured iff he bears no more risk, i.e. xi = xj

for all i and j.

.

[Q15] Show that a risk-averse consumer always chooses full insurance whenever insurance is

fair, i.e. whenever p = q. Show moreover that the converse holds under the expected-utility

assumption (i.e. the consumer does not choose full insurance if p 6= q).

.

.

[Q16] Consider an expected-utility maximizing risk-averse consumer with logarithmic ex-post

utility function, and a risk-neutral insurance company. Suppose the consumer’s wealth is M but,

with probability q he will lose L < M . What is the set of pareto optimal contracts between

consumer and insurer? Which of these are acceptable to both parties. Which one of these entails

a fair insurance policy?

.

2.2.3 Labour Supply

[Q17] Suggest a way in which to approach labour supply using the general framework developed

in section 2.1. Can you say anything concerning the effect of changing wages on labour supply?

15i.e. give up p in good times and receive 1− p in bad times.
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3 The Producer

We have in section 2 developed a theory of demand based on prices and consumers’ preferences.

This sections aims to outline the way in which a similar exercise can be carried out in view

of developing a theory of supply based on prices and firms’ technological constraints. One of

the great qualities of the consumer model developed in these notes resides in the ease with

which its formalism can be transferred over to production, thus yielding largely isomorphic

approaches to consumption on the one hand and production on the other. This section aims

to elicit this isomorphism.

The starting point of a theory of production is the production function f such that to

input vector z corresponds output y = f(z). It will once again prove useful to make certain

assumptions concerning production functions. We summarize these below:

Assumption A.1’: f is C∞.

Assumption A.2’: ∇if > 0, ∀i.

Assumption A.3’: f is strictly concave.

The problem of profit maximization given output price p and input prices w is

max
(y,z)≥0

py − w.z s.t. f(z) ≥ y (22)

Observe that a solution (y, z) to (22) is such that z minimizes the cost of producing y, i.e.

solves

min
z≥0

w.z s.t. f(z) ≥ y (23)

But note that (23) is precisely the dual formulation of the consumer problem (7) in which

x↔ z, u(.)↔ f(.), p↔ w, and u↔ y. Formally speaking the problem of the consumer and

that of the producer are thus interchangeable. Of course since in the case of the consumer it

is the primal formulation which bears economic significance, while in the case of the producer

it is the dual formulation, part of the analysis undertaken for the consumer looses relevance

when carried over to the producer. Consider Slutsky’s equation for instance, eliciting changes

in demand for a given level of expenditure. Now, in the case of production, expenditure is a

mere variable of the problem: Indeed firms care about profits, not costs. So Slutsky’s equation

is of very little practical importance when discussing production.
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4 General Equilibrium I

We developed in section 2 a theory of demand based on prices and consumers’ preferences, and

in section 3 a theory of supply based on prices and firms’ technological constraints. In both

cases prices were taken as parameters of the problem under study. In reality of course prices

are endogenously determined, and the only parameters of the economy consist in consumers’

preferences and firms’ technological constraints. General Equilibrium (GE) is the theory of

prices. It seeks to determine which prices will prevail in the economy and, as a consequence,

which quantities of each goods will be produced and consumed.

It will be useful to think of an economy as a dynamical system. A dynamical system (Ω, f)

consists of a state space Ω and a process f describing the evolution of the system, such that

if xt ∈ Ω denotes the state of the system in period t then

xt+1 = f(xt) (24)

One of the most important concepts in the study of dynamical systems is that of an

equilibrium. An equilibrium of (Ω, f) is a state which, once reached, the system remains in

indefinitely. Observe from (24) that the set of equilibria thus coincides with the set of fixed

points of the process f , i.e. the set of points such that f(x) = x.

It is very compelling to think of the economy as a dynamical system in which prices de-

termine the state. Somewhat peculiarly however, standard economic theory remains largely

silent regarding the process describing the evolution of the system. Instead, the theory charac-

terizes equilibria at the outset, avoiding at that stage any reference to the underlying dynamic

process. It only later demonstrates – as a consistency check, in a sense – that the former

equilibria in fact coincide with those of a well-defined dynamical process. We will follow this

practice here.

We will in these notes limit ourselves to the simplest form of GE models. While supply

in general results from production, we will take it to be fixed exogenously. Such models are

usually called pure exchange models.

A pure exchange model16 begins with an endowment point E = (Ae, Be). At the outset,

agent A (B) is endowed with goods-vector Ae (Be ). Such models have the great advantage

of introducing supply and tying it up with consumers’ wealth in a very simple and convenient

way. Indeed, total supply is Ae+ Be, while the wealth of agent A (B) is given by p.Ae (p.Be).

16We limit ourselves here to two consumers in order to shorten and simplify the exposition.
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A market equilibrium is characterized by (i) prices p such that aggregate demand equals

aggregate supply, and (ii) a consumption profile for each one of the consumers. Formally:

Definition 14 Let X = (Ax,B x). The pair (X, p) is a market equilibrium for the pure

exchange economy with endowment E = (Ae,B e) if and only if Ax +B x =A e +B e and each

consumer’s consumption profile maximizes his own utility function given prices p.

Let jx(p) denote the Marshallian demand of consumer j. The vector
∑j

j x(p)−
∑

j
je has

an important economic interpretation. It represents the aggregate excess demand vector given

prices p. We will use z(p) for a shorthand, so that

z(p) =

j∑
j

x(p)−
∑
j

je (25)

The following property is absolutely key. It states that the value of the aggregate excess

demand vector is always 0:

z(p).p = 0 (26)

.

[Q18] Prove (26).

.

Observe, using (25), that a vector of prices p is an equilibrium price vector if and only if

z(p) = 0. We will now show that the set of prices such that z(p) = 0 in fact corresponds to

the equilibrium set of a well-defined dynamical system.

For technical reasons (that we will not dwell onto) we will, for the purposes of our next

lemma, truncate the consumers’ Marshallian demands and set:

jx̃i = jxiI{jxi≤jei+ε} + (jei + ε)I{jxi>jei+ε} (27)

These truncated demands have the great advantage of being well-defined when prices are

0. It is moreover easy to show that a property corresponding to (26) holds, i.e. z̃(p).p = 0,

for all p.17 Lastly, notice that pi = 0 implies z̃i > 0.18

17Each consumer must exhaust his budget constraint. If he does not, this implies that we can find a good i
such that pi > 0 and xi < ei. But then, by (27), that consumer is not behaving optimally.

18If pi = 0 then by (27) each consumer demands strictly more of that good than he his endowed with. There
is thus strict excess demand for that good.

19



Lemma 6 Let Σ denote the n-dimensional simplex,19 and g : Σ→ Σ such that

gi(p) =
pi + max{0, z̃i(p)}∑
j(pj + max{0, z̃j(p)})

(28)

Then, g(p) = p if and only if z̃(p) = 0.

Proof. That z̃(p) = 0 implies g(p) = p is immediate. We now show the converse. Suppose, for

a contradiction, that g(p) = p while z̃(p) 6= 0. By (28), this implies that max{0, z̃i(p)} = kpi

for some k ≥ 0, and all i. In particular, one of the following must hold:

1. z̃i ≤ 0, ∀i, with strict inequality for some i

2. z̃i > 0, ∀i, and pi > 0, ∀i

3. ∃i such that z̃i ≤ 0 and pi = 0

We claim that none of the above can hold. Suppose (1.) holds. Given z̃.p = 0 this implies

that there exists i such that z̃i < 0 while pi = 0. But this is impossible, by a former remark.

This also shows that (3.) cannot hold. Finally, (2.) cannot hold since z̃.p = 0.

�

Lemma 6 is a central result. It shows that a vector of prices p is a (market) equilibrium

price vector if and only if it is an equilibrium state of the dynamical system (Σ, g). But given

that Σ is a compact of Rn, and g is continuous, we know that the dynamical system (Σ, g)

has at least one equilibrium.20 It ensues that a market equilibrium does exist.21

.

[Q19] Let X = (Ax, Bx), E = (Ae, Be), and p such that pi > 0 for all i. Suppose Ax (Bx)

maximizes agent A’s (B’s) utility given prices p and wealth p.Ae (p.Be). Suppose moreover that
Axi + Bxi =A ei + Bei in all but possibly one market. Show that (X, p) is a market equilibrium

for the pure exchange economy with endowment E.

.

[Q20] Consider a pure exchange economy, two consumers (A and B), two goods (1 and

2). Suppose consumer A has Cobb-Douglas utility function, while the two goods are perfect

complements for consumer B. Characterize market equilibrium if (i) A initially owns 10 units of

19i.e. Σ = {x ∈ Rn+|
∑
i xi = 1}.

20This is a consequence of Brouwer’s fixed point theorem.
21More precisely, lemma 6 shows that a market equilibrium exists given truncated demands a la (27).
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good 1 and B 10 units of good 2 and (ii) A initially owns 10 units of good 2 and B 10 units of

good 1. What is the set of pareto optimal allocations?

.

Having formally defined market equilibria, we now aim to explore some of the properties

these equilibria have. The welfare theorems are the central results of GE. Schematically, their

message is the following. Suppose S denotes the set of possible states of the economy, and

P ⊂ S the subset of states which are also pareto optimal. Let s0 ∈ S an arbitrary state, and

sb the social planner’s preferred state. No matter how intricate the social planner’s objective,

the assumption that sb ∈ P is certainly compelling. The First Welfare Theorem states that

starting at s0 and from there letting markets operate, the economy will eventually end in P .22

The Second Welfare Theorem states that if the social planner somehow manages to stir the

economy to sb, he can then let markets operate and rest assured that the economy will remain

in that state. Somewhat ironically the welfare theorems are often perceived of as supporting

arguments in favor of markets.

The First Welfare Theorem rests on the following observation: Prices fix the universal

rate at which goods trade against one another and thereby also 8divide up′ the set of feasible

allocations among consumers. In equilibrium, each consumer chooses his preferred allocation

within his subset. Any improvement for one consumer must therefore lie in another consumer’s

subset and must, thereby, also be worse for that consumer owing to the fact that he chose to

forego that allocation. 23

The formal proof of the theorem requires some additional notation, which we now intro-

duce. Let F (E) denote the set of feasible consumption points24 given endowment point E,

i.e. F (E) = {X = (Ax, Bx) : Axi + Bxi = Aei + Bei, ∀i}. We call F (E) the Edgeworth box.

Let also AF (p, E) = {X ∈ F (E) : p.Ax ≤ p.Ae}, so that AF (p, E) is the subset of feasible

consumption points affordable to consumer A under prices p. Define BF (p, E) similarly.

Lemma 7 F (E) = AF (p, E)
⋃

BF (p, E), for all p.

Proof. Let X ∈ F (E)− AF (p, E). Then

22The Theorem remains silent however on how it will get from s0 to P .
23By definition of a market equilibrium, each agent maximizes his own utility given prices. There are thus

no additional (mutual) gains from trade to be made at those prices. The first welfare theorem notes that there
are in fact no (mutual) gains from trade to be made at any prices.

24Strictly speaking, there are other feasible consumption points, namely those such that Axi + Bxi <
Aei + Bei for some i. But these are not really interesting as they suppose that some resources go to waste.
In particular, it is cleat that none of these can be Pareto optimal.
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p.Bx = p.(Ae+ Be− Ax) = p.(Ae− Ax) + p.Be < p.Be, i.e. X ∈ BF (p, E).

�

Proposition 4 [First Welfare Theorem] A market equilibrium is pareto optimal.

Proof. Let E the endowment point, p the equilibrium price vector, and X the equilibrium

consumption point. Suppose a feasible Y pareto dominates X, and suppose wlog that con-

sumer A strictly prefers Y to X. By definition of a market equilibrium Y /∈ AF (p, E), and

so by Lemma 7: Y ∈ BF (p, E). But this too is impossible, owing again to the definition of

market equilibrium.

�

A last word of wisdom concerning the First Welfare Theorem. Beware the following fal-

lacious reasoning: 8in equilibrium each consumer maximizes his own utility so there are by

definition no more gains from trade, and the First Welfare Theorem is a mere tautology′. The

fault in this statement lies in the fact that there are by definition no more gains from trade

at the equilibrium prices. On the other hand what the First Welfare Theorem establishes is

that there are in fact no more gains from trade at any prices.

.

[Q21] Argue that the reasoning used in the proof of the First Welfare Theorem collapses in

the presence of externalities.

.

Proposition 5 [Second Welfare Theorem]

Let X ∈ F (E) a pareto-optimal consumption point. There exists p such that, in the pure

exchange economy with endowment X, (X, p) is a market equilibrium.

Proof. Let X = (Ax, Bx).

Let AL = {Y = (Ay, By) ∈ F (E) : Au(Ay) ≥ Au(Ax)}, and BL = {Y = (Ay, By) ∈
F (E) : Bu(By) ≥ Bu(Bx)}.

Note first that by quasi-concavity of utility functions both sets are convex. We also have
AL
⋂

BL = {X}. Indeed, if Y ∈ F (E) − {X} belongs to AL
⋂

BL, we can take a convex

combination of X and Y and contradict the pareto-optimality of X. So AL and BL are

closed, convex sets with a singleton intersection. The statement of the proposition is thus an

immediate consequence of the Hyperplane Theorem.

�
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.

[Q22] Suppose (X, p) is a market equilibrium for the pure exchange economy with endowment

E. Can there exist an endowment point E ′ and a price vector p′ 6= p such that (X, p′) is a market

equilibrium for the pure exchange economy with endowment E ′? What is the set of endowment

points E ′ such that (X, p) is a market equilibrium for the pure exchange economy with endowment

E ′.

.

5 Financial assets

The analysis of general equilibrium developed in section 4 wholly disregards the issue of time.

In real life however, trade and consumption take place over time. At any point in time

therefore, individuals must decide whether to borrow or save – all the while choosing what to

consume at that point in time. The key concept in this respect is that of a financial asset.

This section introduces financial assets, and sets the stage for section 6 in which we revisit

GE with a view to incorporate temporal aspects.

We will throughout this section and the next consider T + 1 time periods, with t = 1

representing 8today′ and t > 1 representing future time periods. We further suppose that for

each t > 1 there are S possible contingencies, representing uncertainty about the future. A

pair (s, t) determines a state of the world. Let W denote the set of all states of the world. For

expository purposes, it is useful to distinguish today’s state of the world from future states.

We will let W−1 denote the set of all future states.

A financial asset is determined by a vector a ∈ RST , specifying one payout for each

possible future state of the world. We suppose that the set of tradable assets is {ai}Ii=1, so

that I denotes the total number of tradable assets. Let A denote the ST × I matrix whose

columns represent all tradable assets. We refer to A as the asset structure. We will henceforth

make the assumption that I = ST . 25

A portfolio ϕ ∈ RI is a combination of tradable assets, such that ϕi indicates the quantity

of asset i contained in the portfolio (note that we allow ϕi < 0, ∀i). The portfolio ϕ therefore

induces payout vector Aϕ in future states. We let q denote the price vector of the tradable

assets at t = 1, so that, in particular, q.ϕ is the period 1 price of portfolio ϕ.

25The crucial assumption here is I ≥ ST . If I < ST then rank(A) < ST , which most of the results derived
in this section preclude. The assumption that I actually equals ST is for simplification only.
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If the number of assets is large, different portfolios may induce identical payout vectors.

For a long time, one of financial traders’ main role was to seek out arbitrage opportunities

between such portfolios. Nowadays this is all computerized. There are as a result, at any

point in time, approximately no arbitrage opportunities remaining. Formally:

Definition 15 The no arbitrage condition states:

Aϕ1 = Aϕ2 ⇒ q.ϕ1 = q.ϕ2 (29)

Intuitively, arbitrage creates a link between the prices of different assets. We will now

formalize this important idea.

Let
(
ei
)n
i=1

denote the canonical basis in Rn. If rank(A) = ST then for each i ∈ {1, ..., ST}
we can find a portfolio vi such that

Avi = ei (30)

Definition 16 A family of portfolios
(
vi
)ST
i=1

is a basis of elementary portfolios iff vi satisfies

(30), for each i.

The following lemma provides a simple method which in practice allows us to find a basis

of elementary portfolios.

Lemma 8 If rank(A) = ST and if moreover A is invertible then the column vectors of A−1

constitute a basis of elementary portfolios.

Proof. Immediate from (30).

�

Our next lemma summarizes the main practical consequence of the no arbitrage condition.

Lemma 9 Suppose the no arbitrage condition holds and rank(A) = ST . Let
(
vi
)ST
i=1

an

arbitrary basis of elementary portfolios. Then there exists π such that qi = π.ai, ∀i, or, in

matrix form

q = tAπ (31)

Moreover,

πi = q.vi , ∀i (32)
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Proof. We have

ai =
∑
j

aije
j =

∑
j

aij(Av
j) = A

∑
j

aijv
j (33)

On the other hand

ai = Aei (34)

Hence, by no arbitrage

qi =
∑
j

aijπj = π.ai (35)

where

πj = q.vj (36)

�

Naturally, any time the price of an elementary portfolio is lesser or equal than zero traders

will demand an infinite amount of that portfolio, which in turn will push prices up. We will

thus henceforth assume π � 0.

.

[Q23] Let π ≥ 0 given by (31). Show that Aϕ ≥ 0 ⇒ q.ϕ ≥ 0. Then show the converse,

namely that Aϕ ≥ 0⇒ q.ϕ ≥ 0 implies the existence of a vector π ≥ 0 such that q = tAπ.

.

We next define an important class of portfolios.

Definition 17 Let τ ∈ {2, ..., T + 1} and bτ denote the portfolio paying out 1 if t = τ and 0

otherwise. We call this portfolio a bond with maturity at date τ . We define rτ such that 1
1+rτ

indicates the price of this portfolio.

Notice that if
(
vi
)ST
i=1

denotes a basis of elementary portfolios then:

Abτ =
∑
s

Avsτ (37)

By (31), we then have, using the no arbitrage condition:

1

1 + rτ
=
∑
s

πsτ (38)
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In particular, we can define a probability distribution ατ such that, ∀s ∈ {1, ..., S}

πsτ =
ατs

1 + rτ
(39)

ατs has a natural economic interpretation: we can view it as the probability which the market

assigns to state of the world (s, τ) occurring.26

.

[Q24] Consider a world with two periods, today and tomorrow, and S states of the world. Let

A denote the asset structure of the economy, and q the asset price-vector. Letting d = t(A−1)q,

show that r =
1−

∑
i di∑

i di
.

.

.

[Q25] A call option on a stock is a contract giving one the option to buy the stock at a

specific price (the strike price) at a specified time in the future. Consider a world with two future

states (a good state and a bad state) and three financial assets. There is first a bond, with interest

rate r. There is also a stock, whose price today is 1, and whose price tomorrow is u > 1 in the

good state but d < 1 in the bad state. There is finally a call option on the previous stock, with

strike price K. Assuming the no arbitrage condition holds, what is the price of the call option?

(The formula you will obtain is a special case of the well-known Black-Scholes formula.) What

probability does the market assign to the good state occurring?

.

In order to shed some light on financial assets’ role in the economy we will start with

a simple model in which consumers only care about available wealth in each state of the

world. As usual, let u denote a utility function representing the consumer’s preferences. We

suppose that the consumer receives income yw in each state of the world w ∈ W . It will be

useful to distinguish first-period income from later-periods income; we will write in this case

y = (y1, y−1). The consumer problem in this model is then:27

max
ϕ,x≥0

u(x) s.t. x1 ≤ y1 − q.ϕ ; x−1 ≤ y−1 + Aϕ (40)

26To be more specific, suppose there exists a risk-neutral speculator who also happens to be fully uncon-
strained regarding his trading position. If for some τ that speculator’s beliefs do not coincide with ατ then he
will take an infinite position.

27Notice that ϕi in (40) may be positive or negative. ϕi < 0 is sometimes referred to as short-selling of
asset i. Finally, notice that the consumer is constrained in the speculative positions he may take. Effectively,
his income here plays the role of collateral.
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.

[Q26] Using the framework developed in the present section, re-formulate the intertemporal

consumption problem as well as the insurance problem from sections 2.2.1 and 2.2.2, respectively.

In particular, specify A and q in each of these cases.

.

The purpose of the subsequent analysis is to show that (40) is in fact equivalent to (19), for

an appropriate choice of p. The idea is the following. Consumers forego consumption today

in order to buy assets which deliver future payouts; they then use these payouts to buy goods

in the future. Formally, we must therefore be able to by-pass financial assets.

Proposition 6 Suppose the no arbitrage condition holds and rank(A) = ST . Let π � 0

given by (31) and ξ = (1, π). Then x solves

max
x≥0

u(x) s.t. ξ.x ≤ ξ.y (41)

iff there exists ϕ such that (x, ϕ) solves (40).

Proof. Note first that since (i) the objective functions are the same and (ii) all constraints

are binding at any optimum of the two problems, it is enough to show that x ∈ Λ ⇔ ∃ϕ s.t.

(x, ϕ) ∈ Γ, where

Γ = {(x, ϕ) : x1 = y1 − q.ϕ ; x−1 = y−1 + Aϕ} ; Λ = {x : ξ.x = ξ.y} (42)

We will first show that (x, ϕ) ∈ Γ ⇒ x ∈ Λ. We will then show that ∀x ∈ Λ,∃! ϕ s.t.

(x, ϕ) ∈ Γ.

Let thus (x, ϕ) ∈ Γ. Using (31) to substitute yields

x1 = y1 − π.Aϕ (43)

We then have

x1 = y1 − π.
(
x−1 − y−1

)
(44)

And, by definition of ξ

ξ.x = ξ.y (45)

Conversely, let x ∈ Λ. Since rank(A) = ST we can find a unique ϕ such that x−1 =
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y−1 + Aϕ. We then have

x1 = y1 − π.
(
x−1 − y−1

)
= y1 − π.Aϕ = y1 − q.ϕ (46)

�

While possibly not immediately apparent, Proposition 6 embodies a very familiar lesson.

To make this clear, suppose that to each time period corresponds a single state of the world.

By (39), the constraint in (41) can be rewritten as:

∑
t

xt

1 + rt
=
∑
t

yt

1 + rt
(47)

Proposition 6 thus quite simply states that the consumer maximizes utility such that the

present value of his consumption equals the present value of his lifetime income. The intuition

is straightforward. If financial markets are complete, then agents can shift resources from one

state of the world to any other (at a set rate, determined by financial markets). So the only

constraint must be a global one.

For completeness, we will now extend problem (40) to consider explicitly the consumption

of different goods across states of the world. What follows is unfortunately, but unavoidably,

notationally burdensome.

Suppose the total number of goods is L, so that a full consumption profile for the consumer

specifies a vector xw ∈ RL for each state of the world w ∈ W . We let x denote the vector in

RLW summarizing this profile, so that xwl = xwl , ∀w ∈ W , ∀l ∈ L. Similarly a full profile of

prices specifies prices p̃w ∈ RL in each state of the world w ∈ W . We let p̃ denote the vector

in RLW summarizing this profile, so that p̃wl = p̃wl , ∀w ∈ W , ∀l ∈ L. We will sometimes say

that p̃ represents the vector of spot prices. Using this notation, the consumer problem is now:

max
ϕ,x≥0

u(x) s.t. p̃1.x1 ≤ y1 − q.ϕ ; p̃st.xst ≤ yst + (Aϕ)st , ∀st ∈ W−1 (48)

Our next proposition is a straightforward generalization of proposition 6.

Proposition 7 [NPV equivalence] Suppose the no arbitrage condition holds and rank(A) =

ST . Let π � 0 given by (31), and ξ = (1, π). Define p such that pwl = ξwp̃
w
l , ∀w ∈ W , ∀l ∈ L.

Then x solves

max
x≥0

u(x) s.t. p.x ≤ ξ.y (49)
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iff there exists ϕ such that (x, ϕ) solves (48).

Proof. The proof follows closely that of proposition 6.

First, notice that since (i) the objective functions are the same and (ii) all constraints are

binding at any optimum of the two problems, it is enough to show that the following sets are

bijective:

Γ = {(x, ϕ) : p̃1.x1 = y1 − q.ϕ ; p̃st.xst = yst + (Aϕ)st , ∀st ∈ W−1} ; Λ = {x : p.x = ξ.y}
(50)

We will first show that (x, ϕ) ∈ Γ ⇒ x ∈ Λ. We will then show that ∀x ∈ Λ,∃ ϕ s.t.

(x, ϕ) ∈ Γ.

Let thus (x, ϕ) ∈ Γ. Using (31), we have:

p̃1.x1 = y1 − π.Aϕ (51)

Using subsequent budget constraints to substitute then yields

p̃1.x1 = y1 −
∑

st∈W−1

πst(p̃
st.xst − yst) (52)

And, by definition of ξ and p

p.x = ξ.y (53)

Conversely, let x ∈ Λ. Since rank(A) = ST we can find a unique ϕ such that

p̃st.xst − yst =
1

πst

(
pst.xst − πstyst

)
= (Aϕ)st , ∀st ∈ W−1 (54)

We then have

p̃1.x1 = p1.x1 = y1 +
∑

st∈W−1

(
πstyst − pst.xst

)
= y1 −

∑
st∈W−1

πst(Aϕ)st = y1 − π.Aϕ = y1 − q.ϕ

(55)

�

As in (47), suppose that to each time period corresponds a single state of the world.

Expanding the constraint in (49) then yields:

∑
t

∑
l

p̃tlx
t
l

1 + rt
=
∑
t

yt

1 + rt
(56)
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The product p.x thus gives the present value of consumption bundle x, while proposition

7, once again, indicates that consumers maximize utility such that the present value of their

consumption equals the present value of their lifetime income. By extension, we will sometimes

say that p ∈ RLW defined in (49) represents the vector of present prices.

.

[Q27] Consider a world with 2 time periods (today and tomorrow), 3 states of the world ( today,

bad tomorrow, and good tomorrow) and two goods. Consider also a consumer earning 100 today,

and 100 tomorrow – but only in the good state. The consumer has Cobb-Douglas preferences such

that, if xwi represents consumption of good i in state of the world w, u(x) = Πxwi . The asset

structure of the economy is A, where a11 = 1, a21 = 1, a12 = 0, a22 = 1. It is supposed that

today good 2 is twice as expensive as good 1, inflation is uniform and at 8 percent, the interest

rate is 3 percent, and the market assigns probability one third to the bad state occurring. Find the

consumer’s net demand of each tradable asset.

.

6 General equilibrium II

We will in this final section build on the tools and results developed in the previous section

in order to formulate a theory of general equilibrium over time.

We first define the concept of a market equilibrium when trade and consumption take

place over time. The unique but crucial novelty is the addition of a financial market. A such

market equilibrium is usually called a Radner equilibrium.

Definition 18 Let X = (Ax, Bx) and Φ = (Aϕ, Bϕ). Then (X,Φ, p̃, q) is a Radner equilib-

rium for the pure exchange economy with endowment E = (Ae, Be) and asset structure A if

and only if:

1. Ax+ Bx = Ae+ Be

2. Aϕ+ Bϕ = 0

3. for each consumer i ∈ {A,B}, (ix, iϕ) solves

max
ϕ,x≥0

u(x) s.t. p̃1.x1 + q.ϕ ≤ p̃1.ie1 ; p̃st.xst ≤ p̃st.iest + (Aϕ)st , ∀st ∈ W−1 (57)

30



We seek in this section to exploit once again the main idea of the previous section: finan-

cial assets are pure practical intermediaries; it is thus compelling to by-pass them formally.

The following definition is useful in this view. An Arrow-Debreu equilibrium is a market

equilibrium in which nothing but goods are traded (i.e., no assets are traded), but in which

goods from different time periods may be traded against one another.

Definition 19 Let X = (Ax, Bx). Then (X, p) is an Arrow-Debreu equilibrium for the pure

exchange economy with endowment E = (Ae, Be) if and only if:

1. Ax+ Bx = Ae+ Be

2. for each consumer i ∈ {A,B}, ix solves

max
x≥0

u(x) s.t. p.x ≤ p.ie (58)

Our next result shows that to any Radner equilibrium corresponds an Arrow-Debreu equi-

librium, and that to any Arrow-Debreu equilibrium corresponds an infinity of Radner equi-

libria, in the sense that asset prices are in fact undetermined by the fundamentals of our

framework (i.e. consumers preferences and firms technology) - they are pure nominal objects.

Proposition 8 Let X = (Ax, Bx). If rank(A) = ST then the following are equivalent:

1. ∃ (p̃, q) and Φ such that (X,Φ, p̃, q) is a Radner equilibrium

2. ∃ p such that (X, p) is an Arrow-Debreu equilibrium

Proof. Suppose (X,Φ, p̃, q) is a Radner equilibrium. Let π given by (31) (notice that we are

using here the fact that rank(A) = ST ; notice also that π � 0 since otherwise the demand

for some asset would be infinite, which is precluded in equilibrium), and ξ = (1, π). Define

p such that pwl = ξwp̃
w
l , ∀w ∈ W , ∀l ∈ L. Observe then that, by proposition 7, (X, p) is an

Arrow-Debreu equilibrium.

Next, suppose (X, p) is an Arrow-Debreu equilibrium. Choose an arbitrary π � 0 and let

q given by (31) (again, we are using here the fact that rank(A) = ST ). Let ξ = (1, π) and

define p̃ such that pwl = ξwp̃
w
l , ∀w ∈ W , ∀l ∈ L. For each i ∈ {A,B}, define then iϕ such that

(A iϕ)st = p̃st.ixst − p̃st.iest (59)
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By proposition 7, for each consumer i ∈ {A,B}, (ix,i ϕ) solves (57). Moreover, the market

for each good clears by virtue of the Arrow-Debreu equilibrium. So (X,Φ, p̃, q) is a Radner

equilibrium iff Aϕ +B ϕ = 0. Since rank(A) = ST , the latter condition is equivalent to

A(Aϕ+B ϕ) = 0. But using (59) we have, ∀st ∈ W−1,

(
A(Aϕ+B ϕ)

)
st

=
∑
i=A,B

(p̃st.ixst − p̃st.iest) = p̃st.
∑
i=A,B

(ixst −i est) = 0 (60)

So (X,Φ, p̃, q) is a Radner equilibrium.

�

Corollary 3 p is an Arrow-Debreu equilibrium price-vector iff there exists π � 0 such that

(p̃, q) is a Radner equilibrium price-vector where

1. q = tAπ

2. pwl = ξwp̃
w
l , ∀w ∈ W , ∀l ∈ L, where ξ = (1, π)

To conclude this section, notice that – once we abstract from the fact that different goods

may be consumed in different time periods – Arrow-Debreu equilibria formally coincide with

the market equilibria defined in section 4. The results obtained there thus extend to Arrow-

Debreu equilibria and, owing to proposition 8, also to Radner equilibria. In particular, Radner

equilibria exist, they are pareto optimal, and any pareto optimal outcome may be sustained

as a Radner equilibrium. We have thus come full circle.
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7 Answers

[Q1] That A1 hold is obvious. A2 holds if and only x� 0. For A3 it is enough, by Lemma 1, to

show that u has convex level curves. The equation of a level curve is xα1x
1−α
2 = l, from which we

obtain x2 = l
1

1−αx
−α
1−α
1 , which is convex.

[Q2] Recall, u satisfies A1-A.3 iff v ◦ u satisfies A1-A.3 wherever v is a (smooth) increasing

transformation. Taking ln on the Cobb-Douglas gives ln(u) = α ln(x1) + (1 − α) ln(x2). The

result follows since ln is concave.

[Q3] The implied functional forms are u(x) = min{x1, x2} for perfectly complementary goods,

and u(x) = x1 + x2 for perfectly substitutable goods. The first of these violates assumption A.1

as well as A.2. This implies in particular that we cannot apply first-order conditions as is done

for example in Proposition 1. The second functional form violates A.3. This opens the possibility

in particular for more than one solution to the consumer problem (5). Marshallian demand can

nonetheless be obtained using non-standard approaches. In the first case, we must have x1 = x2.

And given p1x1 + p2x2 = m, we obtain x1 = x2 = m/(p1 + p2). In the second case, the consumer

always spends his entire wealth on the cheapest good. So x1 = m/p1 and x2 = 0 whenever

p1 < p2, and conversely in the alternative. If p1 = p2 Marshallian demands are undetermined since

any consumption bundle exhausting the budget constraint solves the consumer problem.

[Q4] Homogeneity degree zero follows from the invariance of (5) under multiplication of (p,m).

Walras’ law and the fact that v(p,m) is increasing in income, decreasing in prices all follow from

the fact that ∇iu > 0, ∀i. Let next (p′′,m′′) = λ(p,m) + (1 − λ)(p′,m′). Any bundle x

affordable under (p′′,m′′) must also be affordable under one of (p,m) and (p′,m′). But then

clearly v(p′′,m′′) ≤ max{v(p,m), v(p′,m′)}.
[Q5]If v is strictly increasing then u and v(u) represent the same preferences. The solution to the

consumer problem must therefore be invariant upon this transformation.

[Q6]By (6) we have αxα−1
1 x1−α

2

(
(1 − α)xα1x

−α
2

)−1
= p1/p2, and αx2/(1 − α)x1 = p1/p2 upon

rearrangement. We also have p1x1 + p2x2 = m since at an optimum the budget constraint must

be binding. Solving this 2x2 linear system yields x1 = αm/p1 and x2 = (1 − α)m/p2. Using

the fact that v(p,m) = u(x(p,m)) yields v(p,m) = αα(1 − α)(1−α)mp−α1 pα−1
2 . Both goods are

normal since ∂x1/∂m = α/p1 and ∂x2/∂m = (1− α)/p2.

[Q7] The set of necessary and sufficient conditions are (i) φ ∈ C∞, (ii) φ′ > 0, (iii) φ′′ < 0. If

an interior solution exists it then solves p.x = m and φ′(x2) = p2. The demand for good 2 is

thus independent of income. Graphically, the level curves of u are horizontal translations of one

another.
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[Q8] λp.h(p, u) = λe(p, u). Moreover, by definition, any x such that u(x) ≥ u satisfies p.x ≥
p.h(p, u), and thus also λp.x ≥ λp.h(p, u). This shows that e(p, u) is homogenous degree one in

p. That e(p, u) is increasing in p and u is immediate from (7) (set Ω(p, u) = {p.x : u(x) ≥ u}
and note that e(p, u) = min Ω(p, u)). Let next p′′ = λp+(1−λ)p′. Then e(p′′, u) = p′′.h′′, where

h′′ = h(p′′, u). But notice that p′′.h′′ = λp.h′′ + (1 − λ)p′.h′′ where the first term in the sum is,

by definition, more than λe(p, u) and the second term more than (1− λ)e(p′, u). This finishes to

show that the expenditure function is concave in prices.

[Q9] Use KKT to find αh2/(1 − α)h1 = p1/p2. Then solve using u(h) = u. Compute the

expenditure function using the fact that e(p, u) = p.h.

[Q10] We have shown that the expenditure function is concave in prices. Thus, in particular
∂2e
∂p2i

< 0. But, by application of the envelope theorem ∂e
∂pi

= hi. Hence ∂hi
∂pi

< 0.

[Q11] Immediate application of (6) to the present context, for the first part. For the second part,

increasing the interest rate means raising the relative price of period 1 consumption. We know from

proposition 3 that it is not in general possible to determine whether period 1 consumption rises or fall

as this hinges on whether the consumer is a net buyer or a net seller of period 1 consumption (i.e. a

borrower or a saver, respectively). If x1 > y1 (borrower) then period 1 consumption falls with a rise

in r, and the consumer ends up worse off. If y1 > x1 (saver) the effect on period 1 consumption is

indeterminate, but the consumer is better off as a result no matter what. If Cobb-Douglas functional

form then x1 = αp.y/p1, so that the total effect is dx1/dp1 = −αp2y2/p
2
1 ≤ 0. Substituting using

p1 = 1 + r and p2 = 1 gives dx1/dr = (dx1/dp1)(dp1/dr) = −αy2/(1 + r)2 ≤ 0.

[Q12] Argue that at x = y the consumer’s level curve crosses the budget constraint 8from above′.

So if there is a borrowing constraint the optimal consumption profile is precisely x = y. If on the

other hand x1 < y1 without borrowing constraint then introducing a constraint does not bind the

consumer in any way, and he can consume as if no constraint existed.

[Q13]Suppose the consumer faces both B and B. He neither gains nor looses anything in any

contingency. Facing B alone on the other hand is worse for him than losing |µ(B)| for sure, since

the consumer is risk-averse. This concludes the proof. The existence of a market for insurance is

founded upon this result.

[Q14] Consider bets of the form (p, b), with p = (p1, p2) fixed. The frontier x2(x1) of acceptable

bets is determined by p1U(m+x1)+p2U(m+x2) = U(m). Applying the Implicit Function Theorem

gives x′2(x1) = −p1U
′(m+x1)/p2U

′(m+x2). Since x2(0) = 0 we find x′2(0) = −p1/p2. Differen-

tiating once more gives x′′2(x1), from which we find x′′2(0) = −[p1/p2 + (p1/p2)2]U ′′(m)/U ′(m).

[Q15] The uninsured consumer facing accident probability q has x1 = M , x2 = M − L, and

µ(x) = M − qL. By fully insuring, he secures x1 = M − pL, x2 = M − pL, and µ(x) = M − pL.
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A risk-averse consumer thus, by definition, always chooses full insurance whenever p = q.28 If the

expected-utility assumption holds observe that (6) yields, 1−q
q

U ′(x1)
U ′(x2)

= 1−p
p

.

[Q16] Argue first that any pareto optimal contract transfers all the risk from consumer to insurer.

Let x1 denote consumption in case no accident and x2 consumption when accident. If x1 6= x2

then write a new contract as follows. Let µ = (1 − q)x1 + qx2. Consider the contract: 8pay

x1 − µ to insurance company in case no accident and receive µ − x2 is case accident′. This

contract makes the consumer strictly better off and the insurance company no worse off. The set

of pareto optimal contracts is thus the set of contracts of the form 8 pay F and receive L in case

of accident′, where F ≤ M . Observe however that if he is uninsured then the consumer’s utility

is (1 − q) ln(M) + q ln(M − L) = ln(M1−q(M − L)q). So the maximum fee the consumer is

willing to pay for full insurance is F = M −M1−q(M − L)q. Also, the insurance company won’t

insure the consumer at a loss. So F ≥ qL. The set of pareto optimal contracts acceptable to

both parties is thus the set of contracts of the form 8 pay F and receive L in case of accident′,

where qL ≤ F ≤ M −M1−q(M − L)q. To check that qL ≤ M −M1−q(M − L)q rewrite as

M1−q(M − L)q ≤ M − qL, take ln on both sides, and apply Jensen’s inequality. Observe finally

that the contract which entails a fair insurance policy is the one where F = qL.

[Q17] The relevant trade-off here is between leisure l and standard consumption of goods x (of

which we normalize the price to 1). Each worker is ’endowed’ with 365 days of work, valued at

365w, where w indicates the daily wage. Labour supply is then L = 365 − l, and each worker

can consume up to his total wage w(365 − l). Let u(x, l) denote utility from consuming x and

l leisure days. The consumer problem is maxu(x) s.t. px ≤ p.x†, where x = (x, l), p = (1, w),

and x† = (0, 365). A rise in w corresponds to a rise in the price of leisure. But the consumer

is always a net seller of leisure, so by proposition 3 whether the consumer consumes less leisure

(i.e. increases labour supply) or not is indeterminate. He will however unambiguously be better

off, owing to that same proposition.

[Q18] Follows from the fact that the budget constraint of each consumer is binding at an optimum.

[Q19] Since each consumer maximizes his utility we have p.Ax = p.Ae and p.Bx = p.Be. Thus

p.(Ax + Bx − Ae − Be) = 0. Suppose Axi + Bxi = Aei + Bei in all but possibly market j.

Then pj(
Axj + Bxj − Aej + Bej) = 0. But pj > 0 by assumption, so Axj + Bxj = Aej + Bej

and market j also clears.

[Q20] The Marshallian demands are Ax1 = α Am/p1, Ax2 = (1− α) Am/p2, Bx1 = Bm/(p1 +

p2) = Bx2, where Am = 10p1 and Bm = 10p2. Market clearance for good 1 gives 10 =

28A risk-averse consumer dislikes fair bets, while a fair insurance policy is one which offers an 8inverse fair
bet′. The question is thus largely tautological.
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Ax1 +B x1 = 10(a + p2/(p1 + p2)), from which we obtain p1/p2 = α/(1− α). The set of pareto

optimal allocations coincides with the median of the Edgeworth box.

[Q21] Lemma 7 still holds in the presence of externalities. However now, if A strictly prefers Y

to X it does not follow that Y /∈ AF (p, E). Indeed, in the presence of externalities A may prefer

a feasible allocation in his ’own’ feasible subset, AF (p, E). It is only given B’s consumption that

he finds Ax optimal.

[Q22] If X is a corner of the Edgeworth box then there may exist p′ 6= p such that (X, p′) is

a market equilibrium for the pure exchange economy with endowment X. However if X is not

a boundary point of the Edgeworth box then this is impossible, owing to Proposition 1. The set

of endowment points E ′ such that (X, p) is a market equilibrium for the pure exchange economy

with endowment E ′ is {E ′ = (Ae′, Be′) ∈ F (E) : p.Ae′ = p.Ae} = {E ′ = (Ae′, Be′) ∈ F (E) :

p.Be′ = p.Be} = AF (p, E)
⋂

BF (p, E).

[Q23] For the first part, note that q.ϕ = tAπ.ϕ = π.Aϕ ≥ 0. For the second part note that if

Aϕ ≥ 0⇒ q.ϕ ≥ 0 then there does not exist a hyperplane separating q from the cone of the rows

of A. But the cone of the rows of A is closed and convex. It thus follows from the separating

hyperplane theorem that q belongs to the cone of the rows of A.

[Q24] Let 1 denote the vector with all entries equal to 1, and b the bond of this economy. By

definition, Ab = 1, and so b = A−11. Hence, 1
1+r

= q.b = q.A−11 = t(A−1)q.1. Letting

d = t(A−1)q, we then obtain 1
1+r

=
∑

i di.

[Q25] The matrix A is such that a11 = 1, a21 = 1, a12 = u, a22 = d, a13 = max{0, u − K},
a23 = max{0, d −K}. The price vector q is given by ( 1

1+r
, 1, p), where p indicates the price we

are looking for. Using the fact that tAπ = q, find first π1 = (1+r)−d
(1+r)(u−d)

and π2 = u−(1+r)
(1+r)(u−d)

. We

then obtain p = π1 max{0, u−K}+ π2 max{0, d−K}.
[Q26] For intertemporal consumption, A = I, the identity matrix, while qi = 1

(1+r)i
. Each state of

the world represents a different time period. In the case of insurance, there are two future states

of the world: with and without accident. An insurance policy is an asset delivering 1 in case of an

accident and 0 otherwise. By contrast, a bond delivers 1 in both future states of the world. The

matrix A is therefore given by a11 = 1, a21 = 1, a12 = 0, a22 = 1. We have q = (1, p), where p is

the unit price of insurance. In the first period, the consumer buys K units of the insurance policy

and M − pk bonds.

[Q27] The idea is as follows. First, find the Marshallian demands using (49). Deduce from that

the total spot value of consumption in each state of the world, and then obtain ϕ by equating

the previous vector with y + Aϕ. Let M denote the present value of lifetime income, so that
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M = 100+
2
3

100

1+r
. Given Cobb-Douglas preferences we know that the consumer will spend, in present

value terms, 1
6
M on each 8good′. Expressed at spot values, the total values of consumption are

thus 2
6
M 3

2
(1+r) in tomorrow’s good state and 2

6
M3(1+r) in tomorrow’s bad state. The consumer

therefore needs assets delivering 2
6
M 3

2
(1 + r)− 100 in tomorrow’s good state and 2

6
M3(1 + r) in

tomorrow’s bad state, i.e. Aϕ = (2
6
M 3

2
(1 + r)− 100, 2

6
M3(1 + r)). Use A−1 to retrieve ϕ.
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8 Supplementary Material

8.1 Further remarks on expected utility

While very appealing, the expected utility assumption supposes important restrictions on

consumers’ underlying preferences. To illustrate, let tB ⊕ (1 − t)B′ denote the bet resulting

from playing bet B with probability t and bet B′ with complementary probability 1− t. One

implication of the expected utility assumption is then that

B ∼ B′ ⇒ tB ⊕ (1− t)C ∼ tB′ ⊕ (1− t)C (61)

It is in fact possible to show that any preferences satisfying property (61) are consistent with

the expected utility assumption. This is important as this says that property (61) effectively

constitutes the ultimate test of the expected utility assumption: if we can show that it is

satisfied by consumers’ preferences we will be vindicated in our use of the expected utility

assumption; if on the other hand we can show that consumers’ preferences violate this property

we will then be unable to justify our use of the expected utility assumption. In what follows,

we proceed to establish that any preferences satisfying property (61) are consistent with the

expected utility assumption.

Some notation is useful. Let l, h ∈ R, l < h. Let next B the set of bets B = (p, b) with

bi ∈ [l, h], ∀i. Let Ib ∈ B the bet yielding b for sure. We will suppose throughout the good

to be strictly desirable as well as disposable so that for all consumers Il is the least preferred

bet in B and Ih the most preferred one. Since Ih is the most preferred bet by all consumers,

we will also suppose throughout that for all consumers and ∀t ∈ [0, 1):

tB ⊕ (1− t)Ih � B (62)

Note also that for any B ∈ B we have:

B = p1Ib1 ⊕ ...⊕ pnIbn (63)

Proposition 9 Consider a consumer with continuous preferences satisfying property (61) for

all B, B′, and C ∈ B, and any t ∈ [0, 1]. There then exists u : B → R and U : R → R,

u(B) =
∑

i piU(bi), such that B � C iff u(B) > u(C).

Proof. Let B ∈ B. Observe that the sets {t ∈ [0, 1] : tIl ⊕ (1 − t)Ih � B} and {t ∈ [0, 1] :
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tIl ⊕ (1− t)Ih � B} are both non-empty. Moreover their union is [0, 1] and, since preferences

are continuous, both of them are closed sets. We can thus find t in their intersection. Let us

show moreover that t is in fact unique. Suppose not. We then have a t′ 6= t and tIl⊕(1−t)Ih ∼
t′Il⊕(1−t′)Ih. Let t′ > t, say. Observe that tIl⊕(1−t)Ih = t/t′

(
t′Il⊕(1−t′)Ih

)
⊕(1−t/t′)Ih.

But then we have found an s ∈ [0, 1) such that t′Il⊕ (1− t′)Ih ∼ s
(
t′Il⊕ (1− t′)Ih

)
+(1−s)Ih,

which is impossible according to (62). So t is unique and we can define u(B) = t. Then, By

property (61), applied twice:

sB ⊕ (1− s)C ∼ s
(
u(B)Il ⊕ (1− u(B))Ih

)
⊕ (1− s)C (64)

∼ s
(
u(B)Il ⊕ (1− u(B))Ih

)
⊕ (1− s)

(
u(C)Il ⊕ (1− u(C))Ih

)
And, upon rearrangement:

sB ⊕ (1− s)C ∼
(
(su(B) + (1− s)u(C))

)
Il ⊕

(
s(1− u(B)) + (1− s)(1− u(C))

)
Ih (65)

=
(
su(B) + (1− s)u(C)

)
Il ⊕

(
1− (su(B) + (1− s)u(C))

)
Ih

(66)

So u(sB ⊕ (1 − s)C) = su(B) + (1 − s)u(C). Setting U(b) = u(Ib) then concludes the proof

since for any B ∈ B we have B = p1Ib1 ⊕ ...⊕ pnIbn .

�
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9 Mathematical Appendix

In this appendix we record the theorems underlying all results in these notes. The Implicit

Function Theorem provides a simple way of finding the level curve of a function: it is or-

thogonal to the gradient of that function. The Karush-Kuhn-Tucker Theorem is the key to

solving constrained optimization problems: it notes that at an optimum the level curves of

the objective and of the constraint are tangent to one another. Once solved, the Envelope

Theorem tells us how the optimal value attained varies as one changes the parameters of the

problem, while the Maximum Theorem tells us something about the way in which the optimal

point varies as one changes the parameters of the problem. The Hyperplane Theorem estab-

lishes that we can always draw a line to separate a convex set from any point not belonging

to that set. Finally, Jensen’s inequality shows that if a function is convex then the mean of

the function is larger than the function of the mean.

Theorem 1 [Implicit Function Theorem] Let F : R2 → R, F ∈ C∞ s.t. ∇iF 6= 0,

∀i, and an interval I such that ∀x ∈ I, ∃y s.t. F (x, y) = 0. Then there exists a function

f : I → R such that ∀x ∈ I, F (x, y) = 0 iff y = f(x). Moreover f ′(x) = −∂F
∂x
/∂F
∂y

.

Proof. To each x ∈ I corresponds a unique y such that F (x, y) = 0. This follows from the

fact that ∂F
∂y
6= 0. The function f such that f(x) = y iff F (x, y) = 0 is thus well-defined. We

thus have F (x, f(x)) = 0 for all x ∈ I and, differentiating w.r.t. x gives ∂F
∂x

+ ∂F
∂y
f ′(x) = 0.

Hence f ′(x) = −∂F
∂x
/∂F
∂y

. �

Let Ω a compact subset of Rn. Let f , g : Ω×R→ R, and f, g ∈ C∞. The next Theorems

explore the solution to the optimization problem:

max
x∈Ω

f(x, a) s.t. g(x, a) = 0 (67)

Let X(a) ⊂ Ω denote the set of solutions to problem (67), and M(a) the maximum value

attained. A solution x∗(a) is said to be interior if it belongs to some open set within Ω. In

what follows ∇f and ∇g refer to variations in the variables of the vector x only.

Theorem 2 [Karush-Kuhn-Tucker Theorem] For all interior solution x∗(a) ∈ X(a),

∃λ(x∗(a)) ∈ R such that ∇f(x∗(a), a) = λ∇g(x∗(a), a).

Proof. If ∇f(x∗, a) = 0 just choose λ = 0. Hence, assume ∇f(x∗, a) 6= 0. If ∇f(x∗, a) and

∇g(x∗, a) are not proportional we can move orthogonally to ∇g(x∗, a), leaving g unchanged,

and raise f .
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Theorem 3 [Envelope Theorem] Let a ∈ R, x∗(a) an interior solution to (67), and λ

such that ∇f(x∗(a), a) = λ∇g(x(a)∗, a). Define L = f − λg. Then

dM

da
=
∂L
∂a

(x∗(a), a) (68)

Proof. We have, using the chain rule

dM

da
= ∇f(x∗(a), a).

dx∗(a)

da
+
∂f

∂a
(x∗(a), a) (69)

Thus, by Proposition 2

dM

da
= λ∇g(x∗(a), a).

dx∗(a)

da
+
∂f

∂a
(x∗(a), a) (70)

Now notice that g(x∗(a), a) = 0 for all a. This implies that

∇g(x∗(a), a).
dx∗(a)

da
+
∂g

∂a
(x∗(a), a) = 0 (71)

�

Theorem 4 [Maximum Theorem] X(a) is upper-hemicontinuous, and in particular con-

tinuous if it is single-valued.

Proof. Suppose for a contradiction that we can find two sequences, (an)n∈N and (y
n
)n∈N,

such that an → a, y
n
→ y, y

n
∈ X(an) for all n, and y /∈ X(a).

Let x ∈ X(a) and f(x, a) = M . We can find ε > 0 such that f(y, a) < M − ε and,

by continuity, f(y
n
, an) ≤ M − ε, for large enough n. But this contradicts y

n
∈ X(an) for

all n, since clearly for n large enough we can find zn in the neighbourhood of x such that

f(zn, an) > M − ε. �

Theorem 5 [Hyperplane Theorem] Let C a closed and convex set and s /∈ C. There

exists p, and l, such that p.s < l while p.x > l, ∀x ∈ C.

Proof. Let x denote the point in C closest to s (such a point exists since C is closed, and it

is unique since C is convex). Let y ∈ C − {x}. By convexity of C, λy + (1− λ)x ∈ C for all
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λ ∈ [0, 1]. Let p = x− s, and l = p.x. We first have

p.s = p.(x− p) < l (72)

Observe next that

‖s−
(
λy+(1−λ)x

)
‖2 = ‖

(
s−x

)
−λ
(
y−x

)
‖2 = ‖s−x‖2 +λ2‖y−x‖2−2λ

(
s−x

)
.
(
y−x

)
(73)

Since by definition x is the point in C closest to s, we must have
(
s − x

)
.
(
y − x

)
≤ 0, i.e.

p.
(
y − x

)
≥ 0 or equivalently p.y ≥ l for all y ∈ C − {x}. �

Theorem 6 [Jensen’s inequality] Let X a random variable and u concave. Then E(u(X)) ≤
u(E(X)).

Proof. Let c = E(X). Since u is concave we can find b such that u(x) ≤ u(c) + b(x − c).
Hence

E
(
u(X)

)
≤ E

(
u(c) + b(X − c)

)
= u(E(X)) (74)

�
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